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Abstract

One considers the discrete space-time geometry Gd, which is given on the set of points
(events), where the geometry of Minkowski is given. This discrete geometry is not a geometry
on lattice. Motion of a free particle is considered in Gd. Free motion in Gd can be reduced to a
motion in geometry of Minkowski GM in some force �eld. Primordial free motion in Gd appears
to be stochastic. In GM it is di¢ cult to describe the force �eld responsible for stochastic motion
of a particle. The nature of this force �eld appears to be geometrical.

Key words: discrete space-time geometry; stochastic motion; reduction of discrete geometry to
continuous geometry

1 Introduction

More, than hundred years ago Ludwig Boltzman suggested the method of nondeterministic particles
description by means of mathematical formalism of gas dynamics. In that time only gas molecules
and Brownian particles were known as stochastic (nondeterministic) particles. Quantum particles,
which are stochastic particles also, were not known. At �rst the scienti�c community did not
accept Boltzman�s investigations. But some time ago Boltzman�s kinetic equations were accepted
as a method of the gas properties investigation. However, the Boltzman�s investigations were not
accepted as a method of the stochastic particle description.
Apparently, the reason of such a non-recognition was the fact, that the Boltzman�s method

cannot describe quantum particles. More exactly, one was not able to describe quantum particles
by the Boltzman method. Connection between the gas dynamics and quantum mechanics was
known, but it was one-sided. One can derive gas dynamics from quantum mechanics,[1], but one
was not able to derive quantum mechanics from gas dynamics.
However it appears that the classical gas dynamics can be considered as a method of a sto-

chastical particle description. Indeed, a gas molecule moves stochastically, because of interaction
with other gas molecules. This interaction appears in the molecular collisions. If the collisions
are absent, the gas molecules move deterministically. Character of stochasticity depends on the
form of molecular interaction. It is turn out, that one can introduce such a molecular interaction,
that the nonrotational �ow of the gas with such an interaction between molecules is described by
the Klein-Gordon equation. This interaction changes the molecular mass m, converting it into the
e¤ective mass M by means of the relation

m2 !M2 (x) = m2 +
~2

c2
�
gkl�
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�
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@
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(1.1)

where �l, l = 0; 1; 2; 3 is some force �eld and ~ is the quantum constant. Dynamic equations for
the �-�eld are obtained from the corresponding action. It follows from these dynamic equations,
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that the �-�eld has potential �

�l = glk�
k = @l�; l = 0; 1; 2; 3 (1.2)

The gas, whose molecules interact via the �-�eld (1.1), is described by the action [2]

E [Sst] : A [x ; �] =
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where � = f�0; �g. The variables � = f�1; �2; �2g label world line of molecules, whereas �0 is a
parameter along the world line. Motion of the gas molecules is stochastic. Indeed, the action for
a single gas molecule is written in the form (integration over � is omitted)

Sst : A [x ; �] =
Z
�0

�
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p
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l
�
d�0 _xi =
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@�0
; (1.5)

If K is de�ned by (1.4) and �l does not vanish, the action (1.5) is de�ned incorrectly, because
xk = xk (�0) in (1.5) is one-dimensional line, whereas derivatives of �

l in K are de�ned in the
whole space-time.
For identi�cation of equations of the gas dynamics with equations of quantum mechanics, it was

very important, that wave function is a natural attribute of �uid dynamics [3]. Only knowing this
fact, one can derive the Klein-Gordon equation, written in terms of the wave function  , from the
classical gas dynamic equations, written in terms of hydrodynamic variables �,v. There are three
possible representations of gas dynamics: (1) Lagrangian representation, (2) Euler representation,
and (3) reperesentation in terms of the wave function. The last representation was not known in
the twentieth century.
Besides, the classical gas dynamic equations, as well as the Klein-Gordon equation describe

only mean velocity and mean energy of a stochastic particle. They cannot describe distribution
over velocities (for instance, Maxwell distribution). However, the gas dynamic equations can be
expanded to kinetic equation, which describes the velocity distribution evolution. For quantum
equation such a generalization has not been derived until now, although such a generalization is to
exist, if the quantum equation is considered as the gas dynamic equations. Boltzman has derived
kinetic equation, analysing the elementary act of the gas molecules collision. One should expect,
that analysing interaction (1.1), one can obtain more complete information on the quantum particle
motion.
In this paper we shall try to make a preliminary step for analysing the �-�eld, de�ned by

