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Abstract—Matrix-free conjugate gradient algorithms are described as applied to large systems of alge-
braic equations arising in the implementation of implicit schemes intended for problems in continuum
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simplicity of their implementation and debugging.
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1. DESCRIPTION OF THE METHOD
The conjugate gradient method was proposed by Hestenes and Stiefel [1]. The idea behind the method

is to iteratively minimize the quadratic functional

which has a minimum on the solution of the original system of algebraic equations

where  is a positive symmetric  matrix,  is the number of unknowns,  is the -dimensional
vector of unknowns, and  is the right-hand side vector. At every iteration step , the search direction 
is a linear superposition of the search direction  used at the preceding iteration and the direction of the
gradient  of the functional :

(1.1)

(1.2)

where . Expressions for the coefficients  and  are obtained by minimizing the func-
tional in the search direction. It has been proved (see, e.g., [2]) that the conjugate gradient method gen-
erates a -orthogonal basis in the solution space:

where  and  is the Kronecker delta. The projection of the solution onto the currently generated
basis vector is determined at every iteration step. To implement the process, the initial residual of the
equations is calculated at n = 0 and the homogeneous part of the residual  is then calculated at every
iteration step. Overall, the algorithm makes use of four N-dimensional vectors:

= −( ) ( , )/2 ( , ),F Cx x x d x

= ,Cx d

C ×N N N x N
d n ns

−1ns
= −n nCg x d F

+ +α = = − α = − α1 1( , )/( , ), , ,n n n n n n n n n n n n nC Cg s s s x x s g g s

+ + +β = = − β1 1 1( , )/( , ), ,n n n n n n n n nC Cg s s s s g s

= = −0 0 0Cs g x d αn βn

C
= δ( , ) ,i j i ijC cs s

> 0ic δij

nCs

= = = = ⋅1 2 3 4, , , .n n n nCa x a s a g a s
1247



1248 BURAGO, NIKITIN
When the matrix of the original system of algebraic equations is nonsymmetric and/or neutral, the con-
jugate gradient method is applied to the modified system of equations  and takes the form

(1.3)

(1.4)

where . In this algorithm, the homogeneous part of the residual is computed twice (
and ) rather than once at every iteration step. Implementation requires five N-dimensional vectors:

, , , , and .
Note that the iterative process of the conjugate gradient method is implemented without forming or

storing the matrix  of the system or performing any operations with it. It is only necessary to have an
algorithm for computing the residual  and its homogeneous part . Such an algorithm is signifi-
cantly simpler than the formation of C. In the absence of roundoff errors, the exact solution is determined
after N iterations (a basis of the finite-dimensional solution space is constructed, and solution projections
are found). In other words, the iterative process converges after a finite number of iterations equal to the
dimension of the vector of unknowns.

The stopping rule for the iterative process is specified by the condition

where  is a small number close to the machine epsilon (i.e., a number that, when added to 1, results in 1),
which depends on the word length of the computer. For four-byte representation of real numbers,

 10–6.
The case   or  indicates that the formulation of the problem is incor-

rect (the matrix of the system is singular).
The computations are performed with a limited number of significant figures (digits) and the condition

number of  can be much greater than 1. Accordingly, the errors in the determined basis vectors and the
corresponding projections of the desired solution are accumulated at iteration. As a result, when condi-
tioning is very poor (i.e., the condition number is very large), the iterations of the conjugate gradient
method may not converge. For this reason, the system of equations to be solved is preconditioned by mul-
tiplying it by an approximate inverse matrix :

where  and  is the identity matrix. In the ideal case of , this multiplication exactly
solves the problem.

The most popular preconditioning methods are based on band approximations of  inverted by the
Cholesky method [3], which preserves the width of band matrices. However, when the number of
unknowns is large ( ), even the application of band approximations of  is associated with
considerable difficulties, especially in three-dimensional problems with an inevitably large width of bands
of nonzero elements.

