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RHEOLOGICAL INSTABILITY AND LOCALIZATION OF STRAINS
IN PLANE ELASTOPLASTIC SPECIMENS UNDER EXTENSION

V. N. Kukudzhanov and A. L. Levitin
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We study buckling of plated specimens under extension fmsteplastic materials with various forms
of stress-strain curves and plasticity conditions. Bumklof elastoplastic specimens in a supercritical state
for material models taking into account damageability isamepanied by strain localization along shear
bands and by necking. If damageability is not taken into antahen localization of extension prevails in
specimens. We study the influence of the geometry of spesimed the physical properties of the material
on the plastic strain localization process and on the cheraf fracture of specimens. It is shown that the
factors determining the character of strain localizatiod af the subsequent fracture include, on the one
hand, weakening and plastic compressibility of the maltesibich arise owing to the nucleation and growth
of microdefects (primarily, microvoids), and, on the otlh@nd, the geometric constraint condition on the
plastic flow.

Our analysis enables a more realistic approach to the ecmtisin of medium models adequately
describing experimental data on the falling section of thess-strain curve as well as the character of strain
localization and fracture of specimens under extension.

1. INTRODUCTION

Numerical modeling of buckling problems is one of the moshpticated challenges in continuum mechanics.
Finding critical parameter values at which buckling occsra problem of ordinary complexity. But the problem
of determining the behavior of the system beyond the ulémaad (i.e., describing how the process develops in
a supercritical state and finding the mechanism and speeifitufes of its development) is incomparably more
complicated owing to instability and ambiguity. This prein can be solved if the post-buckling process does not
have the character of random motion and if, despite the aisvémnbiguity and the dependence of the solution on the
discretization of the problem (sizes and shapes of partgiements, the numerical method used, and other random
factors), one can single out regular component of the stractThe issue is to distinguish casual from natural. The
problem cannot be solved analytically, and it is not easyteesit numerically, since, as a rule, there is no rigorous
mathematical proof of the reliability and/or stability dfet numerical method itself. Hence one cannot be sure that
physical instability is not combined with purely numerie#fiects. To understand the mechanism of the phenomenon,
one needs to carry out a vast amount of computations forwswialues of the problem parameters and closely analyze
the results.

The study of a supercritical state is not only important friwa viewpoint of fundamental science but also has a
purely applied merit in many cases, say, when determiniap#faring strength of statically indeterminate rod systems
The clear understanding of causes of and conditions fotiplsisain localization in shear bands is very important in
describing extension fracture in many technological psses (stretch forming, drawing, and rolling).

Buckling of a specimen under extension and its superckibiehavior precede fracture. Without examining these
processes, one cannot understand and explain the fractaress. This problem is one of the most important problems
of modern mechanics of deformable solids and draws thetatteof numerous researchers [1-8].

When studying buckling of materials, one should first cldifickling criteria. In mechanics of deformable solids,
these problems have been studied rather comprehensivetafssical medium models (elastic and elastoplastic)
[2, 9-11]. However, the supply of models has increased diaally in the last decades, mainly owing to models
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related to brittle and ductile fracture and to the study efitifluence of damage. Buckling is poorly studied for such
media yet [12, 13].

When studying the stability of materials in damaged state @lose to fracture), one should, in contrast to the
case of a classical elastoplastic medium (satisfying theMises plasticity condition) take into account the plastic
compressibility of the material, which is a consequenceoad wucleation. This results in an essential modification of
the plasticity condition [1-4].

Buckling of flat specimens under extension is followed byptestic strain localization, necking, and eventually
the fracture of the specimen. We consider various matealais for which the Drucker stability condition is violated
1) a perfectly plastic model; 2) a model with initial plagtiardening and with exit of the material stress-strain curve
to ideal plasticity under a plasticity condition of the vonsiés type; 3) a model of a porous material with the
same stress-strain curves for the matrix material undeGtmson plasticity condition for the effective materialgth
GTN-model [1]).