(1.1). This preliminary step is an investigation of a free particle motion in the discrete space-time
geometry. The fact is that, a free motion of a particle in some exotic space-time may be equivalent
to a motion in the space-time of Minkowski and some force �elds in it. For instance, motion
of a charged particle in a given electromagnetic and gravitational �eld of the four-dimensional
space-time can be described as a free motion of this particle in the 5-dimensional Kaluza-Klein
geometry of the space-time. In general, a boundary between the dynamics and the space-time
geometry is mobile, and one can transform dynamics to the space-time geometry and vice versa.
Capacities of space-time geometry are more e¤ective, than capacities of dynamics, and we shall
use this circumstance in the investigation of the �-�eld, de�ned by (1.1).

2 Discrete geometry of space-time

All generalized geometries G are modi�cations of the the proper Euclidean geometry GE. The
discrete geometry Gd by de�nition is such a geometry, where all distances are larger, than some
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minimal length �0. The zero length is also possible, for instance, between two coinciding points.
It means mathematically, that

Gd : j�d (P;Q)j =2 (0; �0) ; 8P;Q 2 
 (2.1)

where �d (P;Q) is the distance between the points P and Q in Gd. 
 is the set of points, where
the discrete geometry Gd is given.
Usually one considers the condition (2.1) as a constraint on the set 
 of points, where the

discrete geometry is given. Then the constraint leads to set 
, containing countable number of
points. Such a geometry is known as a geometry on a lattice. The metric � (distance) is considered
as a distance in the geometry of Minkowski. The geometry on a lattice has almost nothing common
with the space-time geometry. In particular, one cannot construct world lines of particles in the
space-time geometry on a lattice. It is not clear, how can one construct a line from points of a
lattice.
We consider the condition (2.1) as a constraint on the metric �d, whereas the set 
 is the

set 
M, where the geometry of Minkowski is given. The metric �d is chosen in such a way, that
constraint (2.1) be ful�lled. For technical reason it is more convenient to use the world function
�d =

1
2�
2
d. The world function �d can be chosen in the form

�d (P;Q) = �M (P;Q) +
�20
2
sgn (�M (P;Q)) (2.2)

where �M is the world function of the geometry of Minkowski. It easy to verify, that �d from
(2.2) satis�es the constraint (2.1). At the same time the discrete geometry Gd, described by the
world function �d is uniform and isotropic, because it is a function of �M, which is uniform and
isotropic. Such a presentation of the discrete space-time geometry Gd admits one to reduce a free
particle motion in Gd to a particle motion in geometry of Minkowski GM with some force �eld. It
is possible, because world line is constructed of points of the set 
 = 
M.
Note, that usually researchers perceive the uniform and isotropic discrete geometry of space-

time as something impossible, because usually the discrete geometry is considered as a geometry
on a lattice.
There is only one quantity, which is common for Euclidean geometry GE and the discrete

geometry Gd. It is the distance, or world function. In order to obtain the discrete geometry Gd as
a modi�cation of the proper Euclidean geometry GE, one needs to present the Euclidian geometry
GE in the monistic presentation, when all statements of GE are expressed via world function �E of
GE and only via �E. It is possible [4], and we shall show, how to do this.
Let the Euclidean geometry GE be described in terms of world function �E. Vector PQ = fP;Qg

is an ordered set of two points P;Q 2 
, where 
 is the set points, where GE is given. Vectors are
de�ned by their length and mutual disposition. The length jPQj of vector PQ is described by the
relation

jPQj =
p
2�E (P;Q) (2.3)

Mutual orientation of two vectors PQ and RS is described by their scalar product (PQ:RS)E. In
terms of world function �E the scalar product is expressed by the relation

