
Hidden dynamical variables in rotational flow of
barotropic fluid

Yuri A.Rylov

Institute for Problems in Mechanics, Russian Academy of Sciences,
101-1, Vernadskii Ave., Moscow, 119526, Russia.

e-mail: rylov@ipmnet.ru
Web site: : http : //gasdyn− ipm.ipmnet.ru/˜rylov/yrylov.htm

Abstract

Inviscid barotropic fluid is investigated as a dynamical system by means of
variational methods. Conventional description in terms of variables: (density
ρ, velocity v, and labelling of stream lines ξ) appears to be ineffective for
vortical flows, because dynamic equations for ξ contain idefinite parameter.
It is possible complete description of barotropic fluid in terms of complex
wave function ψα, α = 1, 2. At returning to description in terms of ρ,v
an additional dynamic variables: spin s = (s1, s2, s3) appear. Spin describes
additional vorticity incorporated into fluid. Appearance of additional variable
s (instead of ξ) is essential at description of turbulent phenomena.

Key words: inviscid fluid; hidden variables; wave function; stream lines labelling;
hidden vorticity; spin vector; turbulence

1 Introduction

Turbulence phenomena are described usually by the Navier- Stokes equations. The
smaler is viscosity µ the greiter turbulence takes place. If µ tends to zero, the
Navier- Stokes equations tends to Euler equations

∂v

∂t
+ (v∇)v = −1

ρ
∇p, p = p (ρ) = ρ2∂E

∂ρ
(1.1)

∂ρ

∂t
+ ∇ (ρv) = 0 (1.2)

where ρ = ρ (t,x) is the fluid density, v = v (t,x) is the fluid velocity, p = p (ρ) =
ρ2∂E (ρ) /∂ρ is the pressure and E (ρ) is the fluid internal energy per unit mass.
Equations (1.1) and (1.2) is written for barotropic fluid. It seems that they do not
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describe turbulence at all. It is rather strange, because at µ = 0 the turbulence
phenomena must be maximal.

There is such a possibility, that there are additional dynamical variables (other
than ρ and v), which describe turbulence. Such a possibility is not considered usu-
ally, because the system of equations (1.1) and (1.2) is a closed system of dynamical
equations. However, nevertheless the system of equations (1.1) and (1.2) is not
a complete system of dynamic equations for dynamic system: barotropic fluid S b.
Determination of additional dynamic variables for S b is a purpose of this publication.

Numerous attempts to obtain dynamic equations (1.1) and (1.2) from a varia-
tional principle were failed [1]. However, the variational principle can be obtained,
provided one uses the Lin constraint [2]

∂0ξ+ (v∇) ξ = 0 (1.3)

where ξ = (ξ1, ξ1, ξ1) are variables labelling particles of a fluid. The Lin constraint
should be introduced in the action functional as a side condition. It means that the
Lin constraint is an additional dynamic equation. However, further investigation
shows, that seven equations (1.1), (1.2) and (1.3) form a complete system of dynamic
equations for Sb only in the case of a potential flow. In general case additional
dynamic equations have the form

∂0ξα + (v∇) ξα = −ωεαβγΩ
βγ (ξ) α = 1, 2, 3 (1.4)

where ω is arbitrary quantity,

Ωaµ (ξ) =

(
∂gα (ξ)

∂ξµ

− ∂gµ (ξ)

∂ξα

)
(1.5)

and gα (ξ) , α = 1, 2, 3 are functions, which are determined from initial conditions.
Equations (1.4) coincide with (1.3), if Ωaµ (ξ) = 0, i.e. in the case of potential flow.

Equation (1.4) cannot be solved because of indefinite quantity ω.