It will be shown later that matrix operations can be completely eliminated from conjugate gradient
algorithms. For initial–boundary value problems of mathematical physics in the case of finite-difference
and finite-element approximations, the use of the conjugate gradient method has shown that its conver-
gence is ensured by applying the simplest approximate inverse matrix composed of inverse diagonal ele-
ments of the original matrix, which is equivalent to rescaling the unknowns. The computation, storage,
and inversion of the diagonal elements of  are easy to do.

That is, by analogy with Gaussian elimination, the conjugate gradient method requires a finite number
of operations for finding a solution, but does not involve any operations with the matrix of the system of
linear algebraic equations, including its formation and storage. To implement the conjugate gradient
method, it is sufficient to construct an algorithm for determining the gradient  and its homo-
geneous part  for the approximate solution . Such an algorithm does not require matrices at all.

With a growing number of unknowns, the required computer memory increases linearly and is inde-
pendent of the number of spatial coordinates. The required computer memory is proportional to 4N–5N
depending on whether the operator  is symmetric and positive definite. An attractive quality of the
method is also the ability (inherited from gradient methods) to capture the basic (in value) projections of
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MATRIX-FREE CONJUGATE GRADIENT IMPLEMENTATION 1249
the desired solution at the first iterations. As a result, solutions with machine precision (i.e., up to small
values that, when added to unity, do not change its machine representation) are achieved after  itera-
tions. Since the amount of computations at a single iteration step is proportional to N (as at time steps of
explicit schemes), the amount of computations required for finding the solution grows with the number
of unknowns at a rate proportional to . For example, when the number of unknowns is equal to one
million, the number of iterations required for determining the solution is approximately one thousand.
Moreover, it will be shown below that the computation of gradients (in other words, the residuals of the
equations) at every iteration step is entirely identical to the computation of solutions at a new time level for
two-level explicit schemes.

It should also be noted that matrix-free iterative methods are preferable for parallelization of compu-
tations on multiprocessor computers.

There are numerous modifications of the conjugate gradient method (see, e.g., [2]). Version (1.1), (1.2)
stems from gradient descent (the original quadratic functional is minimized at every iteration step). Ver-
sion (1.3), (1.4) stems from the gradient minimal residual method (the residual norm is minimized at every
iteration step).

2. MATRIX-FREE IMPLEMENTATION OF THE CONJUGATE GRADIENT METHOD

To implement conjugate gradient iterations, it is sufficient to have algorithms for computing the resid-
ual vectors of the homogeneous and inhomogeneous systems of equations, which are implemented by
analogy with explicit schemes. Consider these algorithms as applied to continuum mechanics problems
and variational grid methods.

Since continuum mechanics problems are generally nonlinear, quasilinearization is usually used for
their solution. Nonstationary problems are quasi-linearized at every time step, while stationary problems
are quasi-linearized at every iteration step of a quasi-Newtonian iterative process (versions of the New-
ton–Kantorovich method or differentiation with respect to a parameter). Next, at every time step or every
iteration step with respect to nonlinearity, there arise auxiliary linear boundary value problems, which, in
our case, are solved by the conjugate gradient method.

It is important to note that quasilinearization has to be performed on the original integrodifferential
equations, since discrete nonlinear equations, as a rule, have no analytical representation and the only way
of specifying nonlinear equations on a computer is based on algorithms for computing the residuals of
such equations.

2.1. Formulation of a typical initial–boundary value problem. The formulation of continuum mechanics
problems involves balance relations for the basic processes. In an arbitrarily moving frame of reference,
they are generally written as follows [4]:

(2.1)

Here,  is the preserved quantity,  is the f lux of  caused by the interaction and chaotic motion of the
molecules (elasticity, viscosity, diffusion),  is the convective f lux of  (caused by ordered motion of
the material medium relative to the coordinate medium),  is the source/sink of ,  is the solution
domain with boundary ,  is the convective velocity, and  and  are the velocities of the mate-
rial and coordinate media. The time derivative  is calculated along the trajectories of arbitrarily mov-
ing coordinates (along the trajectories of nodes of the moving grid). Specifically, a given point is a
Lagrangian node if  and an Eulerian node if . Here and below, the use of the term “coordinate
medium” is justified by the fact that the control of moving coordinates (the motion of nodes and cells) is
conveniently implemented in practice by representing the set of nodes and cells as a solid (“coordinate”)
medium.