(PQ:RS)E = �E (P; S) + �E (Q;R)� �E (P;R)� �E (Q;S) (2.4)

The angle ' between two vectors PQ and RS is described by the relations

cos' =
(PQ:RS)E
jPQj jRSj (2.5)

Two vectors PQ and RS are equivalent (equal (PQeqvRS)), if vectors are in parallel (' = 0) and
their lengths are equal. Due to (2.4) and (2.5) the equality of vectors PQ and RS can be expressed
via world function �E

(PQeqvRS) : (PQ:RS)E = jPQj � jRSj ^ jPQj = jRSj (2.6)
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There is one more property of vectors, which is de�ned by their mutual disposition: it is
the property of linear dependence of n vectors P0P1, P0P2,...P0Pn. Usually linear dependence
of vectors is de�ned by means of linear operations over vectors. n vectors u1 = P0P1, u2 =
P0P2,...un = P0Pn are linear dependent, if exist such a set of real numbers �1; �2; :::�n, that

i=nX
i=1

�iui = 0 (2.7)

and not all �i = 0.
Although this de�nition is used usually, it is unsuccessful, because (1) it is nonconstructive

and (2) it needs a use of linear operations on vectors. Indeed, to test whether (2.7) is valid, one
needs to consider all possibilities of the choice of set �1; �2; :::�n. It is nonconstructive. Why one
uses linear operations for de�nition of linear dependence, if one can de�ne it without use of linear
operations. In general, vectors ui of linear vector space Ln, where linear operations over vectors
are de�ned, are another objects, which di¤er from vectors, de�ned by two points PQ = fP;Qg. We
shall di¤er vector PQ = fP;Qg from the vector ui 2 Ln, which is an object of linear vector space
Ln. We shall refer to ui as linear vector, or linvector [6]. The vector PQ = fP;Qg will be referred
to as geometrical vector (g-vector). In the Euclidean geometry GE g-vector PQ = fP;Qg can be
identi�ed with linvector ui 2 Ln. However, in the generalized geometry G, which is obtained as a
result of deformation of GE, the linear vector space Ln cannot be introduced, generally speaking.
In this case one should distinguish between g-vectors and linvectors.
De�nition. n g-vectors P0P1, P0P2,...P0Pn are linear dependent, if and only if the Gram�s

determinant
Fn (Pn) = 0 (2.8)

where Pn = fP0; P1; :::Png

Fn (Pn) = det jj(P0Pi:P0Pk)jj ; i; k = 1; 2; :::n (2.9)

De�nition (2.8) is constructive and it uses only information on mutual disposition of vectors. In
GE both de�nitions (2.7) and (2.8) are equivalent, but in Gd one can use only de�nition (2.8). It
is rather unexpected, that one can speak about linear dependence of g-vectors independently of
existence of linear vector space Ln, where operation over vectors are de�ned.
Maximally unexpected is the de�nition of the geometry dimension. In the Riemannian (and

Euclidean) geometry the dimension (metric dimension) is introduced as independent basic quantity:
"Let us consider manifold of dimension n with a smooth coordinate system on it..." In other words,
the metric dimension of a geometry is de�ned before construction of the geometry. At such an
approach it is not clear, how to introduce dimension in the discrete geometry (2.2).
Remark. In general, the metric dimension nm is the maximal number of linear independent

g-vectors in geometry G. The coordinate dimension nc is the number of coordinates, which are used
for the geometry G description. In general, nm and nc are di¤erent quantities. However, in the
Euclidean geometry and in the Riemannian geometry these dimensions coincide at the conventional
description, and one does not distinguish between nm and nc.
In the Euclidean geometry GE the dimension n can be de�ned as a maximal number of linear

independent vectors in GE. If GE has dimension n, then there exist such n + 1 points Pn =
fP0; P1; :::Png, that

9Pn : Fn (Pn) 6= 0; 8Pn+k; k � 1; Fn+k
�
Pn+k

�
= 0 (2.10)

