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Abstract―Techniques that improve the accuracy of numerical solutions and reduce their computa-
tional costs are discussed as applied to continuum mechanics problems with complex time-varying
geometry. The approach combines shock-capturing computations with the following methods:
(1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive
meshes for minimizing the approximation errors near shock waves, boundary layers, contact discon-
tinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit–
implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov–Galerkin
method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of
solutions for providing their monotonicity and conservativeness.
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1. OVERLAPPING MESHES

Mesh generation for a solution domain of complex (and possibly time-varying) geometry is a compli-
cated and expensive problem, which has been extensively addressed since the 1960s [1]. In addition to the
difficulties associated with the design of methods intended, for example, for mapping-based mesh gener-
ation, much effort is required to prepare input data on the geometry of the domain and to specify meshes
on its boundary. This problem can be substantially simplified by applying the method of overlapping
meshes. Specifically, we first introduce a structured mesh that covers (possibly with a margin) the domain
under consideration. For example, this can be a bordering box filled with smaller box cells. The boundar-
ies are described using additional overlapping meshes. The nodes and cells covered with overlapping
meshes and, hence, lying outside the allowed domain of the continuous medium motion are eliminated
from the computation. In many cases, this elimination can be performed in a different manner, namely,
by setting analytical conditions, by applying time-varying continuous marker functions taking certain val-
ues in the allowed domain of motion, or by using Lagrangian discrete markers moving with the medium
(see [1]). In this paper, the geometry of the domain is described by overlapping meshes. The origin of the
overlapping mesh method can be traced back to half-century old works on numerical methods, for exam-
ple, to [2, 3]. At that time, the description of boundaries with the help of overlapping meshes failed to pro-
vide sufficient accuracy of numerical solutions, which had to be found on coarse meshes because of the
low storage capacity and performance of used computers. Attempts to improve the accuracy by applying
better solution approximations near boundaries described by the intersection of bordering and overlap-
ping meshes led to substantial complications in algorithms (see, e.g., the set of types of fractional cells
introduced in [4]). At present, the situation has changed cardinally. Thanks to the considerably increased
power of modern computers (even personal!), high-resolution meshes can be applied in practice. With the
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use of moving adaptive meshes of high resolution, the overlapping mesh method ensures sufficient accu-
racy and becomes progressively more attractive.

2. ADAPTIVE ARBITRARILY MOVING MESHES
The idea of using arbitrarily moving adaptive meshes also has a long history, which is described in [1–17].

Such moving meshes are adapted to solution features and, becoming finer, reduce the approximation
errors near the outer, contact, and phase boundaries, as well as in high-gradient zones, such as shock
waves and boundary layers. To control the adaptation to the solution, a monitor function is introduced into
the equations for mapping-based mesh generation. The monitor function is defined so that it has peaks
(large positive values) in high-gradient areas of the solution and indicates that the spatial mesh size in
these areas has to be reduced to suppress the approximation errors. An ideal approach would be to define
monitor functions based on approximation error estimates, but, in actual problems, such estimates are
rather inaccurate, so monitor functions are most frequently defined relying on an analysis of the solution
method as applied to simplified test problems. It was noted in [18] that a gradual improvement on the non-
linear partial differential equations used for mapping-based mesh generation eventually leads to nonlinear
elasticity equations:

 (2.1)

Here,  is the preimage of the solution domain (arbitrarily moving coordinates),  is the actual con-
figuration of the solution domain (the current grid in the solution domain),  are the trajectory
of moving coordinates,  is the Green finite strain tensor for the coordinate medium,

 is the gradient strain tensor,  is the unit tensor,  is the operator of spatial differentiation in
moving coordinates,  is the strain energy,  is a monitor function (“antitemperature”),
and  is the vector of unknown functions for the material medium. The moving grid is treated as an iso-
tropic thermoelastic medium. Its deformations are determined by minimizing the energy functional
(see (2.1)). In the simplest form, according to the two-constant theory of isotropic nonlinear thermoelas-
tic media, this functional is defined as

. (2.2)

