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The study of damage processes of inelastic madeigalbased on modified
constitutive equations, which represent the damage loss of ability of the
materials to resist the deformation under some dan@iteria. The numerical
implementation of such models does not mean thécéxponsideration of new
surfaces in damageable materials but the use ofinc@us modeling. The
development of this approach started simultaneously appearance of computers
and numerical methods. (see the pioneer work [1]).

From the beginning the works were directed maiwlythie investigation of an
influence of a porosity as a damage parameter f@ctefe elastic modules under
uniaxial stress-strain state [2]. Thereafter thetiooous approach was extended to
the fatigue phenomena of elastic [3] and elaststd [4] materials by introducing
a special structural parameter of damage — the gerparameter. In order to get
the mathematically correct description of damagecgsses in many modern
studies the constitutive equations are suppliedh wiirious regularizations,
provided by terms with higher order derivatives,ichhare similar to those,
presented by the artificial viscosity, gradient spilgity, non-local deformation
measures and so on (see reviews in [5,6]).

In most of used numerical models of continuous dgam@ee for instance [1-14])
the calculated zones of damaged material are ustreally wide while the
localization of strains are weak. Therefore thesnotetation of the numerical
results depends often on the imagination of a rekea If the influence of

regularising terms is decreased in order to protheemore strong localization of
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strains then the abnormal dependence of damage porihe size and the shape of
grid cells appear. It means finally the loss of tumvergence of the numerical
solutions.

The reasons of such the behaviour of the numemeoalels of continuous damage
are not clearly understandable and the questiontalexressary properties of such
models for effective description of damage and linadon of strains is still
opened and actual.

Suggested below the theoretical model and the noatenethod are directed to
the overcoming of pointed above drawbacks in otdegecognise the evolution of
"macro-cracks" as some narrow bands of damageestialarepresenting the jumps
of velocity and displacement as well as high peaksdeformations. In this
theoretical model the deformations are assumect tiadge (they reach the values
of hundreds percents in the zones of damaged ralidBesides, it is taken into
account, that the damage is accompanied by thegehaihthe process rate from
guasistatical while the damage is absent to higtiynamical during the
development of the damage. The numerical methodhwbkes these features into
account, is implemented in a frame of computer C&&TRA".

The results of parametric calculations of the damagocesses forced by an
extension and a heating of standard specimens rasermied. Several damage
criteria and damage parameter kinetic equationstegied and the influence of
plasticity and local heating on damage processehighlighted. Some basic
recommendations concerning the most important ptiegeof theoretical models
of continuous damage are worked out.

1. Formulation of problem. The system of equations, which describes the
behavior of thermo-elastic-plastic damageable méddia been under development
In many studies (see, for instance [1-14]) andseduhere in the form presented in
[15]. The system of equations consists of consemvataws for the mass,

momentum and energy, and it contains also the latieraquations
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and constitutive equations, which are considerelbwean details. Here the

traditional notation is useg- density,u - a velocity of the material mediumj;

time, x - Eulerian radius-vector (actual configuratio&),— Lagrangian radius-
vector (initiall configuration),F - strain gradient tensot, - a velocity gradient
tensor,e - Almansi strain tensok - Eulerian strain rate tensog, - Cauchy stress
tensor,U- an internal energy per unit of mass, a heat flux vector, T - a
temperaturer - heat sourced/dt - material time derivative,) - spatial differential
operator in actual settings; unity tensor.

The constitutive equations represent the wldpecies between the
characteristic values of an infinitesimal volumetloé continuous media, enforced
by the thermodynamic laws. The minimal set of mllmjadependent constitutive

0
parameters for an infinitesimal volumeﬂs(Tsx dt X aT), Wherex (€0.0) -

the structural parameters: plastic strain teragcnnd damage parameter, which
are defined later and responsible for the strutttelauilding of the continuous
media, which takes place due to the developmentdisfocations and the
appearance of microcracks respectively. Sign “zetwove a value marks the
material tensors which relate to the spatlal tesnas follows