We show that, under the von Mises plasticity condition, magloccurs only in the case of a perfectly plastic or
falling material stress-strain curve. It follows that thru€” stress-strain curve usually obtained in standardresion
experiments, which does not have a weakening section, theraxcepted as the material stress-strain curve included
in the material constitutive equations.

All three considered models result in the bifurcation ibgiy of the extension process. In the supercritical state
to single out a certain branch of the solution, a perturlpatias introduced in the form of a small notch in the central
part of an specimen. For the above-mentioned models, theamexns of evolution of shear and extension localization
bands are studied, and differences in their nucleationexesated.

For the model of plastic flow under the von Mises plasticitpdition, the neck is formed in the specimen owing
not to shear but to the extension localization and to transsvéninning in a neighborhood of the cross-section where
the extension is localized. Accordingly, fracture in thesedels occurs by separation along the plane normal to the
extension direction.

Necking and tensile failure under plane strain conditionthe GTN-model taking into account void nucleation
occur owing to shear localization (instead of separatigringhe case of von Mises extension). It is shown that the
most adequate pattern of formation and evolution of sheatiation bands is given by the model taking into account
microvoid nucleation and growth.

2. MODELS OF MATERIALS

2.1. Elastoplastic materiaMe consider the model of an elastoplastic material baseldefotiowing hypotheses
of the theory of plastic flow [14, 15].
« Additivity of elastic and plastic strains,

e=eg®+el. Q)

* The plasticity condition in the general case of an isotrdyoidy, depending on invariants of the stress teisspr
the plastic strain rate tenséf?, and interior parameterg,

F(S;, 17, x) = 0. )
In the case of a perfectly plastic material, the plastic@gpdition is simplified dramatically and acquires the form

r=t _1-o 3)
Oy

whereS = (sijsij)l/z is the strain intensity and, is the yield strength of the material.
» The associated plastic flow law,
. OF
el = A—. (4)
* do;
» Evolution equations for the interior variables. In our casgs is an equation for the material hardening
parameter and the damagg.
2.2. Damageable elastoplastic material with voids. The @niddel. Experiments show that numerous voids
growing with the plastic strain are formed in a prefractureaterial. Hence the material becomes highly compressible;
this fact cannot be neglected and is taken into account imthalel of an elastoplastic porous material.
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Modeling of necking and the subsequent fracture is baseti®meduations for an elastoplastic porous material
suggested by Gurson [1] and further developed by Tvergaad\&edleman [2, 3]. In the literature, this model is
known as the GTN-model. It takes into account the onset antgrof voids only under extension. The GTN-model
is a generalization of the classical theory of flow under thie Mises plasticity condition and takes into account the
influence of plastic compressibility of the material owingvbid formation in the prefracture state.

The GTN-model considers an effective porous material witlelastoplastic matrix. The yield function for the
effective material has the form

2
F= (i) +2q,f cos%(ngzaﬂ) -1+&f =0, (5)

Oy Y

whereg; andg, are adjustable parameters introduced by Tvergaard andéiead [3],S = (%sijsij)l/z is the stress
intensity in the effective materiat,;, = —p is the first invariant of the stress tensor (pressurg)= o, — %C’kk% is
the stress deviatos, is the yield strength of the material, ang is the Cauchy stress tensor.

The damageability structure parameter is porogity V,,./V, equal to the ratio of volume of the fractured
material (voids) to the total volume of the material.

In condition (1), along with porosity, the ratioo,, /oy has a very strong influence. The yield strengthis
defined from the equality of work for the plastic matrix and #ffective material:

(- loye, = Uijézi)j’ (6)

wherez? is the plastic strain rate intensity in the matrix.