Here,  is the bulk modulus;  is the shear modulus; , , ,
, and  are strain invariants; and . Important for successful imple-

mentation, the multiplier  in (2.2) ensures that the generated mesh has no inverted (more precisely,
nonconvex) cells even if the initial approximation { } in the iterative solution of problem (2.2) is given
with inverted cells. This multiplier creates a barrier on the boundary of the set of meshes with convex cells.
When energy functional (2.2) is minimized on the boundary of the solution domain, the constraints on
the motion of boundary nodes determined by additional conditions of the problem are taken into account
depending on the type of the boundary (contact boundary, phase boundary, free boundary, moving
boundary, etc.). The simplest and fairly efficient method for minimizing the energy functional is to trans-
form the nonlinear elliptic elasticity problem for meshes (2.2) into a parabolic problem. For this purpose,
additional nonstationary terms with first derivatives with respect to fictitious time are introduced into the
grid functional. The resulting parabolic initial–boundary problem is integrated using an explicit time-
marching scheme with the initial condition . The variational equation in the auxiliary parabolic
problem (the minimum condition for the functional on the grid) becomes

, (2.3)

where L is a fourth-rank tensor and f is a scalar both depending on the deformations and antitemperature
in accordance with the expression for . For the grid problem to be well-posed, the term with a positive
definite operator L must be balanced in the norm by the term with multiplier f. It should be stressed that
the Jacobian correction term  is important for successful implementation (see [11,
13, 14]).

( , ): min ( , ) , ( , ).*x V

V

t T dV t∈= φ =∫x x x ε x x x
�

�

�

�� �

V∈x �

� x
( , )t=x x x�

0.5( )T= × −ε F F I� �

�

= ∇ ⊗F x�� I ∇�
0φ ≥ | | | |T = ∇ ⊗ y��

y

3 1 2min [ [( 1)/2 ] 2 ] *
V

K I I T I J dV−α
ε ε ε− + + μ∫

�

� � �

�

K� μ� 1 :I ε = ε I�

2
2 1( /3) :I Iε ε= −ε I I�

2
3I Jε =

det( )J = F� 4max( ,10 )*J J −= 0.5α ≥

*J −α

0x

00t = =x x

[ ( : ) : ] 0t

V

L f J dV∂ ⋅ δ + ∇ ∇δ − δ =∫ x x x x
�

� � �

φ

4max(det( ),10 )*J −= F



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 6  2016

HYBRID NUMERICAL METHOD WITH ADAPTIVE OVERLAPPING MESHES 1067

The monitor function is called antitemperature, since the grid medium contracts with growing ,
while a usual elastic medium expands when heated. For example, in the gas dynamics examples consid-
ered later, the monitor function is defined to be directly proportional to the divergence of the velocity with
a minus sign and has maximum values on shock waves. The above-written nonlinear elasticity equations
were successfully used to generate adaptive meshes in [19], where a more detailed description of mesh
algorithms of this type and their prehistory can be found.

Below, it will be shown in computations that the joint use of overlapping and adaptive meshes produces
good numerical solutions even on relatively coarse meshes.

3. HYBRID SOLUTION METHOD
The hybrid method used relies on the shock-capturing computation of the f low evolution by applying

the modified SUPG FEM scheme [20, 21] on arbitrarily moving adaptive and overlapping meshes. The
basic features of this method are presented below.

3.1. Conservation laws. These laws (balance equations) are used in a variational form of the Galerkin–
Petrov method that is obtained with the use of integration by parts and contains derivatives of the
unknown functions of no higher than the first order (see the derivation in [18]):

. (3.1)

Here, A is the preserved quantity,  is the f lux of A caused by the interaction and chaotic motion of mol-
ecules (elasticity, viscosity, and diffusion),  is the convective f lux of A (caused by ordered motion of
the material medium relative to the coordinate medium), f is the source/sink of A,  is the solution
domain with boundary ,  is the convective velocity, and  and  are the velocities of the mate-
rial and coordinate media. The time derivative  is calculated along the trajectories of arbitrarily mov-
ing coordinates (along the trajectories of nodes of the moving grid). Specifically, a given point is a
Lagrangian node if  and an Eulerian node if .

In (3.1), we set , , and  for the mass conservation law; ,  +
, and  for the momentum conservation law; and  =

, , and  for the energy balance equation. Here, 
are the external body forces,  are the external sources/heat sinks,  is the temperature,  is the
internal energy, and  is the heat capacity at constant volume. The computation of the artificial viscosity

 is described later.
3.2. Constitutive relations. In the computations described below for f luid dynamics and elastoplasticity

problems, the constitutive relations for stresses  and heat f luxes  are written in a unified manner with
the use of vectors and tensors in the actual configuration { }. A detailed description for various media can
be found in [22].

