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The study of damage processes of inelastic materials is based on modified

constitutive equations, which represent the damage as a loss of ability of the

materials to resist the deformation under some damage criteria. The numerical

implementation of such models does not mean the explicit consideration of new

surfaces in damageable materials but the use of continuous modeling. The

development of this approach started simultaneously with appearance of computers

and numerical methods. (see the pioneer work [1]).

From the beginning the works were directed mainly to the investigation of an

influence of a porosity as a damage parameter on effective elastic modules under

uniaxial stress-strain state [2]. Thereafter the continuous approach was extended to

the fatigue phenomena of elastic [3] and elastic plastic [4] materials by introducing

a special structural parameter of damage – the damage parameter. In order to get

the mathematically correct description of damage processes in many modern

studies the constitutive equations are supplied with various regularizations,

provided by terms with higher order derivatives, which are similar to those,

presented by the artificial viscosity, gradient plasticity, non-local deformation

measures and so on (see reviews in [5,6]).

In most of used numerical models of continuous damage (see for instance [1-14])

the calculated zones of damaged material are unrealistically wide while the

localization of strains are weak. Therefore the interpretation of the numerical

results depends often on the imagination of a researcher. If the influence of

regularising terms is decreased in order to provide the more strong localization of
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strains then the abnormal dependence of damage zones on the size and the shape of

grid cells appear. It means finally the loss of the convergence of the numerical

solutions.

The reasons of such the behaviour of the numerical models of continuous damage

are not clearly understandable and the question about necessary properties of such

models for effective description of damage and localization of strains is still

opened and actual.

Suggested below the theoretical model and the numerical method are directed to

the overcoming of pointed above drawbacks in order to recognise the evolution of

''macro-cracks'' as some narrow bands of damaged material, representing the jumps

of velocity and displacement as well as high peaks of deformations. In this

theoretical model the deformations are assumed to be large (they reach the values

of hundreds percents in the zones of damaged material). Besides, it is taken into

account, that the damage is accompanied by the change of the process rate from

quasistatical while the damage is absent to highly dynamical during the

development of the damage. The numerical method, which takes these features into

account, is implemented in a frame of computer code ''ASTRA''.

The results of parametric calculations of the damage processes forced by an

extension and a heating of standard specimens are presented. Several damage

criteria and damage parameter kinetic equations are tested and the influence of

plasticity and local heating on damage processes is highlighted. Some basic

recommendations concerning the most important properties of theoretical models

of continuous damage are worked out.

     1. Formulation of problem. The system of equations, which describes the

behavior of thermo-elastic-plastic damageable media, has been under development

in many studies (see, for instance [1-14]) and is used here in the form presented in

[15]. The system of equations consists of conservation laws for the mass,

momentum and energy, and it contains also the kinematic equations
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and constitutive equations, which are considered below in details. Here the

traditional notation is used: ρ - density, u - a velocity of the material medium, t -

time, x  - Eulerian radius-vector (actual configuration), x
o

 - Lagrangian radius-

vector (initiall configuration), F - strain gradient tensor, L - a velocity gradient

tensor, εεεε  - Almansi strain tensor, e  - Eulerian strain rate tensor,  σσσσ  - Cauchy stress

tensor, U - an internal energy per unit of mass, q- a heat flux vector, T - a

temperature, r - heat source, d dt/  - material time derivative, ∇ - spatial differential

operator in actual settings, I - unity tensor.

      The constitutive equations represent the dependencies between the
characteristic values of an infinitesimal volume of the continuous media, enforced
by the thermodynamic laws. The minimal set of mutually independent constitutive

parameters for an infinitesimal volume is π = ( , , , , , , )T
dT
dt
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the structural parameters: plastic strain tensor εεεε
o

p and damage parameter θ  , which
are defined later and responsible for the structural rebuilding of the continuous
media, which takes place due to the development of dislocations and the
appearance of microcracks respectively. Sign ''zero'' above a value marks the
material tensors, which relate to the spatial tensors as follows
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From the first thermodynamic law, which expresses the conservation of the
energy, and from the second thermodynamic law, the law of entropy (η) growth
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Here ϕ η= −U T  - a free energy per unit of mass.

    The free energy and rate of dissipation functions read:
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It is assumed, that elastic parts (εεεε εεεε' '− p ) of strain deviator are much less compared
to unity. The effect of temperature extension is taken into account by the term with
the thermal expansion factor β . The term in the expression of the rate of
dissipation, which is responsible for the plastic flow, is a first order homogeneous
function of the plastic strain rate, which the case corresponds to elastic plastic
material. The plastic strain grows when the active plastic straining condition is
fulfilled Φp pT( , ,εεεε ,,,,    εεεε ,,,, )))) 0000θ e ≥ .  It is assumed also that the material is plastically
incompressible (the rate of dissipation depends only on the deviators of plastic
strain rate, which is common assumption for metals. The resistance of the media,
represented by elastic modules and by the yield limit depends on the temperature,
the strain the plastic strain, and also on the additional structural parameter $\theta $,
named damage:

µ µ θµ= 0( ) ( )T g ,  K K T gK= 0( ) ( )θ  ,  k k T gp p p= 0( ) ( )θ

where Ê Ê T0 0= ( ) ,µ µ0 0= ( )T  - elstic moduli, k k T pσ σ ε ε0 0= ( , , ) - yield limit for undamaged

material. Varying from 1 to 0 functions g g gKµ σ, ,  provide the decrease of strain
resistance of the media with growth of damage, which occurs if the damage
condition is fulfilled

( )Φθ θT p, , ,e e ≥ 0

The kinetics of damage processes is defined by the dependence of rate of
dissipation on rate of damage parameter.