For a hardened elastoplastic material, the relationstipdenz?, ando,- is given by Eqg. (2) in the form

T

where the instantaneous elastic modulijgo, ) is determined from the uniaxial extension stress-straine of the
material.
The evolution equation for porosity consists of two terms,

f = fgr + fnuclv (7)

where the first terrrfgr describes the growth of existing voids and the second fermdescribes the formation of new
voids. The void growth is related to the volume plastic sted, and is determined by the mass conservation law,

fgr = (1 _f)gzk (8)
The onset of new voids is specified by the relation
fnucl = Aéfn' (9)

Herez?, is the plastic strain intensity in the matrix. The relation

_ In _1 e —EN \?
A_isN\/Z exp[ 2(731\, )} (20)

for the coefficientd is defined as the normal distribution of straiffs with mean value 5, and standard deviatior,,
and f; is the volume fraction of the incipient voids. The voids foomly under extension.
The classical elastoplastic models based on the von Miastgity condition do not take into accountthe influence
of the first invariant of the stress tensor (pressure) on ldxgtip properties of the material.
In the special casg = 0, the plasticity condition (1) passes into the von Misestity condition, where. can
be assumed to depend on a hardening parameter, for example @dquist parameter

t
y= /O T
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2.3. Fracture criteria for a material.To study fracture, one should supplement the GTN-model fWw#bture
criteria.

Fracture criteria are to some extent related to the vergrstamt of the model. For example, plasticity is related to
shear strain if the plastic incompressibility of the matkis assumed. (The spherical part of the stress tensosyrees
(almost) does not contribute to strain, and the elastic aorapt is small.) It is natural to assume that such a material
can fail only after the shear strain reaches some limit,

t
Y= /0 eV el dt < X (11)
If the material is strongly compressible, then fracturedgedmined by critical porosity,

[ = fer (12)

Thus, when studying fracture of a damaged elastoplastienagtone should verify two independent conditions,
namely, the shear strain intensity (11) and the porosity.(F2acture happens according to the criterion whose is
satisfied earlier.

3. STATEMENT OF THE PROBLEM AND THE SOLUTION METHOD

We consider quasi-static extension of continuous homagenspecimens made of a nonlinear material and
weakened by a small outer notch. The computations wereedaaut for flat rectangular specimens (Fig. 1). A
uniform displacement increasing in time at a constant rateapplied to the end faces of the specimen. For the second
condition at the end face, we take the condition of absen@hedring stresses. These conditions ensure the exact
solution in the form of homogeneous uniaxial extension glthre length of the specimen; this case is easiest for the
computation of buckling. Should, for example, the secontld®mn be that the transverse displacement is zero, this
would violate the homogeneity of the stress-strain stase tiee end face. We study the stability of this solution and
supercritical modes of behavior of the specimen until catgiracture. Buckling manifests itself as a deviation from
the homogeneous state caused by small perturbations.

The elastic characteristics of the material were 300 MPa and = 0.3. The dependence of the yield strenggh
of the plastic material of the matrix on the strain is giverrig. 2. In some computations, an elastic—perfectly plastic
material was considered (curve 1) with yield strengthe 09 = 1.00 MPa and?. = 3.34[107 In other computations,
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a curve with an initial plastic hardening part was used (e@) plasticity starts at = 1.00, and the curve approaches
perfect plasticity ab§- = 1.795 andj, = 1.73.

The parameters characterizing the GTN-model were takenllaw/s: p,=0.0,¢, =1.5,¢,=1.0,6,, =0.3,5,,=0.1,
andfy =0.1.

The initial dimensions of the specimen were the same in alfmgtations (Fig. 1); the rod had half-height 4 mm,
half-width W = 1 mm, notch half-height = 0.030 mm, and notch depth = 0.005 mm. The half-thickness of the
specimen (when modeling thin plates) wids= 0.05 mm orH = 0.10 mm.

In space, a finite-element approximation on a Lagrangiathmes used, which permits one to keep track of the
deformation of the elements visually. By virtue of symmetine domain to be modeled is one-fourth of the specimen
(Fig. 1); it is divided by the mesh into quadrangular eleragattwo-dimensional plane strain probles;= 0) or
cubic elements (a spatial problem). The extension of plgpedimens was modeled with the use of four-point bilinear
quadrangular finite elements. Symmetry conditions £ 0 ando,,, = 0) were posed on the left and lower sides of
the region. The right side is stress free. A vertical disptaent increasing at a constant rate was given on the upper
boundary.