For example, for compressible f luid f lows, the constitutive relations have the form

,

where p is the pressure,  is the deviator of viscous stresses,  is the physical viscosity coefficient,
 is the Euler strain rate tensor,  is the heat f lux, and  is the thermal conduc-

tivity.
3.3. Approximation of the solution and equations. The numerical method relies only on simple piece-

wise linear, bilinear, and trilinear solution approximations in cells (finite elements). The integrals of the
variational equations are calculated using the simplest Gaussian quadrature rules, which, in the one-
dimensional case, correspond to the trapezoidal rule for terms with time derivatives and to the rectangle
rule for the other terms of the variational equations. Thus, diagonal unmatched mass matrices [23] are
used in the approximation of the terms with time derivatives. As a result, the algorithms used are simple
analogues of explicit central-difference schemes. Moreover, the algorithms are f lexible and easy to code
and modify for various problems.

These simple approximations were chosen because their higher order accurate counterparts require
much more effort related to programming, debugging, and modifying algorithms, but, in the authors’
view, fail to yield a significant improvement in the accuracy.
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3.4. Allowance for additional conditions (constraints). In the shock-capturing computation [24–28],
any additional conditions (constraints), for example, contact ones, breakage/consolidation, phase transi-
tions, incompressibility, and other conditions are taken into account by modifying the variational equa-
tions with the use of the Lagrange multiplier or penalty function method (in various versions).

3.5. FEM schemes. Depending on the rate of the underlying process, evolution problems are computed
by applying explicit, explicit–implicit, or implicit two-level schemes of the first and quasi-second orders
of accuracy. For convective terms, we always use an explicit central-difference approximation with artifi-
cial viscosity introduced to ensure its stability.

3.6. Implementation of explicit–implicit and implicit schemes. An implicit approximation of the f lux
terms  is used when their explicit approximations require severe time-step constraints or in the case of
stationary (or quasi-static in the terminology of solid mechanics) problems. Implicit schemes are imple-
mented iteratively, and the computational algorithm for a single iteration step is completely identical to
the computation of a time step in the explicit scheme. Accordingly, the implicit algorithms are very short
and simple and do not involve the computation or storage of stiffness matrices or any matrix operations.
The computer memory requirements are low, while high speeds of the implicit schemes are achieved by
applying the conjugate gradient method [29], which requires a finite number of operations proportional
to , where  is the number of unknowns. Preconditioning is based on the diagonal components of
the stiffness matrix, which is easy to compute and store. The required computer memory for the conjugate
gradient method is  (irrespective of the number of dimensions). A version of the method is used that
does not require that the discrete operator be symmetric or positive. A detailed description of the implicit
finite-element algorithms and the conjugate gradient method can be found in [27].

3.7. Conservativeness of the algorithms. This property is ensured by integrating by parts the conserva-
tion laws written in the variational Galerkin–Petrov form, followed by a finite-element approximation of
the solution. Local conservativeness, i.e., the balance of f luxes between the node-surrounding volumes is
justified trivially and follows from the variational form of the equations and the fact that the derivatives
with respect to a constant are zero. Global conservativeness follows from correctly specified boundary
conditions.

3.8. Specification of artificial viscosity. The time-stepping schemes (in physical or fictitious time at
iteration) are entirely similar to two-level central-difference schemes. The stability of explicit central-dif-
ference schemes is ensured by introducing artificial viscosity. In the variety of methods available for this
purpose [30], after performing numerous tests, we chose the stabilized finite-element Galerkin–Petrov
scheme with upwind differences [20, 21]. However, this scheme was used in a simplified version without
introducing upwind differences. The artificial viscosity was defined so that the contribution made by the
diffusion terms on the boundaries between the node-surrounding volumes was balanced in the norm by
the contribution of the other terms from the homogeneous part of the equation. Note that “on the bound-
aries between the node-surrounding volumes” means “at Gaussian points of the quadrature rules used to
integrate the variational equation”; moreover, these points are placed at the centers of finite elements.
This simplified version of the stabilized Galerkin–Petrov scheme is called the balancing-viscosity scheme.
The formulas for computing the artificial viscosity  are given by

where k is a finite-element index, the time level index is omitted from all variables to simplify the notation,
and the parameter  is defined as  if  and  otherwise. The time step 
is determined by the stability condition (see below). The coefficients  and  (j = 1, 2, 3) are given by
the formulas
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The values of the unknown functions  at the center of each element  are calculated using the formula

,

where ,  is the number of nodes in the element, and  is the global index of the node with
local index l in element k. The spatial derivatives are calculated using the formula

.

The property :  follows from the fact that the derivative of a constant is zero. In zones of
high rarefaction degree caused by the f low acceleration for , the balancing viscosity coef-
ficient is doubled, which is necessary for the stability of the computation at long times.