The fluxes  are related to the gradients of the preserved dependent variables by continuous medium
constitutive relations. For media of the differential type (media with short memory), they can be repre-
sented in a fairly general form as

(2.2)

where the tensors  and  are given functions of coordinates, time, and the desired solution  and the
dot denotes the inner product. The motion of the grid medium is assumed to be given or determined by
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1250 BURAGO, NIKITIN
solving a separate auxiliary “grid problem.” Problem (2.1), (2.2) is supplemented with the initial condi-
tions

(2.3)

and the boundary conditions

(2.4)

(2.5)

The given functions are marked with a star. To discuss matrix-free conjugate gradient algorithms for
implicit schemes, a further elaboration of the formulation of the typical continuum mechanics problem is
not required.

2.2. Approximation of the solution and the equations. Suppose that a grid has been generated. It consists
of  nodes with coordinates  . The grid nodes are joined in  cells specified by an integer
information array  , where  is the global index of local node  in
cell ,  is the number of cells, and  is the number of nodes in a cell. The boundary grid is specified
by an information array of boundary cells  , where  is the global
index of local node  in the boundary cell ,  is the number of boundary cells, and  is the number
of nodes in a boundary cell.

In what follows, grid cells (in this case, Dirichlet cells) are referred to as finite elements. The value of
the sought function at the node i at the time  (n is the time level number) is denoted by . We use the
simplest piecewise linear approximation of the solution. The values of the sought functions  at the cen-
ter of each element  are calculated using the formula

(2.6)

where  is the number of nodes in the element and  is the global index of the node with local index 
in element . Formula (2.6) is identical for internal and boundary cells (elements). In the general case,
grids can have cells with a different number of nodes, so that  can be variable. However, this is of no
importance, and the element index on the number  is omitted to simplify the notation.

The spatial derivatives are calculated using the formula

(2.7)

Expressions for the coefficients of the spatial differentiation operator  can be found in handbooks, so
they are not presented.

The integrals in the balance equations are computed using the simplest Gaussian quadrature rules (the
sum of integrals over cells determined by the products of the integrands at the element center and the
length, area, or volume of the cell, depending on the number of dimensions) with a Gaussian point at the
center of the element, for example,

(2.8)

In the one-dimensional case, this is the rectangle rule.
For terms with time derivatives of the sought function, we use quadrature rules with Gaussian points

at the nodes of the element:

(2.9)

In the one-dimensional case, this formula corresponds the integral trapezoidal rule. Here, the time deriv-
ative is represented in difference form to compute the solution  at the new time level . The variation
of the solution is independent of time, so the superscript on the variation of the solution is omitted. Due
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MATRIX-FREE CONJUGATE GRADIENT IMPLEMENTATION 1251
to the used representation of the integrals of terms with time derivatives, they can be evaluated without
inverting band mass matrices, since they are diagonal (so-called inconsistent mass matrices [5]).

Note that it was previously believed in the literature on the finite element method that inconsistent
mass matrices lead to the instability of finite-element algorithms as applied to nonstationary problems,
while consistent mass matrices obtained, for example, by integration using formulas with Gaussian points
at the centers of elements, on the contrary, provide more stable computations. However, the theory of dif-
ference schemes revealed that the cause of instability is the same as in explicit central-difference schemes,
namely, the presence of diffusion terms in the first differential approximations with negative viscosity
coefficients. Accordingly, an additional explicit or implicit viscosity has to be introduced for stability.
Numerous ways of introducing such stabilizing terms or approximations represent a separate problem that
lies beyond the scope of this work (for more detail, see [6]).