For the Euclidean geometry GE the constraints (2.10) on the world function �E are ful�lled. For
discrete geometry Gd with the world function �d de�ned by (2.2) the constraints (2.10) are not
ful�lled, and one cannot introduce metric dimension nm for Gd. However, describing the discrete
space-time geometry Gd, we shall use four-dimensional description in the sense, that we shall use
four coordinates for description of Gd, and nc = 4.
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Constraints (2.10) mean, that introduction of the metric dimension depends on properties of
the world function � of the geometry in question. There are space-time geometries without a
de�nite dimension. Number of space-time geometries without dimension is much greater, than the
number of geometries with de�nite dimension (Riemannian geometries).
This fact has essential consequences. Construction of general relativity must take into account

all possible space-time geometries, but not only those ones, which have a de�nite metric dimension.
Taking into account all possible space-time geometries, one obtains extended general relativity,
where existence of black holes is impossible [8] and induced antigravitation appears [9], although
it is absent in conventional general relativity.

3 Motion of a particle in the discrete space-time

Smooth world lines of particles are impossible in the discrete space-time geometry. World lines are
described as broken lines Lbr. Links of the broken line are segments T[PiPi+1] of straight line

Lbr =
[
s

T[PsPs+1] (3.1)

where segments T[PSPs+1] of straight line are de�ned by the relation

T[PsPs+1] =
n
Rj
p
2� (Ps; R) +

p
2� (Ps+1; R)�

p
2� (Ps; Ps+1) = 0

o
(3.2)

This de�nition of the straight line segment is the same in GE and in Gd. But in GE � = �E, whereas
in Gd � = �d. Besides, in GE the length � = jPsPs+1j may tend to zero, whereas in Gd the link
length � = jPsPs+1j � �0. Thus, in the discrete space-time geometry an additional parameter
of the world line appears. The link length � = jPsPs+1j is additional parameter of a world line,
which is called geometrical mass, because the real particle mass m is connected with � by means
relation

m = b� (3.3)

where b is some universal constant.
Thus, in the discrete space-time geometry Gd the particle mass is a geometrical quantity with

necessity. In the geometry of Minkowski, where world lines are smooth lines, the mass m may be
considered as non-geometrical quantity.
In the world line of a free particle the vectors PsPs+1 and Ps+1Ps+2, describing adjacent links,

are equal. Mathematically it means that

jPsPs+1j = jPs+1Ps+2j ; s = :::0; 1; ::: (3.4)

(PsPs+1:Ps+1Ps+2) = jPsPs+1j � jPs+1Ps+2j ; s = :::0; 1; ::: (3.5)

Using for jPsPs+1j and for (PsPs+1:Ps+1Ps+2) expressions (2.3) and (2.6) one can rewrite (3.4)
and (3.5) in the form

�d (Ps; Ps+1) = �d (Ps+1; Ps+2) (3.6)

�d (Ps; Ps+2) + �d (Ps+1; Ps+1)� �d (Ps; Ps+1)� �d (Ps+1; Ps+2) = 2�d (Ps; Ps+1) (3.7)

By means of (3.6) and �d (Ps+1; Ps+1) = 0 equation (3.7) can be rewritten in the form

�d (Ps; Ps+2) = 4�d (Ps; Ps+1) (3.8)

Two equations (3.6) and (3.8) describe world line of a free particle in the discrete space-time
geometry Gd.
Such a coordinate free description of a world line seems to be rather unusual. To explain

situation we consider at �rst a coordinate free description of world line of a free particle in GM.
We have two equations

�M (Ps; Ps+1) = �
M
(Ps+1; Ps+2) (3.9)
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�M (Ps; Ps+2) = 4�M (Ps; Ps+1) (3.10a)

which describe wold line of a free particle in GM. It is not quite clear, how two equations (3.9) and
(3.10a) describe world line, which is described usually by four space-time coordinates.
Let coordinates of points Ps; Ps+1; Ps+2 look as follows

Ps =
�
x0;x

	
; Ps+1 =

�
x0 + p0;x+ p

	
; Ps+2 =

�
x0 + 2p0 + �0;x+2p+�

	
(3.11)

