
Optimized Parallel Approach for 3D Modelling
of Forest Fire Behaviour

Gilbert Accary1, Oleg Bessonov2, Dominique Fougère3,
Sofiane Meradji3, and Dominique Morvan4

1 Université Saint-Esprit de Kaslik, B.P. 446 Jounieh, Lebanon
2 Institute for Problems in Mechanics of Russian Academy of Sciences,

101, Vernadsky ave., 119526 Moscow, Russia
3 Laboratoire de Modélisation en Mécanique à Marseille, L3M–IMT, La Jetée,

Technopôle de Château-Gombert, 13451 Marseille Cedex 20, France
4 Université de la Méditerranée, UNIMECA, 60, rue Joliot Curie,

13453 Marseille Cedex 13, France
gilbertaccary@usek.edu.lb, bess@ipmnet.ru, fougere@l3m.univ-mrs.fr,

sofiane@l3m.univ-mrs.fr, dominique.morvan@univmed.fr

Abstract. In this paper we present methods for parallelization of 3D
CFD forest fire modelling code on Non-uniform memory computers in
frame of the OpenMP environment. Mathematical model is presented
first. Then, some peculiarities of this class of computers are considered,
along with properties and limitations of the OpenMP model. Techniques
for efficient parallelization are discussed, considering different types of
data processing algorithms. Finally, performance results for the paral-
lelized algorithm are presented and analyzed (for up to 16 processors).

1 Introduction

This work is carried out within the context of the European integrated fire
management project (Fire Paradox) aiming to obtain a full-physical three-di-
mensional model of forest fire behaviour. The proposed approach accounts for
the main physical phenomena involved in a forest fire by solving the conservation
equations of physics applied to a medium composed of solid phases (vegetation)
and gas mixture (combustion gases and the ambient air). The model consists in
coupling the main mechanisms of decomposition (drying, pyrolysis, combustion)
and of transfer (convection, diffusion, radiation, turbulence, etc.) taking place
during forest fire propagation [1]. This multiphase complete physical approach
already exists in 2D approximation [2] and consists in solving the described
model in a vertical plane defined by the direction of fire propagation. The 3D
extension of the existing model will enable to render 3D effects observed in real
fires and to represent the real heterogeneous structure of the vegetation. The
CFD code under development is currently at the stage of predicting turbulent
gas flows and has been validated on several benchmarks of natural, forced, and
mixed convection [3].

V. Malyshkin (Ed.): PaCT 2007, LNCS 4671, pp. 96–102, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Optimized Parallel Approach for 3D Modelling 97

The extended 3-dimensional formulation requires much more computational
resources than the previous 2D model. The new model needs substantially bigger
grids (Nx × Ny × Nz vs. Nx × Ny grid points), more complicated discretizations
(more terms in the equations), additional grid compression in problematic areas
(because of non-flat fire interfaces), more robust and expensive algebraic solvers.
As a result, the total computational complexity of the algorithm increases by
two orders of magnitude or more.

In order to be able to perform precise computations in reasonable time, it
is necessary to exploit efficiently all available resources and improve computa-
tional performance by combining the following considerations: efficient numeri-
cal method and procedure, robust algebraic solvers, optimization of the code for
modern superscalar microprocessors with memory hierarchies, and paralleliza-
tion of the algorithm for moderate number of processors. However, this last
consideration remains the most efficient way for increasing the speed of compu-
tations.

The next important point is the choice of a parallel computer architecture and
parallelization model for this work. Generally, distributed memory parallel com-
puters (clusters) are used for large-scale computations. However, such parallel
computers, used with the appropriate MPI message-passing model, result in very
complex algorithms and require tight optimization of communication exchanges
[4]. In addition, a model with relatively slow communication exchanges can’t be
efficiently used for many algorithms [5]. Finally, it is difficult to implement a
portable code that would work on any parallel platform with required efficiency.

Thus, shared-memory computer architecture was chosen as a target for the
new parallel code. An OpenMP parallelization model without explicit exchanges
is used for the algorithm [6]. This model, which is the natural choice for shared-
memory computers, is just an extension of high level languages (Fortran, C).
With appropriate programming, the code may work on a parallel system with
any number of processors. Consequently, the new code becomes portable and
compatible with many parallel platforms.