The simplest and most efficient approach to solving the variational balance equation (2.1) is based on
the explicit–implicit scheme

(2.10)

where artificial viscosity is added to the f lux terms  for stability:

(2.11)

Here, the additional stabilizing viscosity  is introduced explicitly or implicitly (e.g., by applying non-
centered approximations of the derivatives) according to the finite-element scheme used. Here and below,
the unit tensor of the second rank is denoted by . Recall that the functions given on the boundary are
marked with a star.

Note that Eq. (2.10) takes into account the natural boundary conditions (constraints on the boundary
fluxes). Since the sought function  is given on the boundary portion , its variation on  are
equal to zero, so the boundary integral is taken only over the rest of the boundary . The super-
script  is used, since the positions of the boundaries and the boundary conditions vary with time.

Substituting the spatial approximations of the derivatives and the integrals yields the following approx-
imate representation of the variational equation:

(2.12)

Here, . In computer codes, sums correspond to loops over cells, which involve loops over
local nodes in cells. The discrete variations of the sought functions at nodes do not take values (the basic
property of variations is that they are arbitrary), so that the sum of like terms of each discrete variation at
the solution yields zero (the Euler lemma). That is, such sums are the equations that make up a linear alge-
braic system for the given problem. Like terms are combined in loops over cells, and the discrete variations
indicate the component of the gradient (residual) from which the current multiplier of the given variation
is summed. The algorithm for combining like terms coincides with the computation of a time step in
explicit two-level schemes. The calculation of the gradients and their homogeneous parts can be briefly
written as the formulas
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1252 BURAGO, NIKITIN
where the vector of unknowns  consists of the desired node values of , while the multiplier
 and the terms  and  are given by the formulas

(2.14)

where the function  is equal to unity if the argument is zero and is equal to zero otherwise.
The main boundary conditions, i.e., the sought function given at the boundary nodes, are taken into

account in specifying an initial approximation and, then, at the end of every iteration. For this purpose,
the residuals at the nodes with main boundary conditions are set to zero, i.e., the correction terms to the
given boundary values of the sought function are set to zero. The natural boundary conditions (constraints
on boundary f luxes) are taken into account in the sense of a weak solution in the variational equation.
Thus, the boundary conditions are easy to take into account as compared with many other numerical
methods.

In traditional matrix methods used to implement algorithms for computing the coefficients of the
matrix C, one would have to collect like terms of common factors—the products . Moreover, the
matrix coefficients would require considerable storage space, which would grow nonlinearly with the
number of space variables and the number of discrete unknowns.

In the considered version, the matrix C is not necessary for determining residuals and the computa-
tional algorithm becomes simpler, more visual, and more efficient in terms of storage space and perfor-
mance. Programming and debugging simplify considerably, since the code is obtained, in fact, by writing
the original equations in discrete form. The algorithms are easy to modify and adapt to (at first glance)
completely different continuum mechanics problems.

The application of the considered iterative processes not only leads to significant savings of machine
resources, but also (which is especially valuable) reduces the effort related to the development of algo-
rithms and debugging, which is inevitable for complicated algorithms, and makes it possible to focus on
more interesting work, namely, the study of solutions for a wide range of continuum mechanics problems.

2.3. Allowance for additional conditions (constraints). In shock-capturing computations (see [7]), any
additional conditions (constraints), for example, contact ones, breakage/consolidation, phase transitions,
incompressibility, and other conditions are easily taken into account by modifying the variational equa-
tions with the use of Lagrange multipliers or the penalty function method (in various versions). In such
modifications, there is no need to use the conjugate gradient method. They are well-known and well-elab-
orated and are widely used in variational formulations of continuum mechanics problems.

2.4. Splitting with respect to physical processes. Note that, at every time step, the system of continuum
mechanics equations is generally split with respect to physical processes, and a complete solution at a new
time level is obtained by sequentially solving auxiliary boundary value problems for each balance equation
of the problem (e.g., for momentum, continuity, energy, tracer balance, and other equations).