2 Variational principle

The action functional for Euler equations (1.1), (1.2) has the form

A [ξ, j, p] =

∫

Vx

{
j2

2ρ0

− ρ0E (ρ)− pk

(
jk − ∂J

∂ξ0,k

)}
d4x, (2.1)

It contains the side condition (1.3) in the form

jk − ∂J

∂ξ0,k

= 0 (2.2)

where J = Jξ/x is the Jacobian determinant

Jξ/x = J
(
ξl,k

)
=

∂ (ξ0,ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= det

∣∣∣∣ξl,k

∣∣∣∣ , (2.3)
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ξl,k ≡
∂ξl

∂xk
l, k = 0, 1, 2, 3

Dealing with Jacobian J , the following identities are useful

∂J

∂ξi,l

ξk,l ≡ Jδi
k, ∂k

∂J

∂ξ0,k

≡ 0, ∂l
∂2J

∂ξ0,k∂ξi,l

≡ 0 (2.4)

∂2J

∂ξ0,k∂ξl,s

≡ J−1

(
∂J

∂ξ0,k

∂J

∂ξl,s

− ∂J

∂ξ0,s

∂J

∂ξl,k

)
(2.5)

Using the first identity (2.4), we obtain

∂J

∂ξ0,k

ξα,k = jkξα,k = ρ∂0ξα + ρvαξα = 0 (2.6)

It means that (2.6) is equivalent to (1.3).
Variation of (2.1) with respect to ξl gives

δξl : −∂s

(
pk

∂2J

∂ξ0,k∂ξl,s

)
= 0, l = 0, 1, 2, 3 (2.7)

Using (2.4) and (2.5), this equation can be presented in the form

(
∂J

∂ξ0,k

∂J

∂ξl,s

− ∂J

∂ξ0,s

∂J

∂ξl,k

)
pk = 0 (2.8)

Equations (2.8) can be integrated in the form

pk = b (∂kϕ + gα (ξ) ∂kξα) , k = 0, 1, 2, 3 (2.9)

where gα (ξ) , α = 1, 2, 3 are arbitrary functions of ξ, ϕ = g0 (ξ0) is a new variable
instead of fictitious variable ξ0, b is a constant. Using identities (2.4), this fact can
be tested by a direct substitution of (2.9) in (2.8). Note, that this integration has
been produced for incompressed fluid by Clebsch [4, 5] 160 years ago. Let us now
substitute pk from (2.9) into action (2.1). Let us set b = 1. We obtain the new
action functional

A [ξ, j, ϕ] =

∫

Vx

{
j2

2ρ0

− ρ0E (ρ0)− jk (∂kϕ + gα (ξ) ∂kξα)

}
d4x, (2.10)

which is equivalent to action functional(2.1). It contains arbitrary integration func-
tions g (ξ). Here

j0 = ρ0, j = ρ0v =
{
j1, j2, j3

}
(2.11)

The integration functions g (ξ) are considered as fixed functions of ξ.
Variation of (2.10) with respect to ξα gives

δξα : ρ0Ω
aµ (ξ) (∂0ξα + (v∇) ξα) = 0, (2.12)
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where

Ωaµ (ξ) =

(
∂gα (ξ)

∂ξµ

− ∂gµ (ξ)

∂ξα

)
(2.13)

and v is determined by the relation

δjµ : vµ ≡ jµ

ρ0

= ∂µϕ + gα (ξ) ∂µξα (2.14)

If det
∣∣∣∣Ωαβ

∣∣∣∣ 6= 0, then the Lin constraints

(∂0ξα + (v∇) ξα) = 0 (2.15)

follows from (2.12)
However, the matrix Ωαβ is antisymmetric and in 3-dimensional space

det
∣∣∣∣Ωαβ

∣∣∣∣ =

∣∣∣∣∣∣

0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0

∣∣∣∣∣∣
≡ 0 (2.16)

Then it follows from (2.12)

∂0ξα + (v∇) ξα = −ωεαβγΩ
βγ (ξ) α = 1, 2, 3 (2.17)

where ω = ω (t, ξ) is an arbitrary quantity.
The obtained equation (2.17) contains the initial dynamic equation (1.3) as a

special case. For irrotational flow, when Ωβγ (ξ) = 0, the equation (2.17) turns
to (1.3). In the action functional (2.1) the initial relation (1.3) is used as a side
constraint. The real hidden variables are more rich, than it is described by the Lin
constraint. It is a reason, why the equation (2.17) is not obtained from the action
functional (2.1).

