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Propagation of elastic-visco-plastic waves in mediums with 
delay of plasticity 

 
BURAGO N.G., KUKUDZHANOV V.N.  

(Moscow) 

 

The propagation of waves in rods is considered taking into account the delay of plasticity property. 

It is assumed that alastic-visco-plastic material behavior is governed by the Cotrell’s delay of 

plasticity condition. Simple numerical method for solving such problems is proposed. It is shown 

that this method allows obtaining solutions for the Rabotnov’s [I] plasticity theory. Our numerical 

results are compared with analytical solution for this theory, obtained in [2]. 

 

§ 1. Many experimental studies are devoted to the phenomenon of delay of plasticity and relate 

mostly to quasi-dynamics range of loading rate [З]. There are several theoretical studies [4—5], 

which contain definite models for description of delay of plasticity property for propagation of 

waves. 

 

On the basis of dislocations theory and experiments Yu. N. Rabotnov proposed a theory of elastic 

plastic medium with delay of plasticity [1]. According to this theory the transfer of material from 

elastic to plastic state happens instantly under Cotrell’s plasticity condition. This leads to 

appearance of strong shock waves which interact with elastic and [plastic waves and provide rather 

complicated picture of wave motion. Analytical solution can be constructed only for the case of 

simplest boundary conditions and idealized Prandtl strain-stress diagram [2]. 

 

To obtain solutions fo real strain-stress diagrams it need to use numerical methods. Multiple 

various shock waves in real problems make impossible exact consideration of all shocks. 

Therefore it needs to introduce some modified rheological relations in order to describe the 

transfer from elastic to plastic state. This leads to the becessity of definite smoothing of shocks and 

to possibility of through calculations. 
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In general, if real transfer is almost instant then it is possible not to care about its adequate 
description. It is enough that introduced additional terms of equations were suffucuently small and 
led to required smoothing of shocks (for instance, introduction of artificial viscosity in case of 
ideal gas). 
 

During plastic deformation of solids the viscous fluxes affect significantly onto propagation of 

waves and the layer of transfer from elastic to plastic state has much more thickness than in gases. 

Therefore it is possible in spite of poor experimental data to introduce such rheological 

modificated models which reflect qualitatively material behavior in plastic state and 

simultaneously contain some freedom for quatitative description of experimental data. For 

materials with neglidgable dissipation such freedom may be used for simplification of solution 

process. This allows to use one and the same numerical method and besides one and the same 

computer code in both cases. 

 

The Cotrell’s plasticity condition read: 
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where σs is the static yield limit; t1  и  n are experimental constants, which are dependent on 

temperature Т; t  is time; σ  is stress; H z( ) is Heavyside’s function. 

 

Following Yu. N. Rabotnov [I], assume that while the condition (1) is not fulfilled, the material 

ibehavior is described by Hooke’s law, but if the condition is fulfilled then material transfers into 

plastic state. Assume that plastic state is described bt the Sokolovsky-Malvern equations 

accounting the influence of strain rate on lower yield limit and some other special fwatures of 

elastic plastic wave propagation [б]. Equation of state can be written in unified form:               
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Θ = −∫ϕ σ( , )T dt t
0
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1 , κ σ ε= −| | (| |)f  

 

Here the dependence σ ε= f ( )  relate to static strain-stress diagram of uniaxial loading, F z( ) is a 

function of viscosity, E  is Young’s module, τ  is viscosity constant measured in seconds. 
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Consider flat waves propagation in a rod of material subjected to equation of state (2). Adding to 

Eq. (2) the momentum equation and relation between strain and velocity 
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We get closed system of equations for description of medium motion. Introduce dimensionless 

variables: 
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Here l  is the length of rod, c E= / ρ is an elastic wave velocity, ρ is a density, εs is a 

deformation, related to yield limit. Farther the dimensionless variables are used and hats above 

variables are droped. Initial conditions are taken as v = = =σ ε 0 at t < 0. Boundary conditions 

are taken in general forem: 
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  B
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At  A1 0≠  or B1 0≠  additional conditions are required: t = 0 , v vx| = =0 0 ,   v ux| = =1 0   

 

§ 2. System of equations (2)—(3) has main linear part with non-differential terms? Which possibly 

are having jumps. This system differs from the system of equations considered in [6] only by the 

non-differential term with multiplier H( )Θ , which is relevant to delay of plasticity. Described 

system of equations has following characteristic relations: 

 

dx dtm = 0  :  dv d dtm σ δΦ= ±  , 

dx = 0 :  d d dtε σ δΦ= +  ,      (5) 

 

where 

 

δ
τ

= e

c
 ,      Φ Θ= H H sign( ) ( )κ σ 

 

Consider shocks, which may exist in medium described by Eq. (2). The system of equations (2)—

(3) is devergent and it is possible to build the generalized solutions theory and to get necessary 

jump conditions providing uniqueness of generalized solution [7, p. 485]. Using such approach 

find jump conditions: 

 

D v[ ] [ ]+ =σ 0  , D v[ ] [ ]σ + = 0  , D v[ ] [ ]ε + = 0    (6) 
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where  D dx dt= /  is a velocity of shock propagation; [ ]u u u= −+ −
 is a jump of u. From 

condition of non-trivial solution existance for system of equations (6) follows, that D = ±1, i. e. 