The quantities x0;x; p0;p are known. One needs to determine �0;� from two equations (3.9),
(3.10a). In the coordinate form two equations (3.9), (3.10a) look as follows

1

2

��
p0
�2 � p2� = 1

2

��
p0 + �0

�2 � (p+�)2� (3.12)

1

2

��
2p0 + �0

�2 � (2p+�)2� = 2��p0�2 � p2� (3.13)

Resolving (3.12) with respect to �0, one obtains

�0 = �p0 �
q
(p0)

2
+ 2p�+�2 (3.14)

Substituting (3.14) in (3.13), one obtains equation for determination of � �
p0 �

q
(p0)

2
+ 2p�+�2

�2
� (2p+�)2

!
= 4

��
p0
�2 � p2� (3.15)

After simpli�cation it takes the form

�p0
q
(p0)

2
+ 2p�+�2 � p� =

�
p0
�2

(3.16)

Eliminating radical from (3.16), one obtains after simpli�cations�
p0
�2 �

�2
�
= (p�)

2
= p2�2 cos2 ' (3.17)

where ' is the angle between the vectors p and �. Expression

� =
�
�1; �2; �3

	
= 0 (3.18)

is a solution of (3.17)
If world line is timelike, and

�
p0
�2
> p2, then (3.18) is a unique solution of (3.17). If world

line is spacelike and
�
p0
�2

< p2, there are another solutions, when cos2 ' =
�
p0
�2
=p2 < 1.

In contemporary physics only tardions (particles with timelike world line) are considered. It is
supposed, that tachyons (particles with spacelike world line) do not exist. Description of tachyons
can �nd in [5]
Substituting (3.18) in (3.14), one obtains �0 = 0, or �0 = �2p0. The value �0 = �2p0

(low sign of radical) does not satisfy primary equation (3.15). Thus, for tardions one obtains
� =

�
�0; �1; �2; �3

	
= 0, and Ps+1Ps+2 = PsPs+1 =

�
p0;p

	
. As a result vectors of the broken

line Lbr form a straight line.
Let us return to consideration of equations (3.6) and (3.8). If world line is timelike (�d > 0),

then using for �d expression (2.2), one can write equations (3.6) and (3.8) in the form

�M (Ps; Ps+1) = �M (Ps+1; Ps+2) (3.19)

�M (Ps; Ps+2) = 4�M (Ps; Ps+1) + 3�
2
0 (3.20)

Equations (3.19) and (3.20) describe broken world line in the geometry of Minkowski. But they
do not describe world line of free particle. They describe a world line of a particle, moving in the
geometry of Minkowski in some force �eld, described by the term 3�20 in (3.20).
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Thus, a free motion in the discrete space-time is reduced to a motion in some force �eld in
space-time of Minkowski. In general, coordinate free description of a world line in a physical
space-time geometry G by means of the world function � admits one to reduce this description to
description in the geometry of Minkowski GM. At such a transformation the free motion in G is
reduced to motion in some force �eld in GM. For such a transformation it su¢ cient to represent
world function � in the form

� = �M + w (3.21)

where �M is the world function of GM and the term w generates a force �eld in GM. Such transfor-
mation is convenient in the relation that it does not need a transformation of coordinates, which
is essential at a work with the Riemannian geometry. We consider example with the discrete
space-time geometry Gd, where w = �20

2 sgn (�M).

4 Dynamic equations for a free particle motion in the
discrete space-time geometry

We shall consider the simplest version of discrete space-time geometry (2.2), where �0 is a constant.
If �0 = �0 (�M), the space-time geometry Gd is also discrete. Besides, it will be uniform and
isotropic. In the case, when �0 is a function of space-time points, Gd is also discrete, but in this
case Gd is not uniform and isotropic, general speaking.
We shall consider the simplest case, when �0 =const. Besides, we shall consider the case of

three dimensional space-time, in order to reduce bulky calculations. For simplicity the speed of
the light is taken c = 1.
Let points Ps; Ps+1; Ps+2 of the broken line have coordinates (3.11). Then dynamic equations