If ω (t, ξ) 6= 0, the dynamic equations (2.17) describe a violation of the Lin
constraints (1.3). One obtains another labelling of the stream lines, than that one,
which is described by the Lin constraints (1.3). If the flow is irrotational, and
Ωαβ = 0, the labelling does not depend on the arbitrary quantity ω (t, ξ).

Thus, although solution ρ0,v of the Cauchy problem for the Euler system of
hydrodynamic equation (1.1), (1.2) is unique (in the sense, that it does not contain
indefinite quantities), the solution ρ0,v, ξ for the Cauchy problem of the complete
system of hydrodynamic equations (1.1), (1.2), (2.17) is not unique (in the sense, that
it contains indefinite quantity ω (t,x)). The reason of this nonuniqueness is influence
of interfusion. Our consideration is formal. One cannot understand mechanism of
the interfusion influence from this consideration. Nevertheless this influence takes
place, and it should be investigated more closely.

Remark. Variables ξ = (ξ1, ξ2, ξ3) are not determined uniquely. It may be a
result of abortive choice of dynamic variables ξ.
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3 Description in terms of the complex fluid

potential

Let us introduce new complex dynamic variables ψ = (ψ1, ψ2) determining them by
relations

j0 = ρ =
∑

α=1,2

ψ∗αψα ≡ ψ∗ψ (3.1)

vβ (t,x) = − i

2

2∑
α=1

ψ∗α
∂ψα

∂ξβ
− ∂ψ∗α

∂ξβ
ψα

ψ∗ψ
≡ − i

2

ψ∗∂βψ − ∂βψ∗ψ
ψ∗ψ

, β = 1, 2, 3 (3.2)

This are such variables, where it is possible complete description of dynamic sys-
tem, described by the action (2.10). These variables are known as the complex
fluid potential ψ (wave function [3]). It is used in quantum mechanics as the wave
function.

The complex fluid potential is defined via variables ρ,v by differential relations,
But ψ cannot be expressed via ρ,v solely. In terms of ψ the action functional (2.10)
takes the form

A [ψ, ψ∗] =

∫

Vx

{
i

2

α=2∑
α=1

(ψ∗α∂0ψα − ∂0ψ
∗
α · ψα)− ρE (ρ)

}
d4x

+

∫

Vx

1

8

(
α=2∑
α=1

(ψ∗α∂βψα − ∂βψ∗α · ψα)

)2

d4x

−
∫

Vx

1

4

γ=2∑
γ=1

α6=γ=2∑

α6=γ=1

(
(ψ∗α∂βψα − ∂βψ∗α · ψα)

(
ψ∗γ∂βψγ − ∂βψ∗γ · ψγ

))
d4x (3.3)

where

ρ = ψψ∗ =
α=2∑
α=1

ψαψ∗α (3.4)

Variation of (3.3) with respect to ψ∗α α = 1, 2 leads to dynamic equations

i∂0ψα +
1

2
((ψ∗α∂βψα − ∂βψ∗α · ψα)) ∂βψα −

∂

∂ρ
(ρE (ρ)) ψα

+
1

2
∂β

(
ψ∗3−α∂βψ3−α − ∂βψ∗3−α · ψ3−α

)
ψα = 0, α = 1, 2 (3.5)

Variation of (3.3) with respect to ψα leads to dynamic equations which are complex
conjugated to (3.5).