    The constitutive equations read:
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Boundary conditions read:
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where α = 1111 2222,,,, . Initial conditions read:
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So, it needs to solve the initial boundary value problem for the system of
equations (1)-(2) under boundary (3) and initial (4) conditions.

     2. Numerical method. The solution algorithm is based on modified implicit
finite element scheme, proposed in [16], and it is implemented in a frame of code
''ASTRA''. Major features of this algorithm are as follows. The unsteady Bubnov -
Galerkin formulation and the finite element spatial approximations of the major
unknown functions (velocity, displacement, temperature, plastic strain and damage)
are used. More definitely the linear triangular and bilinear quadrilateral finite
elements are implemented and integrated numerically. Quadrilateral elements are
regularized by small artificial viscosity to prevent the hour glass instability. The
numerical integration points coincide with grid nodes, so the matrix of mass is
diagonal. Within each time step the nonlinearities are linearized by Newton's
method. The auxiliary linear algebraic problems are solved by the iterative
conjugate gradient method, which is implemented without matrix operations in a
way usual for explicit schemes. The algebraic problems are preconditioned by
using the diagonal approximations of the stiffness
     3. Results. The solution region for the problem about damage of extending
standard specimen can be seen in Fig. 1. Initial length of solution region is 3.0,
height is 2.0. The left and the bottom boundaries are the axes of symmetry, the
right boundary moves to the right with permanent rate of speed oV , upper
boundaries are free. Input data read:

9750 =K  , 3690 =µ ,  10 =pk  ,  1
3/4 =+=

o

oo
o

K
c

ρ
µ  ,

 310=θk  ,  2©:© pk−=Φ σσσ , 2
max 10−−=Φ εθ ,

 1=Vc , 1=qk , 0001.0=β ,

where maxε  - maximal principal strain,oc  - sound velocity, oo cV 310−=  - right
boundary  velocity. At the initial instant 0t =  the specimen is undeformed and has
zero values of major unknowns under constant (spatially) dimensionless value of
the temperature 1000 =Т . Dimensionless mass heat source 1.0±=r , acted in the
narrow rectangular zone (1.9, 0, 2.1, 1). The boundary heat fluxes were of zero
value. The moving Lagrangian grid consisted primarily of identical (quadrilateral
or left/right-oriented triangular) cells of the following sizes: 1/15, 1/30 and 1/60 for
various runs.
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The development of narrow zones of the localization of strains can be seen in Fig.
1. for the three cases: damage of elastic specimen (a), elastic plastic specimen (b),
elastic plastic specimen under joint action of extension and heating (c). The Figures
indicate that the plasticity forces its own preferable direction of propagation of
strain localization zone.
Under additional rather intensive heating the damage of elastic plastic specimen is
developing in the same way as in the case of elastic specimen (narrow zone of
heating is situated especially along the track of damage zone, developed in case of
elastic specimen). In the case of moderate heating the two narrow zones of damage
(''macrocracks'') can be observed: firstly slanting (''plastic'') ''crack'' develops, then
as the effect of heating becomes stronger it stops and finally the vertical ''thermal
crack'' completes the damage of the specimen. The graphs of horizontal
displacement, mean stress and maximal principal strain along the horizontal line,
which intersects the narrow zones of damaged material, are presented in Fig. 2. The
behaviour of these functions are typical for internal contact boundaries and imitates
the macrocracks in a frame of continuous model.

            а)                      б)                     в)

        г)                         д)            е)

Рис. 1. Моды процесса разрушения для случаев упругого материала (а,г),
упругопластического материала (б,д), упругопластического материала при
совместном действии растяжения и нагрева узкой вертикальной зоны под
концентратором.
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The damage and the deformation in the zone of damaged material indicate very big
splash of delta-function type, the values of stresses fall down to zero, and the
displacements as well as velocities are undergone the strong growing jumps like
those in shock waves in gas dynamics.
The intensive heating accelerates the damage process while the local cooling of the
anticipating zone of damage delays the development of damage. When the damage
process starts the time step is dramatically tends to its dynamical value of Courant's
time step because of accuracy restriction, which is set for the strain increment. The
primarily quasistatical damage process becomes dynamical. The modes of damage
stay the same under variations of spatial resolution and cell shape.

                  а)                              б)                             в)

Рис. 2. Графики горизонтального смещения (а), среднего напряжения (б) и
максимальной деформации (в) вдоль горизонтальной линии (0,0.6,3,0.6) для
случая разрушения упругого материала, показанного на Рис. 1а. В остальных
случаях качественное поведение такое же.

4. Conclusion. The numerical experiments show, that
• the damage criteria based on maximal strains are preferable compared to

those based on maximal stresses, at least for elastic plastic materials.
• In order to get the strong strain localization and narrow damage zones like

"cracks" it is important to satisfy the following conditions in the theoretical
models:

• To provide the keen decrease of the material resistance to the deformation
with growth of damage parameter;

• To control the accuracy restricting the value of maximal strain increment
within each time step;

• To take into account the inertia terms, which give natural regularization of
the problem.

• To minimize the smoothing procedures (especially near the zones of
damaged material);

• To provide the ability of material to resist the compression even in the
damaged state (To prevent the violation of one to one mapping between the
actual and initial configurations).
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It is demonstrated, that due to pointed above special features, the proposed model is
good in description of keen strain localization along narrow bands of large
gradients of velocities/displacements and high intensity splashes of deformations. It
supports the convergence of the numerical solutions in spite of presence of narrow
zones of damaged material.
The research is financed by the Russian Fund for Basic Research projects
01-00-00173-a and 01-01-00659-a.
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