To avoid introducing numerical inhomogeneity, which castalit the solution of the problem at the transition to
a supercritical state, the specimen was uniformly diviagd fectangular finite elements along the entire domain. The
height of an element did not exceed the heigfta small notch placed on the exterior side at the centeresdplecimen
(Fig. 1a). Finite-element meshes of 20133 and 40 160 elements in the first and second layers, respectively, of
the notch band were used in the computations. In the fornser ttee horizontal dimension of an element was greater
than the vertical dimension, so that the elements wouldagmrthe square shape under strain. In the second case, the
elements were square-shaped outside the notch.

The extension of thin plated specimens was modeled in th@spttement of the problem, since the transverse
thinning in the localization region is essential in thisegBig. 1b). Eight-point linear cubic elements were used.
Symmetry conditions were posed on the plane®,y =0, andz =0. On the upper side, the vertical displacemgywas
specified. Two thin specimens with various half-thickn&ss 0.05 mm and? = 0.10 mm ere considered, one or two
elements were arranged in thalirection, and the finite-element mesh used in the comjputstomprised 2@ 80x 1
and 20x 80 x 2 elements, respectively.

In all considered problems, a finite-element approximatiora Lagrangian mesh with respect to space and a
finite-difference approximation with respect to time wesed.

The constitutive equations of the material are substayntinlinear, and the successive loading method with
Newton—Raphson iterations at each variable time step [&6]applied to obtain the solution. Note that the rod upper
end face displacement is proportional to the time step amdtttain rate of the specimen is constant, 0.5 mm/sec.
The maximum admissible stefet ... in conventional time was chosen from the condition that thersincrement\e
of the overall specimen should not exceed the maximum elsstins,- = 09 /E at any step.

4. NECKING AND BUCKLING UNDER PLANE STRAIN

First, we consider necking mechanisms for a plated specimeler various plasticity conditions and various
stress-strain curves of the material. We reveal the effeth@® notch on the stress-strain state and buckling and
study the mechanism responsible for the onset of locatimdtands and fracture of the specimens. A majority of
computations presented in this section were carried outroesh of 20« 133 elements with the maximum admissible
quasi-time step\t,,, = 0.0125 sec. The initial configuration of the specimen isashby an open frame; the current
configuration is shown by the deformed mesh.
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4.1. A homogeneous perfectly plastic specimEar the extension of a specimen made of a perfectly plastic
material, the Drucker condition is simultaneously viothitethe entire specimen. Buckling has a bifurcation charact
A very certain periodic structure of localization centessformed, which corresponds at the initial stage to the
rigid-plastic solution of the problem [14] (Fig. 3) and istdanined by the geometric size ratio of the specimen.
Foru = 0.35mm and = 8.75%, Fig. 3 shows the deformation of the Lagrangian mEgh 8a), the stress intensity
isolinesS = 1.001 MPa (Fig. 3)), and the plastic strain intensity isoling&s = 0.0263,/5 = 0.0185, and} = 0.0108
(Fig. 3¢).

The supercritical strain occurs similarly to linear stipiproblems, where the solution modes differ from each
other in the number of harmonics. Likewise, in nonlinearotbgical instability problems the solutions differ in
the number of necks being formed. There arise a number ofizatian centers along the rod, each of which can
potentially form a neck. But this periodic structure is @aidé and collapses owing to random perturbations (nurrerica
errors and/or geometric irregularities). With increasitrgin, the localization at one or two centers proves to lgela
than at the other centers. They take all subsequent straia.résult, the strain is frozen in the other necks and rapidly
grows in one of the necks, which results in fracture. #er 0.75 mm and = 18.75%, Fig. 4 shows the deformation
of the Lagrangian mesh (Fig.a,and the plastic strain intensity isoliné€s = 1.01 andl} = 0.543 (Fig. 4p). We see
that in the final state there are two necks at the ends of tharspe (the effect of inhomogeneity due to boundary
conditions). It is typical that they are close to each otheshape and stress-strain state. This proves that each of the
localization centers develops according to the same lawghwib completely determined rather than chaotic.