Rather frequently, there is no need to solve the auxiliary boundary value problems to high accuracy. In
this case, the conjugate gradient method in the implicit schemes can be replaced with simpler iterative
time marching algorithms by artificially inverting elliptic equations into parabolic ones, which can be inte-
grated by explicit schemes. For this purpose, a nonstationary term with derivatives with respect to ficti-
tious time is added to the original elliptic equation. Examples of such auxiliary problems are boundary
value problems for equations for controlling moving adaptive grids (see [8]). By time marching, an
approximate steady-state solution is obtained after a preset fixed number of iterations (determined by enu-
meration).
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The validity of this simplification of the iterative algorithms is checked by computations. The simpli-
fied algorithms are valid if an improvement in the accuracy of solutions of the auxiliary problems nearly
does not influence the solution of the main problem.

2.5. Conservativeness of the algorithms. This property is ensured by the variational Galerkin–Petrov
form of the conservation laws (2.10) and by a finite-element approximation of the solution.  Local conser-
vativeness or the balance of f luxes between the nodal volumes is checked trivially and follows from the
variational form of the equations and the fact that the derivatives of a constant are zero. Global conserva-
tiveness is provided according to boundary conditions.

2.6. Specification of artificial viscosity. The time-stepping schemes (in physical or fictitious time at
iteration) are entirely similar to two-level central-difference schemes. Since convection is calculated using
an explicit central-difference scheme, its stability is ensured by introducing artificial viscosity. From the
variety of recipes available for this purpose [6], after performing numerous tests, we chose the stabilized
upwind Petrov–Galerkin (SUPG) scheme [9, 10]. However, this scheme was used in a simplified form
that corresponds to a central finite difference scheme with  artificial viscosity. According to the SUPG
scheme, the artificial viscosity was defined so that the contribution made by the diffusion terms on the
boundaries between the nodal volumes was balanced in the norm by the contribution of the other terms
from the homogeneous part of the equation. Note that “on the boundaries between the nodal volumes”
means at Gaussian points of the quadrature rules used to integrate the variational equation. These Gauss-
ian points are placed at the centers of finite elements. This simplified version of the stabilized Galerkin–
Petrov scheme is called the balancing-viscosity scheme. The formulas for computing the artificial viscos-
ity  are given by

(see [11]). Here,  is the finite-element index, the time level index is omitted from all variables to simplify
the notation, and the parameter  is defined as  if  and  otherwise. The
time step  is determined by the stability condition (see below). The coefficients  and  (j = 1, 2, 3)
are given by the formulas

For spatial differentiation coefficients , the property  follows from the fact that the deriv-
ative of a constant is zero. This property ensures that the exchange of the preserved quantity between the
nodal volumes is conservative. In zones of high rarefaction degree caused by the f low acceleration for

, the balancing viscosity coefficient is doubled, which is necessary for the stability of the
computations at long times.

2.7. Correction of physical viscosity. To improve the accuracy of the solution in boundary layers, the
physical viscosity  is corrected (reduced with growing artificial viscosity) by using the exponential adjust-
ment method, which was proposed by Samarskii in 1960s and was developed in [12]. The simplest correc-
tion has the form

2.8. Elimination of small-scale spurious perturbations. Since all elements of the algorithm are justified
only as applied to simple test problems in a loose manner, the solutions of problems based on complete
equations exhibit spurious oscillations with a wavelength proportional to the spatial mesh size. Such non-
physical (saw-toothed) perturbations can be immediately detected by changes in the sign of the second
derivative in the checked coordinate direction at neighboring nodes belonging to a grid edge. The relative
orientations of the edge and the coordinate direction are of no matter. Such perturbations do not violate
the stability of the method (do not grow), but deteriorate the plots of the solution (the contour line pat-
terns become nonsmooth). These perturbations are eliminated by applying the simplest conservative
coordinatewise smoothing procedure, which is used at a few nodes at the end of every step.
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2.9. Determination of second derivatives. In the case of piecewise linear approximations of the solution,
the second derivatives  of some solution component w with respect to  are determined as follows. The
obvious variational equation for the second derivatives,