(3.6) and (3.8) have the form �
p0 + �0

�2 � (p+�)2 = p20 � p2 = �20 (4.1)�
2p0 + �0

�2 � (2p+�)2 = 4 �p20 � p2�+ 3�20; (4.2)

Taking di¤erence of (4.2) and (4.1) one obtains

2p0�0 � 2p� = 3�20 (4.3)

or

�0 =
p�+ 3

2�
2
0

p0
(4.4)

Substituting �0 in (4.1), we obtain after simpli�cations 
p�+ 3

2�
2
0

p0

!2
+ 3�20 ��2 = 0 (4.5)

or �
p20�

�� � p�p�
�
���� � 3�20p� = 3p20�20 +

9

4
�40 (4.6)

where summation is produced over repeating indices (t; x; z). Equation (4.6) can be rewritten in
the form �

p20�
�� � p�p�

�
(�� � q�)

�
�� � q�

�
+ 2

�
p20�

�� � p�p�
�
��q� � 3�20p�

= 3p20�
2
0 +

9

4
�40 +

�
c2p20�

�� � p�p�
�
q�q� (4.7)
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where q� is arbitrary quantity. Let us set

q� =
3�20p

�

2 (p20 � p2)
=
3�20p

�

2�20
(4.8)

in (4.7). One obtains

�
p20�

�� � p�p�
��

�� � 3�
2
0p
�

2�20

��
�� � 3�

2
0p
�

2�20

�
= 3p20�

2
0 +

9

4
�40 + p

2

 
9
4�

4
0

�20

!
(4.9)

Solution of equation (4.9) looks as follows

�k =
3
2�

2
0

�20
p+

p

jpj
r

�0
cos � (4.10)

�? = e3
r

p0
sin � (4.11)

r2 = 3�20p
2
0

�
1 +

3

4

�20
�20

�
; �20 =

�
p0
�2 � p2 (4.12)

where �k is component of �, which is in parallel with p, whereas �? is component of � orthogonal
to p (e3p = 0). The angle � is an arbitrary quantity. Thus, solution of (4.9) is not unique even for
timelike world line. Such a sitation is rather natural, because we have two dynamic equations for
three variables �. It means that world line wobbles, and motion of a particle in Gd is stochastic.
Let us introduce velocity u =

�
u0;u

	
;de�ned by relations

u0 =
cp0 + �

0

�
=
cp0
�

 
1 +

3
2�

2
0

�20
+
jpj r
�0c

2p20
cos �

!
(4.13)

u =
p+�

�
= uk + u? (4.14)

uk =
p+�k

�
=
p

�

 
1+

3
2�

2
0

�20
+
1

jpj
r

�0
cos �

!
(4.15)

u? =
�?
�
= e3

r

�p0
sin � (4.16)

were � is a constant. The constant � is chosen in such a way, that the length of vector hui =�

u0
�
; hui

	
is equal to 1. Vector hui is the mean value of the vector u =

�
u0;u

	
. The mean value

of u is de�ned by averaging over �

hui = 1

2�

Z 2�

0

ud�; (4.17)

Averaging (4.13) - (4.16), one obtains



u0
�
=
cp0
�

 
1 +

3
2�

2
0

�20

!
(4.18)



uk
�
=
p

�

 
1+

3
2�

2
0

�20

!
; hu?i = 0 (4.19)

It follows from (4.18) and (4.19), that the length of vector hui is described by the equation



u0
�2 � 
uk�2 = �cp0

�

�2 
1 +

3
2�

2
0

�20

!2
�
�
p

�

�2�
1 +

3

2

�20
�20

�2
=
�20
�2

�
1 +

3

2

�20
�20

�2
= 1 (4.20)
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It follows from (4.20), that

� = �0

�
1 +

3

2

�20
�20

�
(4.21)

� is minimal, if @�=@�0 = 0

1� 3
2

�20
�20
= 0; �0 =

r
3

2
�0; �min = 2�0 =

p
6�0

5 Calculation of energy-momentum tensor

To derive dynamic equations for the particle motion we use the conservation laws for the matter
and energy-momentum