To obtain the least mode corresponding to one neck, one dlevahte a small perturbation sufficient for
suppressing the other random perturbations in the specimen

Another stabilizing factor is the initial plastic hardegjralways present in real materials, which was taken into
account with the use of curve 2 in Fig. 2.

The stress-strain state in a material is homogeneous watliipg. If the material is hardened in the entire strain
range, no buckling is observed even under artificial pedtiobs. A local violation of Drucker’s postulate is necagsa
for buckling; i.e., the material stress-strain curve sbdnd bounded and enter ideal plasticity or loss of strendth 2.

4.2. The extension of a notched specimen. A von Mises matattiainitial plastic hardening.The notch is a
stress raiser; therefore, the maximum stress occurs irp@reen section containing the small notch.

Figure 5 shows the stress intensity isolirfeat three initial stages of extension (prior to buckling) gute 5,
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a corresponds to = 0.20mmse = 5%, S; = 1.345MPa,S, = 1.339 MPa. Figure §,corresponds ta = 0.49 mm,
€=12.25%,5; = 1.476 MPaS, = 1.472 MPa. Figure §.corresponds ta = 0.56 mmg = 14.00%,5; = 1.516 MPa,
S, = 1.499 MPa. There is a band, issuing at an angle abdufréd the notch, in which the stress intensity is first
approximately 0.5-2% larger than in the remaining part efspecimen (Fig. &). Outside the band, the stressed
state of the specimen is almost homogeneous (the spreaddssnwith the computational error). In the immediate
vicinity of the notch, on each side of the band there are mggiens of unloaded material. (The stresses there are
approximately 1% less than in the remaining part of the speni) This is valid both for the elastic and for the
hardening plastic condition.

After the stress intensity in the band (up to the vertical syetry axis) exceed%a; = 1.466 MPa, a region
of increased stresses begins to form at the center of thénspeat the intersection of symmetry axes (Figh)5,
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Increasing, the new region merges with the shear band. Tesessntensity at the center of the specimen becomes
larger than that near the small notch. The subsequent stitessity growth occurs not from the notch but from the
center of the specimen, the increased stress intensitgrregicupies the entire cross-section of the specimen, and
necking begins (Fig. B). Note that necking begins much earlier in the specimen aitbtch than in a homogeneous
specimen.

Figure 6 shows the finite-element mesh during the speciménrdation process. We see that only one neck
is formed at the rod center, where the small notch was locatéds is explained by the fact that in the presence
of hardening the critical stress occurs not in all crosgiges simultaneously (as is the case for a perfectly plastic
material) but only in one weakened cross-section. In a m@igiood of the neck, there is mixed shear-extension strain.
There is no pronounced shear band and no sharp localizdtshear strain. The neck mainly develops by elongating
in the central cross-section. The fracture occurs by séipara=oru = 0.95 mm and = 23.75% (Fig. @, the stress
intensity isolinesS; = 1.650 MPa$, = 1.487 MPaS; = 1.325 MPa, and, = 1.162 MPa), the extension strain in the
central cross-section is of the same order as nearby, butfat.10 mm and = 27.50% (Fig. &, the stress intensity
isolinesS; = 1.776 MPa,S, = 1.134 MPa, and; = 0.813 MPa) the extension strain in the central crossedsi
several times larger than nearby and makes 250-300%; ieehaslocalization of extension strains. The maximum
strain intensity is attained in the central cross-sectiorihe rod axis (rather than near the notch), from which the
crack begins to propagate. We see that for a larger elonmgéfig. 6b) unloading occurs near the neck (between
isolines 1-3) and the plastic strain is frozen.