is integrated by parts to obtain

where S is the boundary of the solution domain V. For simplicity, the right-hand side of the equation is
set to zero, i.e., either the first or the second derivative with respect to  is assumed to vanish on the
boundary. If Gaussian quadrature rules with Gaussian integration points placed at grid nodes are applied
to the first integral on the left-hand side, then the second derivatives are explicitly determined by the vari-
ational equation, so there is no need to convert nondiagonal matrices. In this way, the second derivatives
are quickly calculated using piecewise linear functions of the approximate solution. The second derivatives
with respect to y and z are calculated in a similar fashion.

2.10. Stability conditions. For explicit–implicit schemes, the time step  is determined by the stability
condition, which has the usual form (recall that an explicit time approximation is used only for convection
with velocity )

where  is the size of the  finite element,  is a safety factor (usually equal to 0.3–0.6),  is the strain
rate tensor, and  is the strain corresponding to the yield point or the ultimate tensile strength. The con-
vection constraint (the term  in the denominator of the stability condition) is caused by the explicit
approximation of convective f luxes. The accuracy constraint (second constraint) is necessary in solid
mechanics problems. It expresses the requirement that the norm of the strain increment over a time step
be small.

It is important to note that explicit–implicit schemes can successfully be applied to problems involving
rapid processes, for which the time step constraint caused by the accuracy conditions nearly coincides
with the time step constraints caused by the stability conditions in explicit schemes:

where c is the speed of sound (the velocity of propagation of small perturbations). In such problems, since
the solution at the preceding time level is a good initial approximation to the solution at a new level, the
number of iterations in the conjugate gradient method decreases sharply to two or three. In other words,
implicit schemes with the conjugate gradient method automatically begin to perform as quickly as explicit
schemes. Small numbers added to the denominators of the stability conditions prevent division by zero.

2.11. Difficulties disappearing in matrix-free algorithms. Note additional advantages of matrix-free
iterations: (1) there is no need to store nonzero elements of the system’s matrix and their locations;
(2) there is no need to calculate elements of the system’s matrix; and (3) there is no need to search for an
optimal indexing of grid nodes ensuring that the band width of the system’s matrix is minimal. These
advantages are inherent in any matrix-free iterative methods (stationary iteration, the Gauss–Seidel
method, relaxation methods, and others), but only conjugate gradient methods guarantee that the solu-
tion is determined in a finite number of iterations.

3. RESULTS
Below, typical problems are solved by applying explicit–implicit iterative algorithms based on the con-

jugate gradient method.
3.1. Supersonic ideal gas flows with shock waves on moving adaptive grids. Figure 1 shows the results

obtained for the supersonic f low over a wedge (plane problem). The ratio of specific heats is 1.4, and the
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Fig. 1. Flow over a wedge at М = 8: internal energy and the local Mach number.
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Fig. 2. Flow over a cone at М = 134: monitor function and a grid fragment.
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free-stream Mach number is М = 8. For the supersonic flow over a cone (axisymmetric problem) at М = 134,
Fig. 2 presents the monitor function , which controls mesh adaptation, and a fragment of an
adaptive grid near the cone.

Of course, in the range of hypersonic f lows (M > 8) the problem formulation has to be considerably
extended by taking into account a variety of physicochemical effects in a high-temperature plasma. Here,
we demonstrate only the potential applicability of the algorithm to problems of this type. The number
М = 134 was random. To increase the Mach number, the temperature in the incoming f low was specified
at random by a small number.