00
e=F (elF, e=F"[elF, g=F lglF, di:é, ole=gle
dt

From the first thermodynamic law, which expresses the conservation of the
energy, and from the second thermodynamic law, the law of entropy (n) growth

pT TDE&T) pr=0

the inequality of the rate of dissipation)(follows

3\ dT (o 3 ) o 90 dx
D=-p[n+2219" 4 |lg-p % | e- : 00T = 0
p(” aTjdt ( pOaEJ poa)‘)( at T =X

Here¢ =U -Tn - a free energy per unit of mass

The free energy and rate of dissipation fumdticead:
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It is assumed, that elastic parts {¢ ) of strain deviator are much less compared
to unity. The effect of temperature extension ketainto account by the term with
the thermal expansion factgs. The term in the expression of the rate of
dissipation, which is responsible for the plastowf is a first order homogeneous
function of the plastic strain rate, which the caseresponds to elastic plastic
material. The plastic strain grows when the acplastic straining condition is
fulfilled o (T €,e,,8 e) = 0. It is assumed also that the material is plastically
incompressible (the rate of dissipation dependy oml the deviators of plastic
strain rate, which is common assumption for metéle resistance of the media,
represented by elastic modules and by the yield tilepends on the temperature,
the strain the plastic strain, and also on thetafdil structural parameter $\theta $,
named damage:

K =Ho(T)G,(8), K =K o(T)g(8) » Ko =Kpp(T)gn(6)
wheree =g 1) ,u, =p,(T) - €lstic modulik =k ,(T,e¢,) - yield limit for undamaged
material. Varying from 1 to O functiong,g,,g, provide the decrease of strain

resistance of the media with growth of damage, Wwhioccurs if the damage
condition is fulfilled

®4(T e e, 6) 20
The kinetics of damage processes is defined by diggendence of rate of
dissipation on rate of damage parameter.

The constitutive equations read:

__9% _ 9 q = k, 0T, o=-pl +0, d=2u(—¢
n= aTaU_(I)—Ta—T’q q ) P ) H( p)’

o — . do_ L0
p = Kpﬁo(m pﬁo+(go— Q). €,=H(®,) e, e0'/k, E—H(dJe)kela—qe), (2)

Boundary conditions read:

x OS,, t 20:uln=u
x OS\'S§,, t 20 :(gln)in=F
x 08, t > 0:ult =u,

x O0S\ §,,t 20 : (o 0On)Or, =P,
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x 08, t >0 :T=T

x O0S\'S,t =20 :qln =q, (3)
wherea =1,2. Initial conditions read:

t =0 : x:Q,u:u’;,T:TO, £,=0, =0 (4)

So, it needs to solve the initial boundary valugbpem for the system of
equations (1)-(2) under boundary (3) and initiglddnditions.

2. Numerical method. The solution algorithm is based on modified imiplic
finite element scheme, proposed in [16], and itmplemented in a frame of code
"ASTRA". Major features of this algorithm arefalows. The unsteady Bubnov -
Galerkin formulation and the finite element spagalproximations of the major
unknown functions (velocity, displacement, tempamat plastic strain and damage)
are used. More definitely the linear triangular dmtinear quadrilateral finite
elements are implemented and integrated numeric@llyadrilateral elements are
regularized by small artificial viscosity to prevahe hour glass instability. The
numerical integration points coincide with grid esd so the matrix of mass is
diagonal. Within each time step the nonlinearitaae linearized by Newton's
method. The auxiliary linear algebraic problems amved by the iterative
conjugate gradient method, which is implementedhout matrix operations in a
way usual for explicit schemes. The algebraic motd are preconditioned by
using the diagonal approximations of the stiffness

3. Results. The solution region for the problem about damagesxdending
standard specimen can be seen in Fig. 1. Initradtke of solution region is 3.0,
height is 2.0. The left and the bottom boundariesthe axes of symmetry, the
right boundary moves to the right with permanerte raf speedv,, upper

boundaries are free. Input data read:

Ko =975, 14, =369, K, =1, c _ K, +4/3u,

0 :1!
Po

ko =10° , ®, =00©:00-k?, ®,=¢,, ~107,
¢ =1,k, = 1, 8=0000%

where ¢, - maximal principal straim, - sound velocity,v, =10%c, - right
boundary velocity. At the initial instant0 the specimen is undeformed and has
zero values of major unknowns under constant @lbgtidimensionless value of
the temperaturg, =100. Dimensionless mass heat source+0.1, acted in the
narrow rectangular zone (1.9, 0, 2.1, 1). The bauwndheat fluxes were of zero
value. The moving Lagrangian grid consisted prifyaof identical (quadrilateral
or left/right-oriented triangular) cells of the kmlving sizes: 1/15, 1/30 and 1/60 for
various runs.
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The development of narrow zones of the localizatbstrains can be seen in Fig.
1. for the three cases: damage of elastic spec{ajerlastic plastic specimen (b),
elastic plastic specimen under joint action of egien and heating (c). The Figures
indicate that the plasticity forces its own prebdeadirection of propagation of
strain localization zone.

Under additional rather intensive heating the damaigelastic plastic specimen is
developing in the same way as in the case of elagiecimen (narrow zone of
heating is situated especially along the trackarhdge zone, developed in case of
elastic specimen). In the case of moderate he#tim¢wo narrow zones of damage
("macrocracks") can be observed: firstly slan(tmastic") "crack" develops, then
as the effect of heating becomes stronger it stmpsfinally the vertical "thermal
crack" completes the damage of the specimen. Titagphg of horizontal
displacement, mean stress and maximal principainstilong the horizontal line,
which intersects the narrow zones of damaged nahtare presented in Fig. 2. The
behaviour of these functions are typical for ing¢rcontact boundaries and imitates
the macrocracks in a frame of continuous model.
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Puc. 1. Moowl npoyecca paspywenus 0ns cayuaes ynpyeoco mamepuana (a.2),
ynpyeoniacmuyeckoeo mamepuaia (0,0), Ynpyeoniacmuueckoco mamepuana npu
COBMECMHOM OelCmeUU pacmsdiceHus U Hazpesa y3KoU 8epmuKaibHOU 30Hbl OO
KOHYEHmMpamopom.
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The damage and the deformation in the zone of dadhamterial indicate very big
splash of delta-function type, the values of swsesll down to zero, and the
displacements as well as velocities are undergbaestrong growing jumps like
those in shock waves in gas dynamics.

The intensive heating accelerates the damage @redake the local cooling of the
anticipating zone of damage delays the developmiedamage. When the damage
process starts the time step is dramatically témats dynamical value of Courant's
time step because of accuracy restriction, whigdetdor the strain increment. The
primarily quasistatical damage process becomesndigah The modes of damage
stay the same under variations of spatial resaludind cell shape.
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Puc. 2. I'paguxu eopuzonmanvrozo cmewenus (a), cpeoneeo nanpsicenust (0) u
maxcumanvrou degopmayuu (8) 60oav copuzonmanvrou aunuu (0,0.6,3,0.6) drs
CIYUAs paspywenst ynpy2o2o mamepuaia, nokasanno2o Ha Puc. la. B ocmanvhbix
CIYUASIX KAYeCmBeHHoe No8edeHUe MAKOe Jce.

4. Conclusion. The numerical experiments show, that

* the damage criteria based on maximal strains agtemable compared to
those based on maximal stresses, at least forogtdastic materials.

* In order to get the strong strain localization ar@drow damage zones like
"cracks" it is important to satisfy the followingmditions in the theoretical
models:

* To provide the keen decrease of the material easist to the deformation
with growth of damage parameter;

* To control the accuracy restricting the value ofxmmal strain increment
within each time step;

* To take into account the inertia terms, which gnatural regularization of
the problem.

« To minimize the smoothing procedures (especiallarnthe zones of
damaged material);

* To provide the ability of material to resist thengmression even in the
damaged state (To prevent the violation of onen® mapping between the
actual and initial configurations).
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It is demonstrated, that due to pointed above ap&satures, the proposed model is
good in description of keen strain localization rgonarrow bands of large
gradients of velocities/displacements and highnisity splashes of deformations. It
supports the convergence of the numerical solutiospite of presence of narrow
zones of damaged material.

The research is financed by the Russian Fund feicBResearch projects
01-00-00173-a and 01-01-00659-a.
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