strong jump waves propagate only with elastic wave velocity. Coinsidence of shock tracks with 

characteristic lines allows using (5) and (6) get (same as for linear systems) differential equation 

for intensity of strong jump wave. But in contrast to elastic medium, where the jumps may appear 

only due to jumps in boundary conditions, in the case under consideration it is possible the 

appearance of strong shock waves even under smooth boundary conditions. This becomes 

possible, if for lines dx dt 0± =  the condition Θ = 0 is fulfilled. For instance, when elastic wave 

propagates along undisturbed rod, the condition Θ = 0 is fulfilled on the line x t t= − 0 (t0 is the 

time of delay of plasticity at x = 0). In this case the equation for stress behind wave front 

x t t= − 0 is 

 

d

dt

σ δΦ
+

+=        (7) 

 

Because stress σ−
 and deformation ε−

 before wave front are constant while σ+
 is decreasing 

d dtσ+ </ 0, along the considered line the jump is developing: at the time instant t t= 0 it is 

equal to zero and with time its absolute value grows asimptotically tending to limiting value 

| |σ− −1. This jump propagates and reflects, collides with other jumps, arising due to boundary 

jumps. Created due to collisions jumps are propagating with the same velocities D = ±1 and their 

intensities are defined according to (6). 

 

Remark that when the line of transfer to plastic state (Θ = 0) does not coinside with lines 

dx dt± = 0, it is line of jump in first derivatives of solution, i. e. in this case wave of delay of 

plasticity will be a wave of  weak jump. Lines with κ = 0 are the elastic unloading or secondary 

loading lines and on such lines the jump have second derivatives of solution (see. [6]). Such weak 

character of jumps allows to refuse from detailed consideration of multiple areas separated by 

elastic, plastic and plastic delay waves and to apply the through methods of calculation, accounting 

only one type of jumps which propagates with elastic wave velocity. Due to this the solution 

algorithm is simplified in comparison with algorithms based on Yu. N. Rabotnov’s theory. 

 

For numerical solution of equations (2)—(3) the following characteristic finite-difference scheme 

is used [6] (see Eqs. (5)): 
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Here  i  and  j  are numbers of characteristic lines in positive and negative directions. Creating 

finite difference grid. 
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Calculations using scheme (8) are performed layer by layer along characteristic lines of positive 

inclination. For solving of the system of equations (8) the iterations are used on each step. As 

usual, it is only one iteration is required, because others practically useless. The state of material at 

definite grid point is checked by conditions Θ Θ> <0 0,  и κ κ> <0 0, . The scheme (8) has 

second order accuracy and its local stability may be proved. 

 

So the numerical solution of problems based on proposed system of equations is appeared much 

better than solution of the same problems using the theory of elastoplasticity. Therefore the use of 

equations (2)—(3) is of sense also for materials with neglectable influence of strain rate on lower 

yield limit. To do this the equations for elastic plastic materials are supplied by artifitial small 

terms according to the law (2). Function F( )κ  and parameter  δ τ= l c/  are chosen so that 

numerical solution tends quickly to the solution without additional terms. Asimptotic behavior of 

solution at δ >> 1 is shown in [б] and it is pointed there that F( ) /κ κ= 1 2
 is a good choice .  

 

Value δ  should be defined from condition of geometric similarity of solution. In dimensionless 

variables it means that it needs to find δ , which makes insensitive the solution to its farther 

growth excluding area of high solution gradients near jump lines. In practical calculations it gives 

the value δ = −50 100, the change in solution is near 1 % in this case. 

 

It should be noted that too big values of δ  is not desirable because it requires to decrease the time 

step and hence leads to the increase of computaional work. Investigation of stability of difference 

scheme (8), provided for ideal plasticity stress-strain diagram indicates that the scheme is stable 

under condition δh ≤ 1. This also restricts the value δ  in practical untegration. 

 

Proposed method is used for solving problems of collided elastic plastic rods without accounting 

of delay of plasticity and good results are obtained [8]. 

 

 

§ 3. Consider some numerical results. In order to check the validness of made conclusions is 

considered the problem about wave propagation in rod assuming that  one side of rod (x = 1)is 

fixed, while another (x = 0) suddenly starts to move with constant velocity v v= 0. Assuned 

that material has linear hardening: 

 

f
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−
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Analytical solution of this problem is given in [2]. 

 

Fig.1 shows the comparison of dependence of е in time at x = 1 for two solutions: solid line 

corresponds to numerical solution by proposed method, while the dashed line corresponds to 

known analytical solution [2].  Fig. 2 shows jump lines in analytical solution on the plane ( , )x t  

for considered example. In calculations k = 02. ;  n =1;  t c e1 1/ = ;  δ = 64;  v0 2= ;  h = 00025. . 
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It easy to see that both solutions coinside in areas with constan deformation. In stead of jumps in 

numerical solution we get areas of fast but smooth variation of solution. Second example is 

calculated for real strain-stress diagram taken for material “Сталь-3”, which is approximated by 

piecewise-linear curve. Constants in Cotrell’s delay of plasticity criterion (1) are calculated using 

experimental data [9] for range of delay times 10 101 4− −−  sec. It is assuned that  

n t= = −5 101
3 5, .

 sec. Boundary conditions are the same as in first example, but v0 135= . . 

Fig. 3 shows the change of deformation and stress in time at x = 08. . Instant jumps correspond to 

elastic shocks forced by delay of plasticity while the area of fast growth corresponds to plastic 

wave. In this example the areas of plastic deformations are appeared only after reflection of wave 

from fixed side of the rod in spite of the fact that the stress at another (moving) side of rod exceed 

the static yield limit (| | .σ = 135). The velocity of unloading wave due to delay of plasticity is 

almost coinsided with the velocity of elastic waves. Therefor the picture of wave motion in the 

plane (х, t) is completely different from depicted in Fig. 2. 

 

 
Рис. 3 
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