@i
�
�


ui
��
= 0 (5.1)

@kT
ik = 0; i = t; x; z (5.2)

where T ik is the energy-momentum tensor and � is the particle density. Tensor T ik is expressed
in terms of �,



ui
�
, and these quantities are dependent variables in dynamic equations (5.1) and

(5.2).
Projections of u on axis OX and on axis OZ look as follows

uz = uk
pz
jpj � u?

px
jpj ; ux = uk

px
jpj + u?

pz
jpj (5.3)

Using (4.15) and (4.16), the mean values of ux and uz can be presented in the form

ux =
px
�

 
1+

3
2�

2
0

�20
+
1

jpj
r

�0
cos �

!
+
pz
jpj

r

�p0
sin � (5.4)

uz =
pz
�

 
1+

3
2�

2
0

�20
+
1

jpj
r

�0
cos �

!
� px
jpj

r

�p0
sin � (5.5)

Tensor energy-momentum can be obtained as follows

T ik = �


uiuk

�
; i; k = t; x; z (5.6)

Let us calculate (5.6) and express them via huti =


u0
�
; huxi, huzi. Substituting (5.6) in (5.1)

and in (5.2), one obtains dynamic equations for dependent dynamic variables


u0
�
; huxi, huzi.

Calculation of energy-momentum tensor components gives

T 00 = �
D�
u0
�2E

= �

�
cp0
�0

�20B@1 + 3�20
2�20

jpj2

c2p20

0B@ 1 + 3
4
�20
�20�

1 +
3
2�

2
0

�20

�2
1CA
1CA (5.7)

T 0x = �


u0ux

�
= �

cp0px
�20

0B@1 + 3�20
2�20

�
1 + 3

4
�20
�20

�
�
1 +

3
2�

2
0

�20

�2
1CA (5.8)

T 0z = �


u0uz

�
= �

p0pz
�2

0B@1 + 3�20
2�20

�
1 + 3

4
�20
�20

�
�
1 +

3
2�

2
0

�20

�2
1CA (5.9)
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T xx = � huxuxi = �

 
p2x

jpj2
D
u2k

E
+

p2z

jpj2


u23?

�!
= �

 �
px
�

�2�
1 +

3

2

�20
�20

�2!

+�

 
3
�20c

2p20
2�2�20

p2x

jpj2
�
1 +

3�20
4�20

�
+

�
pz
jpj

�2
3

2

�20
�2

�
1 +

3�20
4�20

�!
(5.10)

T zz = � huzuzi = �

 
p2z

jpj2
D
u2k

E
+

p2x

jpj2


u23?

�!
= �

 �
pz
�

�2�
1 +

3

2

�20
�20

�2!

+�

 �
pz
�

�2 
3

�20c
2p20

2�2�20 jpj
2

�
1 +

3�20
4�20

�!
+

�
px
�

�2
3

2

�20

jpj2 �2

�
1 +

3�20
4�20

�!
(5.11)

T xz = � huxuzi = � huxi huzi

0B@1 + 3�20

�

u0
�2 � 1�

2�20

�
huxi2 + huzi2

�
�
1 +

3�20
4�20

�
�
1 + 3

2
�20
�20

�2
1CA (5.12)

Let us express now tensor energy-momentum as a function of variables

vx = huxi ; vz = huzi (5.13)

Eliminating

px = �0 huxi = �0vx; pz = �0 huzi = �0vz; p0 = p0 = �0


u0
�
= �0v0 = �0

p
1� v2x � v2z

(5.14)
we obtain

T 00 = �
�
v20 +B

�
v2x + v

2
z

��
= �

�
v20 (1 +B)�B

�
(5.15)

T 0x = �v0vx (1 +B) (5.16)

T 0z = �v0vz (1 +B) (5.17)

T xx = �
�
v2x (1 +B) +B

�
(5.18)

T zz = �
�
v2z (1 +B) +B

�
(5.19)

T xz = � huxuzi = �vxvz (1 +B) (5.20)

where

B =
3�20
2�20

�
1 + 3

4
�20
�20

�
�
1 +

3
2�

2
0

�20

�2 (5.21)