However, implementation of the shared-memory paradigm encounters another
difficulty: almost all modern shared-memory systems with moderate or high
number of processors (4, 8, 16 and more) belong to the class of Non-uniform
Memory Access (NuMA) computers. It means that every processor or group of
processors (processor node) is directly connected only to its own (local) memory
while an access to the non-local (remote) memory is performed through interme-
diate communication network. Due to such organization, remote accesses become
much slower than local ones. This restriction requires a special approach for the
organization of parallel algorithms in order to ensure that most or all accesses
from every processor node occur within this node’s local memory.

Thereby, in the presented paper we will describe the mathematical model
and numerical method, strategy of OpenMP parallelization on NuMA comput-
ers, results of parallelization efficiency of the new 3D code, and summary with
conclusions.

98 G. Accary et al.

2 Mathematical Model and Numerical Method

We consider Newtonian fluid whose flow is governed by non-stationary Navier-
Stokes equations in Boussinesq approximation. The model is also capable to
handle the Low Mach number approximation in the context of perfect gas [3].
The set of equations consists of the continuity equation, the momentum equa-
tions in three spatial dimensions (i = 1, 2, 3) and the equations for energy and
turbulent quantities. The generalized governing equation for all variables is ex-
pressed in the following conservative form:

∂

∂t
(ρφ) +

∂

∂xi
(ρφui) =

∂

∂xi

(
Γ

(
∂φ

∂xi

))
+ Sφ with φ = 1, u1, u2, u3, T, k, ε

where φ represents the transported variable; ρ and ui are respectively the local
density and the i-th component of velocity; Γ – the effective diffusion coefficient;
Sφ – the source term for the corresponding variable.

The Finite Volume discretization is applied to the non-uniform Cartesian
staggered grid. Second-order discretizations are used, employing the quadratic
upstream interpolation of advective terms with flux limiters.

The transport equations are solved by a fully implicit segregated method based
on the SIMPLER algorithm [7]. The non-symmetric linear systems obtained from
the discretized equations are solved by the BiCGStab iterative method, while
the symmetric linear system of the pressure equation is solved by the Conjugate
Gradient method (CG). The use of under-relaxation techniques, when necessary,
allows better convergence and stability of the solution.

The code is applicable for simulation of flows in rectangular domains. Valida-
tion of the sequential version of the code has been performed for several common
benchmarks (lid driven cavity, differentially heated cavity etc.).

3 OpenMP Parallelization on NuMA Computers

We will consider the strategy of OpenMP parallelization using the SGI Altix 350
shared memory system with non-uniform organization. It consists of 10 processor
nodes, each with two Intel Itanium 2 processors (1.5 GHz, L3-cache 4 Mbyte) and
4 Gbyte of the local memory. Processor nodes are interconnected by the special
NuMA-link interfaces through the high-speed switch that provides accesses to
non-local (remote) memories. Logically, the considered system belongs to the
shared-memory class, when every process may transparently access any memory
location in a system. However, remote accesses are much slower than local ones.
For example, the peak memory read rate (throughput) within a node is equal to
6.4 Gbyte/s, while the peak throughput of NuMA-links is two times less.

Direct measurements show that the speed of regular read accesses achieves
6.1 GByte/s for local memories, and only 2.4 GByte/s for remote locations.
This speed is very important for many computational algorithms that perform
processing of data in big 3-dimensional arrays. Performance of such memory-
bound algorithms depends on the memory throughput almost linearly.

Optimized Parallel Approach for 3D Modelling 99

Therefore, it is necessary to ensure that all processes of a parallel program
access only (or mostly) data located within a local memory. On the system level,
it can be done by the special utility that affiliates (bounds) every process to its
own processor. This binding is needed to avoid migration of processes between
processors and to guarantee that every processor executes only one process. In
a multi-user computer system, some discipline must be established in order to
avoid interference of processes from different programs.

On the application level, it is important to organize an algorithm in such a
way that every thread (branch) of a parallelized algorithm would process only
(mostly) a corresponding piece of data. Additionally, these data must be dis-
tributed between processor node’s memories by the appropriate way (in the
beginning of the execution). If these requirement are not fulfilled, parallel per-
formance may drop two times or more.

The same rules and restrictions apply to another types of NuMA computer
systems. For example, systems built on AMD Opteron processors also use rela-
tively slow interprocessor links. In these systems, processors are interconnected
into a mesh that imposes an additional limitation: access to some particular
memory location may pass through several intermediate (transit) processors if
the target processor (who owns the required location) is not connected directly
to the requesting one. Therefore, Opteron-based systems (with mesh topology)
may become less flexible and less efficient for OpenMP parallelization, in com-
parison to switch-based systems (with star topology).