For the f low over a wedge, the wedge was specified by the method of overlapping meshes [11]. The
computations were performed on a basic (bordering) structured mesh consisting of initially rectangular
cells (elements) in a rectangular f low region. The wedge had its own (overlapping) mesh. The velocities
were set to zero at nodes of the basic mesh covered with the wedge mesh. Under mesh adaptation, the cov-
ered nodes of the basic mesh did not move (the wedge was fixed). In shock-capturing computation, the
variational formulation of the problem and the finite element approximation of the solution automatically
approximated the necessary conditions on the boundaries of the overlapped domain—the equality of the
pressure and temperature derivatives normal to the boundary.

In the case of boundary conditions of other type, for example, when we specify the functions them-
selves or mixed boundary conditions, they are easy to take into account as additional constraints via a
modification of the variational balance equations by applying the penalty function method or Lagrange
multipliers.   

3.2. Collapse of a heavy viscous fluid column in a closed tank. Initially, a heavy viscous f luid (water) col-
umn in a closed cubic tank is at rest. Under downward gravity, the water begins to move and the column
collapses. Under viscous friction forces, the water oscillations in the tank are damped and the f luid
reaches a new equilibrium. Shock-capturing computations were performed with the use of a continuous
marker function equal to 1 in water-filled cells and to 0 in empty cells. The marker function was calculated
using the transport equation. The computations were performed in terms of velocity and pressure. Both

= −Δ ∇ ⋅�T t v
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Fig. 3. Collapse of a heavy viscous column in a closed tank.
variables were determined at grid nodes, and a piecewise linear approximation of the solution was applied,

so that the LBB condition was not satisfied, but this did not stop us from solving the problem. Conserva-

tiveness with respect to mass was not violated. In the case of a continuous marker function, this requires

the monotonicity of the computational method and antidiffusion of the marker function near the free

boundary.

3.3. Failure of an elastoplastic plate under heating and tension. Figure 4 shows a quarter of a f lat elasto-

plastic specimen. The left and lower boundaries are the axes of symmetry. The entire upper boundary is

free of external load. The right boundary is slowly shifted to the right, so that the specimen is stretched.

The corner at the upper boundary leads to a concentration of stress and strain, and the failure begins from

this corner. The evolution of crack propagation is shown with allowance for only elasticity (left panels),

elasticity and plasticity (middle panels), and with additional allowance for local heating of the vertical

zone from the corner (right panels). The failure patterns remain unchanged under mesh refinement. It can

be seen that the failure patterns are completely different depending on the properties of the material and

applied external heating. The computations were based on the shock-capturing approach, i.e., the intact

and cracked plates were both computed by applying a unified algorithm. The elastic moduli of the material

and the yield point depended on the degree of failure of the material. The degree of failure was determined

using a kinetic equation under the failure condition [13], which was switched on after the maximum tensile

strain reached a certain limit.

3.4. Stamping of an aluminum cup. Figure 5 shows the numerical results obtained for the stamping of

an aluminum cup. The lower rigid die was at rest. The upper die moved downward, converting a circular

aluminum plate into a cup. The duration of the process was much longer than the time required for elastic

waves to travel along the radius of the plate, so that the process was quasistatic. It was computed by apply-

ing an implicit scheme with the use of the matrix-free conjugate gradient method. The contact interaction

was computed by the Lagrange multiplier method with the Lagrange multipliers being normal contact

loads. The contact friction was assumed to be negligibly low.
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Fig. 4. Failure of an elastoplastic plate under tension and heating.
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Fig. 5. Stamping an aluminum cup.
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CONCLUSIONS

A detailed description of simple and low-cost effective algorithms for the implementation of explicitly

implicit schemes using conjugate gradient methods without matrices has been given. Typical examples of

the application of the methods in implicit schemes were presented for gas dynamics problems (computa-
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tion of an adaptive moving grid by an implicit scheme), mechanics of a viscous incompressible f luid
(implicit scheme for computation of viscous effects and incompressibility) and mechanics of solids
(implicit scheme for calculating contact interaction and destruction of elastoplastic bodies). The methods
used in the calculations are well known. Here, it was shown that their matrix-free implementation leads
to very simple and effective algorithms.
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