6 Dynamic equations in the space-time of Minkowski

Equation for the matter conservation

@t (�v0) + @x (�vx) + @z (�vz) = 0 (6.1)

Energy-momentum conservation equations

@t
�
�
�
v20 (1 +B)�B

��
+ @x (�v0vx (1 +B)) + @z (�v0vz (1 +B)) = 0 (6.2)

@t (�v0vx (1 +B)) + @x
�
�
�
v2x (1 +B) +B

��
+ @z (�vxvz (1 +B)) = 0 (6.3)

@t (�v0vz (1 +B)) + @x (�vxvz (1 +B)) + @z
�
�
�
v2z (1 +B) +B

��
= 0 (6.4)
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Taking into account last relation (5.14), one can write equation (6.1) in the form

@t
�
�v20
�
+ @x (�v0vx) + @z (�v0vz) =

B

(1 +B)
@t� (6.5)

Equations (6.3) and (6.4) can be written in the form

@t (�v0vx) + @x
�
�v2x
�
+ @z (�vxvz) = �

B

(1 +B)
@x� (6.6)

@t (�v0vz) + @x (�vxvz) + @z
�
�
�
v2z
��
= � B

(1 +B)
@z� (6.7)

Di¤erentiating the left part side of (6.5) and using (6.1), one obtains

dv0
d�

� (v0@t + vx@x + vz@z) v0 =
B

(1 +B) �
@t� (6.8)

where d=d� is derivative with respect to the proper time. In the same way one obtains from (6.6)
and (6.7)

dvx
d�

� (v0@t + vx@x + vz@z) vx = �
B

(1 +B) �
@x� (6.9)

dvz
d�

� (v0@t + vx@x + vz@z) vz = �
B

(1 +B) �
@z� (6.10)

It follows from (6.8) -(6.10) and (4.20), that

Bv0
(1 +B) �

@t�+
Bvx

(1 +B) �
@x�+

Bvz
(1 +B) �

@z� = 0 (6.11)

Then it follows from (6.11) and (6.1), that

@tv0 + @xvx + @zvz = 0 (6.12)

If �0 = 0, it follows from (5.21), that B = 0. Equations (a6.8) - (6.10) turns to dynamic equations
for a free particle in space-time of Minkowski.
In the discrete space-time geometry Gd acceleration of a free particle has the form

dv

d�
= �Dr log �; D =

B

1 +B
(6.13)

which associates with the di¤usion velocity

vdif = �Dr log � (6.14)

where D is the di¤usion coe¢ cient.
Thus, a free motion in the discrete space-time geometry Gd is reduced to a motion in the

space-time of Minkowski with some force �eld, which generates a di¤usion. It is rather di¢ cult to
imagine a force �eld or its potential, which should generate stochastic (di¤usion) motion of a free
particle. But namely such a �eld is necessary, in order to generate interaction of the type (1.1).
It means, that for analysing the source of the �-�eld (1.1) one needs to investigate physical

geometries of space-time, and, in particular, discrete space-time geometries.
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7 Concluding remarks

Consideration of discrete space-time geometry Gd and of particles motion in Gd is possible, only
if one knows physical geometry, i.e. geometry, which is obtained from the Euclidean geometry by
means of its deformation. Usually one used geometry on a lattice, but not variant (2.2) of the
constraint (2.1) resolution, because it was not clear, how to use the world function for description
of a discrete geometry. The fact is that, the contemporary researchers (especially mathematicians)
do not accept physical geometry on the reason, that the physical geometry is not a logical con-
struction, generally speaking. In physical geometry the equivalence relation is intransitive. It leads
to ambiguity of solution of two equations (3.6) and (3.8), which describe equality of two vectors.
Stochasticity of the particle world line is a corollary of this ambiguity. This ambiguity is described
by a dependence of (4.10) and (4.11) on the arbitrary angle �. Consideration of this ambiguity in
physical space-time geometry admits one to investigate the particle stochasticity more particularly,
than it is possible in axiomatic quantum mechanics.
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