Generally, the OpenMP extension to a high level language (Fortran in our
case) is very simple and complements this language by several comment-like
directives. These directives instruct a compiler how to perform parallelization
of a program. The most important and popular directive is ”PARALLEL DO”
which is usually applied to an outermost ”do” statement (for nested loops) (see
example on Fig. 1, left). In accordance with the number of processors requested,
iterations of this loop are evenly distributed between branches (threads) of a
program for execution in different processors. This corresponds to the geometric
splitting of a processed data array (3-dimensional, as a rule) into sub-arrays by
the last spatial dimension (Fig. 1, right).

!$OMP DO
do K=1,Nz
do J=1,Ny

do I=1,Nx
Wo3(I,J,K)=Wo2(I,J,K)+

& beta*Wo3(I,J,K)
enddo

enddo
enddo

!$OMP END DO
0 1 2 3
processors

k

j i

Fig. 1. Example of ”PARALLEL DO” directive (left); geometric splitting of data array
by this directive (right)

100 G. Accary et al.

The OpenMP parallelization model is very convenient for ”true” shared-
memory computers with uniform memory. For these computers, it is possible
to split a multidimensional computational domain by any spatial direction. For
non-uniform systems, only splitting by the last direction ensures that neces-
sary portions of data are fully located within the corresponding processor node’s
memory. In order to avoid remote memory accesses, algorithms must be rear-
ranged. Some sorts of algorithms (for example, those with recursive dependences
in all spatial directions) can’t be parallelized easily and efficiently within the
OpenMP model. On the other hand, algorithms of the ”explicit” nature, that
pass sequentially through data arrays and use small local data access patterns
(stencils), may benefit from this model. Accesses to remote memory occur only
within boundaries between subdomains in this case.

One-dimensional splitting of multidimensional arrays imposes another limi-
tation on the OpenMP model for NuMA computers: subdomains become very
”narrow” by this dimension, and, as a result, accesses to remote memory through
boundaries become frequent enough (compared to the number of local accesses).
Also, the last dimension may become not divisible by the number of proces-
sors that results in a bad load balance. These limitations restrict the degree of
efficient parallelization by moderate number of processors (typically 8–16).

Unfortunately, OpenMP in the current state has no special tools or directives
for NuMA parallelizations. Therefore, only indirect techniques (as described in
the current paper) may by applied to customize parallelization methods for this
sort of computers.

4 Parallelization Approach and Results

In the current implementation, the considered CFD code has the ”explicit” na-
ture, i.e. it doesn’t employ direct implicit solvers. Most part of its computational
time (about 80 %) is consumed by two Conjugate Gradient type solver routines
– CG (for pressure) and BiCGStab (for transport equations). These routines
process data arrays with 7-point local stencils and therefore perform remote
memory accesses only when processing data near subdomain boundaries. As a
result, these CG-type routines can be efficiently parallelized using the OpenMP
model for NuMA. Another time-consuming routines also belong to the ”explicit”
class and can be parallelized without difficulties.

In order to ensure that data are correctly distributed within local memories
of corresponding processor nodes, it is necessary to perform special initialization
of all important data arrays. Neither the current OpenMP standard, nor the
OpenMP-aware compiler used in this work (Intel Fortran 9.1) have any tools
for explicit data distribution. To provide this distribution, a simple routine is
used that initializes all arrays in nested loops with ”PARALLEL DO” directives.
This routine is called in the beginning of the code when memory pages for arrays
are not yet allocated. Since this allocation occurs ”by demand”, it is necessary
to issue the first request to any element of data from the same processor node,
which will be used for further processing of this element. Therefore, parallel loops

Optimized Parallel Approach for 3D Modelling 101

for initialization of data must be organized similarly to data-processing ”do”
loops with exactly the same splitting of outermost iterations between processors
(Fig. 1).

Validation of the parallelized code and measurements of its parallelization
efficiency were performed on the benchmark problem of natural convection in
differently heated cavity [8]. We used the Boussinesq flow configuration with
Rayleigh number Ra = 106 and grid size 60 × 60 × 60. Performance results are
presented on Fig. 2. In the table, results of relative acceleration (compared to the
previous grade with half number of processors), absolute acceleration (compared
to one processor) and parallelization efficiency are shown.