3.9. Correction of physical viscosity. To improve the accuracy of the solution in boundary layers, the
physical viscosity is corrected (reduced with growing artificial viscosity) by using the exponential adjust-
ment method, which was proposed by Samarskii in 1960s and was developed in [31]. The simplest correc-
tion has the form

3.10. Elimination of small-scale spurious perturbations. Since all elements of the algorithm are justified
only as applied to simple test problems in a loose manner, the solutions of problems based on complete
equations exhibit spurious oscillations with a wavelength proportional to the spatial mesh size. Such non-
physical (saw-toothed) perturbations can be immediately detected by changes in the sign of the second
derivative in the checked coordinate direction at neighboring nodes belonging to a grid edge. The relative
orientations of the edge and the coordinate direction are of no matter. These perturbations do not violate
the stability of the method (do not grow), but deteriorate the plots of the solution (the contour line pat-
terns become nonsmooth). These perturbations are eliminated by applying the simplest conservative
coordinatewise smoothing procedure, which is applied at a few nodes at the end of every step.

3.11. Determination of second derivatives. In the case of piecewise linear approximations of the solu-
tion, the derivatives  of some solution component w with respect to x are determined as follows. The
obvious variational equation

for the second derivative is integrated by parts to obtain

,

where S is the boundary of the solution domain V. For simplicity, the right-hand side of the equation is set
to zero, i.e., either the first or the second derivative with respect to x is assumed to vanish on the boundary.
If Gaussian quadrature rules with Gaussian integration points placed at grid nodes are applied to the first
integral on the left-hand side, then the second derivatives are explicitly determined by the variational
equation, so there is no need to convert nondiagonal matrices. In this way, the second derivatives are
quickly calculated using piecewise linear functions of the approximate solution. The second derivatives
with respect to y and z are calculated in a similar fashion.

3.12. Stability conditions. For explicit schemes, the time step  is determined by the stability condi-
tion, which has the usual form
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where  is the size of the kth finite element; D = 1, 2, 3 is the spatial dimension of the problem;
 is the speed of sound; and  is a safety factor (usually equal to 0.3–0.6). If the diffusion constraint on

the time step becomes severe (large coefficients  and ) or if the f low in much of the solution domain
is subsonic ( ), then the stability condition can be substantially relaxed by applying implicit approx-
imations to nonconvective f luxes. Since convective f luxes are explicitly approximated, the convection
constraint (the term  in the denominator of the stability condition) must be satisfied in any case.
In elastoplasticity problems with large deformations, the time step has to be restricted by an additional
condition requiring that variations in the norm of the deformations be small as compared with the char-
acteristic deformation corresponding to the yield limit or the tensile strength. For more details, see [27].

The above collection of techniques, which can be justified only by invoking plausible arguments, and
overlapping meshes combined with adaptation of an arbitrarily moving grid by applying elastic meshes,
produce surprisingly good results. An especially valuable feature of the algorithm is that there is no need
to endlessly tune the parameters of the method when the type of problems changes (except for choosing
monitor functions).

4. RESULTS

Below, moving adaptive and overlapping meshes are used to solve typical problems with moving mate-
rial interfaces and discontinuities.

Example 1. Figure 1 shows an adaptive elastic grid at the times t = 0.5 and 4.0 in a well-known test
problem concerning the ideal gas f low in a channel (3.0 × 1.0) with a step of height 0.4 placed at a distance
of 0.6 from the channel inlet. The inlet velocity is characterized by a Mach number of 3.0. The ratio of
specific heats is 1.4. The discontinuities are visualized by the refinement of the adaptive grid. The numer-
ical results agree well with the known solution. The only explicit f law in the adaptation is that the grid is
not refined at the contact discontinuity extending from the beginning of the “stem” of the first shock wave
reflection from the upper wall. The contact discontinuity could be captured if the velocity divergence term
in the expression for the monitor function is added to the norm of the density gradient. However, this has
not yet been done.

Fifty years ago, attempts were made to explicitly detect strong discontinuities (jumps) in solutions by
using the Rankin–Hugoniot relations for determining their locations and values. These attempts faced
insuperable difficulties associated with the fact that, as the discontinuities interacted and reflected from
the walls, the number of discontinuities and the number of smooth-solution domains increased sharply,
which prevented their explicit consideration. In this respect, the method of adaptive meshes, on which
discontinuities are captured with good accuracy in shock-capturing computations, can actually be treated
as a good technique for achieving the half-century-standing goal—the numerical computation of f lows
with multiple discontinuities.

kh
kc β

μv Tk
| |< kcu

| |kΩ

Fig. 1. Adaptive mesh for the ideal gas f low in a step channel with M = 3 and  at (a) t = 0.5 and (b) t = 4.0.