The complex fluid potential ψ = {ψα}, α = 1, 2 is a 2-component complex
function. It is constructed from Clebsch potentials (2.9).
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Dynamic equations in terms of ψ do not contain indefinite quantities of the type
ω in (2.17). However, indefiniteness in the definitions of variables ξ remains, because
variables ρ,v, ξ are determined via ψ from relations (3.1) and (3.2)

The complex fluid potential ψ is a natural attribute of fluid dynamics, but it
was not known to researchers dealing with fluid dynamics. However, it was used
in quantum mechanics under name of wave function. Nature of the complex fluid
potential ψ was not known during the whole XX century. In quantum mechanics
the wave function ψ was considered as an axiomatical object of unknown nature.
This fact has led to numerous interpretations of quantum mechanics which were
generated by unknown meaning of the wave function ψ.

The same action (2.10) written in in terms of the fluid potential ψ generates
dynamic equations (3.5). These equations are resolved with respect to time deriva-
tives and do not contain indefinite quantities. But now the indefiniteness is placed
in definition of the fluid potential ψ via variables ρ,v, ξ. If initial conditions are
given for variables ρ,v, ξ in the form

ρ (0,x) = ρin (x) , vα (0,x) = gα (x) , ξα (0,x) = xα (3.6)

dynamic equations, written in terms of ρ,v, ξ, cannot be solved uniquely, because
of indefinite quantity ω (t,x) in (2.17). Dynamic equations (2.17) cannot be solved
uniquely at the initial conditions (3.6), because in this case the initial conditions
ψα (0,x) cannot be determined uniquely via variables ρ,v, ξ. However, if initial
conditions ψα (0,x) for fluid potential ψ are given, the equation (3.6) can be solved,
because they do not contain indefinite parameters.

It means that the dynamic variables ρ0,v, ξ do not form a complete set of dy-
namic variables of a barotropic fluid, whereas components ψα of the fluid potential
ψ form a complete set of dynamic variables. In the case of irrotational flow the
dynamic variables ρ0,v, ξ form a complete set of dynamic variables of a barotropic
fluid. In the case of vortical flow the dynamic variables ρ0,v, ξ do not form a com-
plete set of dynamic variables, which are needed for description of a vortical flow
of a barotropic fluid. Thus, additional dynamic (hidden) variables ψα, which are
needed for complete description of a barotropic fluid, are connected with rotational
motion of a fluid.

It s possible to use real hidden variables s ={s1, s2, s3} defined by relations

s1 =
ψ∗σ1ψ

ρ
=

1

ρ
ψ∗

(
0 −i
i 0

)
ψ =

1

ρ
(−iψ∗1ψ2 + iψ∗2ψ1) (3.7)

s2 =
ψ∗σ2ψ

ρ
=

1

ρ
ψ∗

(
0 1
1 0

)
ψ =

1

ρ
(ψ∗1ψ2 + ψ∗2ψ1) (3.8)

s3 =
ψ∗σ3ψ

ρ
=

1

ρ
ψ∗

(
1 0
0 −1

)
ψ =

1

ρ
(ψ∗1ψ1 − ψ∗2ψ2) (3.9)

Dynamic equations for s are obtained by means of (3.5). In quantum mechanics
variables s are known as spin variables, describing angular momentum of particles.
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4 Concluding remarks

We have considered the barotropic fluid. However, the wave function appears as
a result of integration of equation (2.7), which does not depend on the fluid state.
Thus, the obtained result is valid for any inviscid fluid. The viscid barotropic fluid
is described by the Navier-Stokes equations. If viscosity tends to zero, the Navier-
Stokes equations tends to the Euler equations. If the viscosity reduces, the turbulent
phenomena increase. If the viscosity vanishes, the turbulence becomes maximal. At
these conditions it seems rather natural, that the conventional description by means
of Euler equations cannot describe irregular stream lines, which are connected with
possible turbulence. Maybe, a use of the fluid description in terms of fluid potential
(wave function) would be useful for description of turbulent phenomena. Description
in terms of ψ admits one to follow an evolution of stream lines, although such
a description is not connected with initial values of observable variables ρ,v, ξ.
Besides, it is not clear, how can one introduce the fluid potential into description of
viscid fluid, which is not described by a variational principle.
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