No. of processors

1 2 4 8 16

time (seconds) 1966 1448 523 246 173

relative speedup – 1.36 2.77 2.13 1.42

total speedup – 1.36 3.76 7.99 11.36

efficiency – 68% 94% 100% 71% 1

 2

 4

 8

 16

 1 2 4 8 16

Fig. 2. Parallelization results for the benchmark problem

Relative acceleration for two processors is not high because both processors
compete for the same memory, and performance is limited by its throughput.
On the other hand, for 4 and 8 processors we see a superlinear speedup owing
to the help of a large 4 MByte L3-cache in each processor. As a result, total
acceleration for 4 and 8 processors corresponds to the linear profile. For 16
processors, some negative effects are accumulated: load disbalance (60 is not
divisible by 16) and influence of big boundaries (1 boundary grid point per 2 or
3 internal points). Due to these effects, parallelization efficiency drops. It follows
that the reasonable degree of efficient parallelization for this configuration is 8,
at most 16, that corresponds to the goal of the current work.

The presented parallel code is based on a serial code that was initially opti-
mized for modern pipelined processors with memory hierarchies. Further opti-
mization of the code will be devoted to the acceleration of algebraic solvers by
applying efficient preconditioners. It was demonstrated that the explicit-class (lo-
cal) Jacobi preconditioner can be easily parallelized. However, for more efficient
implicit (global) line-Jacobi preconditioner, new parallelization technique must
be developed with parallel solution of tri-diagonal linear system. This paralleliza-
tion will be based on the previous work [4]. Another direction of the development
of the current CFD code will consist in incorporation of the radiation transfer
algorithm. This algorithm can’t be parallelized by geometric manner and will
need a special approach based on the concept of input data parallelism.

102 G. Accary et al.

5 Conclusion

In this work we developed the strategy of OpenMP parallelization for NuMA
computers and parallelization method for 3D CFD code for modelling of for-
est fire behaviour, taking into account restrictions and limited flexibility of the
current state of the OpenMP environment. This new method allows to achieve
good parallelization efficiency for moderate number of processors (up to 16). The
obtained results correspond to the general goal of the work – to obtain a tool
for performing precise 3D computations in reasonable time.

Acknowledgements. This work was supported by the European integrated
fire management project (Fire Paradox) under the Sixth Framework Programme
(Work Package WP2.2 ”3D-modelling of fire behaviour and effects”), and by the
Russian Foundation for Basic Research (project RFBR-05-08-18110).

References

1. Morvan, D., Dupuy, J.L.: Modeling of fire spread through a forest fuel bed using a
multiphase formulation. Combust. Flame 127, 1981–1994 (2001)

2. Morvan, D., Dupuy, J.L.: Modeling the propagation of a wildfire through a Mediter-
ranean shrub using a multiphase formulation. Combust. Flame 138, 199–210 (2004)

3. Le Quéré, P., et al.: Modelling of natural convection flows with large temperature
differences: A Benchmark problem for Low Mach number solvers. Part 1. Reference
solutions. ESAIM: Math. Modelling and Num. Analysis 39(3), 609–616 (2005)

4. Bessonov, O., Brailovskaya, V., Polezhaev, V., Roux, B.: Parallelization of the solu-
tion of 3D Navier-Stokes equations for fluid flow in a cavity with moving covers. In:
Malyshkin, V. (ed.) PaCT 95. LNCS, vol. 964, pp. 385–399. Springer, Heidelberg
(1995)

5. Bessonov, O., Fougère, D., Roux, B.: Parallel simulation of 3D incompressible flows
and performance comparison for several MPP and cluster platforms. In: Malyshkin,
V. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 401–409. Springer, Heidelberg (2001)

6. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

7. Moukalled, F., Darwish, M.: A unified formulation of the segregated class of algo-
rithms for fluid flow at all speed. Numer. Heat Transfer, Part B 37, 103–139 (2000)

8. Bessonov, O., Brailovskaya, V., Nikitin, S., Polezhaev, V.: Three-dimensional natu-
ral convection in a cubical enclosure: a bench mark numerical solution. In: de Vahl
Davis, G., Leonardi, E (eds.) CHT’97: Advances in Computational Heat Transfer.
Proc. of Symposium, Cesme, Turkey. Begell House, Inc., New York, pp. 157–165
(1998)

	Optimized Parallel Approach for 3D Modelling of Forest Fire Behaviour
	Introduction
	Mathematical Model and Numerical Method
	OpenMP Parallelization on NuMA Computers
	Parallelization Approach and Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