4.3. A GTN-material with initial plastic hardening. The emsion of a homogeneous speciméior a GTN-
material, the stress-strain state is affected by the fivsiriant of stresses, ., and the form of the stress-strain state is
characterized by the ratio_, /o, whereo, is the yield strength of the effective material.

The supercritical strain process in a homogeneous spedmatops at the initial stage qualitatively by the same
scheme as in a perfectly plastic material without damagest,Rhere occurs a periodic unstable system of necks.
Localization happens much earlier than in the classicaleh@ihce taking into account porosity in the GTN-model
results in a sharp weakening of the material in the locatimategion. With increasing strain, localization in one of
structure elements proves to be larger, and the periodiersysollapses. But at a later stage, when porosity becomes
noticeable, the stress-strain pattern changes dramwptiadl the solution structure is very different from thathaiut
taking into account damageability.

4.4, A GTN-material with initial plastic hardening. The emsion of a notched specimeiffihe initial state is
similar to that in the classical model (Fig. 5). With incriegselongation of the specimen, voids onset and grow in the
material, which results in weakening of the material andaasér localization than in the classical model. The notch
concentrates stresses, the strain is stably (with respecirherical perturbations in the computations) localizedrn
and a neck is formed.

Consider the stage in which localization is not large, thekranly originates, but porosity is already essential.
Then the stress-strain state in a GTN-material differs fthenstress-strain state in a classical elastoplastic rhter
(compare Fig. 7 with Fig. §,and Fig. 6). This is the effect of the first invariant of stess@nd of the damage.
Foru = 0.60 mm and = 15.00%, Fig. 7 shows the deformation of a finite-elementm{Egy. 7a), the plastic strain
intensity isolines’?’ = 0.292,73 = 0.235, and’} = 0.178 (Fig. ), and the porosity isolineg, = 3.0%, f, = 2.3%,
f3=1.6%, andf, = 0.9% (Fig. 7¢). Foru =0.75mmand = 18.75%, Fig. 8 shows the deformation of a finite-element
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mesh (Fig. &), the plastic strain intensity isoling$ = 1.564,I5 = 1.083, and} = 0.602 (Fig. &), and the porosity
isolinesf; = 55%, f, = 28%, andf; = 14% (Fig. 8¢).

With increasing extension of the specimen, the uniformresitan region grows and is localized, and the solutions
differ qualitatively. This is seen from the comparison af$:i6 and 7 with Fig. 4,

The region of increased stress intensityuniform extensiorr,,,., and porosityf is localized at the center of
the specimen (at the intersection of symmetry axes). Witheimsing extension, there is a sharp increase in strains
and porosity, localized in a narrow band issuing from the&eof the specimen at an angle about.4%he material
outside the localization band is unloaded. The elementhéndcalization band take practically all strain, and a
“plastic wedge” (part of the material drawn into the speairamost without deformation) is formed on the horizontal
symmetry axis.

4.5. Comparison of the supercritical deformation resuttsrhodels with and without damageability. Integral
diagrams.Figure 9 gives the conventional and true stress-strainesurenstructed for notched specimens made of an
elastoplastic material with initial hardening (FigaPand a GTN-material with initial plastic hardening of thetma
(Fig. 9b). None of them coincides with the material stress-straimeused in the computations.

The model for which the stress-strain curve of the matenmlt(ix) includes initial hardening (Fig. 2) is much
more stable than the perfectly plastic model. Changes indhgutation parameters (the integration step,,,, with
respect to conventional “time” and the mesh size) have joaht no effect on the results of computations (Fig. 9).

The specific buckling mode (the number and location of neckklacalization bands) for a perfectly plastic
specimen (Fig. 9) substantially depends on the computadoameters (the finite-element mesh size and the limit
integration step\t¢,,,, With respect to loading). The introduction of even a smatthdor a model with initial plastic
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hardening results in a perturbation sufficient to cause louglnd strain localization near the notch.