(а)

(b)

1.4γ =
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Example 2. It shows the application of overlapping meshes to the computation of the f low past two cyl-
inders. An advantage was revealed even prior to the computations. Specifically, the solution domain of
complex multiply connected geometry was easily described using overlapping meshes. A fragment of the
grid with an overlapping mesh covering one of the cylinders is shown in Fig. 2.

The overlapping meshes show the locations of the cylinders. The locations and sizes of the cylinders
can easily be varied by varying several input parameters (the center’s location and the radius).

The adaptive grid (see Fig. 3) not only captures the solution discontinuities, but also adapts to the
shape of the f low region boundaries described by the overlapping meshes. Figure 4 presents contour lines
of the local Mach number at t = 0.45 and 7.0 (the number of lines and their range are shown in the figure).

The bordering grid consists of only 160 × 160 square cells. The size of the solution domain is 5.0 × 5.0.
The radii of the cylinders are 0.2. The discontinuities and their interaction are perfectly computed.

Example 3. Figure 5 compares (а) our results with (b) those of [21], namely, lines of constant pressure
for the ideal gas f low in a channel with a parabolic arch for  and . The solution domain is
3.0 × 1.0 in size. The results of [21] were obtained on a 184 × 60 grid (without adaptation), while an adap-
tive 240 × 80 grid was used in our computation. The arch equation is

where x and y are the horizontal and vertical coordinates in the solution domain.
Example 4. Figure 6 shows the behavior of a moving adaptive mesh in the elastoplastic problem of forg-

ing a turbine blade from a cylindrical ingot by using rigid dies. In the entire process, the mesh nodes moved
automatically so that the sizes of all mesh cells were held identical whenever possible to avoid a cata-
strophic decrease in the time step due to the reduced cell size in the compression zones in the computa-
tions on Lagrangian meshes moving with the medium. To provide the identity of the volumes of grid cells,

1.4M = 1.4γ =

21.0 2.0: 0.05(1 (2( 1.5)) ),x y x≤ ≤ = − −

Fig. 2. Velocity field near the overlapped cylinder at , , , and .
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in the equations for elastic meshes the bulk modulus was set 100 times larger than the shear modulus and
no monitor function was used. The constitutive relations were specified according to the Prandtl–Reuss
theory of plastic f low:

where  and  are the shear and bulk elastic moduli,  is the Heaviside step function, the tensor  is
determined by the von Mises yield condition ,  is the yield surface radius, and  and

 are the deviatoric stress and strain rate tensors.

0 0', '/ 2 ( ' ( ) : '), / ( / 1), 0,pI d dt H F p K= − + = μ − = ρ ρ ρ ρ − =σ σ σ e λ σ q

μ K H λ
2' : ' 0F kσ= − =σ σ kσ 'σ

'e

Fig. 3. Bordering adaptive mesh at .
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Fig. 4. Contour lines of the local Mach number at (a) t = 0.45 and (b) t = 7.0.
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Fig. 5. Contour lines of pressure for the ideal gas f low in a channel with a parabolic arch: (a) present computation and
(b) computation from [21] for M = 1.4, , and .
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Since the dies were rigid, the meshes in them could be specified as coarse but sufficient for the working
boundary of the dies be accurately given. To prevent the cylindrical ingot from slipping from under the
dies, low friction proportional to the contact pressure was introduced on the contact surfaces. The prob-
lem was solved in dimensionless variables. The stresses, elastic moduli, and yield surface radius were
divided by their yield point values. The velocities were divided by the speed of sound. The dimensionless
values of the spatial coordinates are clear from the figures of the grid used. In the computations, we used

, , and . The speed of the upper die was one-hundredth of the speed of sound,
while the lower die was fixed.

Note that the additional terms corresponding to the Jaumann derivatives (objective tensor time deriv-
atives) [16], which are usually used in the constitutive relations for stress, have no noticeable effect on the
solution in the given problem.

5. CONCLUDING REMARKS
All components of the numerical approach presented have been repeatedly discussed by various

authors (see the overview in [1]). Here, we only showed how attractive the combined use of the above-
described collection of computational techniques is for improving the quality of numerical solutions. The
numerical algorithms presented are not intended to be optimal, but they were shown to have serious pos-
itive qualities. Numerical results for two-dimensional problems were demonstrated. Debugging for three-
dimensional problems has been performed, but results worthy of mention have not yet been obtained
because of the insufficient speed of the personal computers used.
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