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The concept of the cohesive model is based on the consideration that infinite stresses at the crack tip are not realistic. Barenblatt [1] introduced a cohesive zone in the ligament of the crack, where material degradation occurs and stresses remain finite. His model became more interesting for practical applications when numerical methods, in particular the FEM, were applicable to nonlinear problems. Tvergaard and Hutchinson [2] were the first, who used the model for crack propagation analyses of ductile materials. 

The material separation und thus damage of the structure is described by interface elements, whereas the continuum elements remain damage-free. When damage occurs, these interface elements open according to some decohesion law. The crack can propagate only along the element boundaries. If the crack propagation direction is not known in advance, the mesh generation has to allow for different crack paths [3].

The separation is calculated from the displacement jump 
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, i.e. the difference of the displacements of the adjacent continuum elements. The vector, (, is represented in a local rotating coordinate system by a normal separation, (n, for mode I and two tangential separations, (t1, (t2, which obey the same decohesion law for isotropic materials. When the normal or tangential component of the separation reaches a critical value, 
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, respectively, the adjacent continuum elements are disconnected, indicating that the material at this point has failed. A stress (or traction) vector, (, with one normal and two tangential components acts at the surfaces of the two connected continuum elements, which depends on the separation (. Beside the critical separations, 
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, the maximum traction components, 
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, i.e. the cohesive strengths, are used as fracture parameters. 

Since the cohesive model is a phenomenological image of the separation process, there is no evidence which form to take for the cohesive law, (((), and numerous functions have been proposed, see overview by Brocks et al. [4]. It has to be assumed as independent of a specific material but dependent on the separation mechanism. Common to all cohesive laws is that (i) they contain two material parameters, 
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, per separation mode, and (ii) the stresses after failure become zero, 
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. A steadily differentiable piecewise polynomial has been proposed by Scheider and Brocks [5] for ductile failure. 
The integration of the traction over separation, either in normal or in tangential direction, gives the respective energy dissipated by the cohesive elements, 
[image: image11.wmf]c

n,t

G

.



[image: image12.wmf]c

n,t

c

n,tn,tn,tn,t

0

()

d

d

Gsdd

=

ò

 ,


which is used alternatively to 
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. The cohesive energy, 
[image: image14.wmf]c

n

G

, equals the J integral at initiation of ductile crack extension in mode I under the assumptions made for the validity of the HRR field.
If tangential and normal separations occur simultaneously, one affects the other. This mixed mode case calls for an additional hypothesis on the interaction of the failure modes. Further assumptions have to be made for the unloading behaviour of the cohesive elements and the friction in a failed cohesive element under compressive normal stresses [5]. 
Cohesive elements have in particular proven their ability in modelling crack extension in thin-walled panels and shells [5-8]. To avoid plastic necking of plane-stress and shell elements in the ligament, a 2D thickness-sensitive cohesive element has been developed by Scheider and Brocks [5]. The excellent numerical performance of cohesive elements for simulating ductile tearing favours their application for predicting the residual strength of lightweight components [7]. Different from continuum damage models, cohesive models yield convergent results with decreasing element size.
Examples of crack propagation analyses with the cohesive model are presented and experimentally validated [8].
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Fig. 1:
CTOD-R-curves, (5-(a, obtained from fracture tests and simulations [8]: 


(a) Identification of model parameters on C(T) specimens, W = 50 mm, 

(b) Prediction for a biaxially loaded centre-cracked panel, W = 150 mm.
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