Practically, the integral true and conventional stresaistdiagrams differ only after the transition into a super-
critical state. For notched specimens with initial plasterdening, the integral stress-strain diagrams very weakl
depend on the computation parameters (the finite-elemestt siee and the limit integration stéy,., with respect
to loading) and change only slightly under changes in thélpro discretization parameters.
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5. NECKING IN THIN NOTCHED PLATES

To take into account transverse thinning in a thin platesgkdimensional spatial modeling is needed. We shall
give the results obtained for the damageable material (ffé-@odel) with initial plastic hardening of the matrix and
with a small notch in the specimen.

Here the effects of the notch proves to be insufficient forpsegsing the nonphysical numerical perturbations,
and two necks are observed in Fig. 10. Their formation isrieddoy the inexact realization of the natural boundary
condition, which is satisfied only in the weak sense in theédieiement method.

In thin plates, transverse thinning in the direction of thaxis in the localization band is essential. Just as for a
thick plate (Fig. 5) the stress intensity at the initial ggows in the direction from the notch to the vertical symmet
plane of the specimen and then occupies the domain at theragrthe specimen at the intersection of the horizontal
and vertical symmetry axes. Localization develops as a auatibn of shear and separation. In the localization band,
a sharp lateral contraction almost up to zero thicknesssemed. The formation and motion of a “plastic wedge” to
the vertical axis is clearly visible. (Itis this processttbeeates the neck.) In contrast to a thick plate, the loattn
band in a thin plate passes at a smaller angle abdi# 8%, which is close to the rigid-plastic solution for a plan
stress state [9, 14]. The localization band does not isseettli from the center of the specimen but is a little shifted
to the edge. There is a uniform extension and fracture regporloping in a neighborhood of the center; as aresult, an
opening mode crack is formed here. Closer to the edge, tlo& pessses into shear fracture at an angle to the specimen
axis. The larger the ratio of the plate thicknégdo its width W, the stronger this effect.

Figure 10 shows the pattern of formation of shear bands amaitig of the plate in the direction of theaxis. Note
that the solution almost completely reproduces itself ia tistinct top and bottom necks, even though the conditions
in discrete form on the upper and lower sides of an specimelifferent. This is evidence of the stable character
of the solution within one neck structure element and corsithe bifurcation character of rheological buckling of
elastoplastic specimens.

6. CONCLUSIONS

The neck is formed only if the Drucker materidh¢ Ac > 0) stability criterion is violated, i.e., if the material
stress-strain curve ends with a decreasing or horizonttibse

Rheological buckling has a bifurcation character, whichsists in the formation of an unstable periodic system
of structure localization elements (modes) in the supticatistage. At the same time, the solution within each mode
(neck) is not very sensitive to perturbations.

An Initial perturbation permits one to single out one of tmarithes of the solution. The perturbation should be
stronger than the other perturbations related to inhomeitieain the computation process (numerical errors, bagnd
conditions, etc.).

If void formation is taken into account, then the plastictndition is strongly affected by the first invariant,
of the stress tensor and the plastic compressibility of tlagenal, which have a substantial influence on the strain
localization and the formation of shear bands. The intrtidn®f softenings,-(f) alone would not be sufficient for
obtaining a pronounced shear localization; one has to den#ie influence of the uniform extensiep, .

Taking into account damage under plane strain conditicsdtein a clear localization of strains in the form of a
shear band. The fracture of the specimen occurs along zecashear bands, unlike the fracture of a specimen under
the von Mises plasticity condition, which occurs by separat

In a thin plated specimen (a plane stress state) of a damiageabtoplastic material, the shear band is formed at
an angle of 35-4( to the horizontal axis. As the thickness of the specimeremses, a uniform extension band is
formed near its center, and the shear band is displaced &xtbdor surface, which results in fracture by separation
along a plane surface near the axis and along a tilted shdacsicloser to the lateral surface of the specimen. The
thinning of the specimen happens in two directiais,andOz.

The comparison of modeling results with experimental datas that the model of a porous medium describes
the fracture of an elastoplastic material quite adequately
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