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Abstract 

It is shown that non-relativistic quantum mechanics can be treated as a kind of relativistic 
statistical theory, which describes the indeterministic motion of classical particles. The 
theory is relativistic in the sense that the relativistic notion of the state and two-time 
equations of motion are used. The principles and relations of quantum mechanics are 
obtained from the principles of statistics and those of classical mechanics. 

Ever since the inception of quantum mechanics, attempts were made to 
understand it f rom the point of  view of  classical mechanics.t  These attempts 
were partly successful in the case of  one-particle quantum mechanics, but 
difficulties were encountered in the field of  quantum mechanics of  many 
particles (Janossy, 1969). 

This paper is a subsequent development (Rylov, 1971). According to 
present ideas, quantum mechanics is a non-relativistic approximation of  
relativistic statistics. This has been shown for the case of  the one-particle 
system. 

In the present paper two different notions of  state are used: n-state and 
r-state. The n-state (non-relativistical state) of  a system is used in the non- 
relativistic theory. The n-state of  the physical system is a set of  quantities, 
given at a certain moment  of  time. For  instance, the particle n-state is de- 
termined at a certain moment  by coordinates q and momenta  p, i.e. by a 
point in the phase space of  coordinates and momenta.  The n-state obeys a 
motion equation which describes evolution of the n-state (a phase trajectory). 

In the relativistic theory the simultaneity is relative, and it seems more 
consistent to use the notion of  r-state (relativistical state). The r-state is 
given over all space-time. The particle r-state is equation of  its world-line. 
For  the deterministic particle the coordinates of  its world-line obey some 
equations which are restrictions imposedupon  possible r-states. 

-~ See Kaliski (1970) for a comprehensive bibliography. 
Copyright �9 1973 Plenum Publishing Company Limited. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo- 
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In that case, when the particle interacts with the medium (ether) by 
unpredictable manner, its behaviour becomes non-deterministic, i.e. one 
cannot calculate the particle n-state at moment t' if its n-state is given at 
moment t(t < t'). Thus the non-deterministic particle n-state does not obey 
any equation of motion. 

For a description of the motion of non-deterministic particles, the notion 
of statistical ensemble is used. The statistical ensemble is a set of many 
independent identical systems which are in different states. The statistical 
ensemble is a deterministic dynamical system even if constituting systems 
are non-deterministic. This means that the ensemble n-state can be calculated 
at moment t' if its n-state at moment t (t < t') is known. 

For example, let the non,deterministic particle state be represented by a 
point in the phase space. The ensemble consists of N such independent 
particles (N-+ oo). The state of every particle is represented by a point in the 
phase space. Let dO be an element of volume of phase space, and dN be the 
number of points in d~2. Then 

dN = WdO 

where W-- W(q,p)is a state densitY. 
In spite of the fact that any individual system of ensemble is indetermi- 

nistic, it is found that evolution of the W can be calculated because the W 
obeys some equation, which form depends on the character of random forces 
acting upon particles of ensemble. Thus the W describes the n-state of the 
statistical ensemble as a dynamical system. 

The equation which iSobeyed by, Wis invariant with resPect to transform- 
ation W-+CW, when C =  constant. This is so because the ensemble be- 
haviour is not to depend on the number of systems constituting ensemble, 
if this number is large enough. The constant C can be chosen in such a way 
that W(q,p) represents the probability of detecting the n-state of a particle 
in the volume dl2 of the phase space. 

Thus the non-deterministic system corresponds to the deterministic 
system called statistical ensemble, the n-state W of the ensemble being a 
density of n-states (q ,p)of  systems constituting the ensemble. The n-state 
W(q,p) of the ensemble is the probability density to detect the physical 
system in the state (q,p). For this reason, calculating W(q,p) for any times t 
by means of the motion equation of the statistical ensemble one can cal- 
culate the evolution of the mean value (F(q,p)) of any function F(q,p) 
of the n-state (q,p). 

I have described in general the traditional scheme of the statistical en- 
semble application for a description of the behaviour of non-deterministic 
systems. One can emphasise three essential points in this scheme. 

(1) Transition from the physical system to the ensemble, i.e. the method 
of construction of the ensemble state. 

(2) Transition from the ensemble to the individual system, i.e. the method 
of calculation of statistical characteristics of non-deterministical 
system proceeding from the ensemble state. 
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(3) Determination of equations which are obeyed by the ensemble state, 
and the solution of these equations. 

Let us consider now the relativistical case when the r-state is a basis. 
This means that one has to do with the world-line statistics but not with the 
statistics of  points in the phase space. In this case the notion of  statistical 
ensemble is changed slightly. 

Let us consider a physical system consisting of  a particle. The r-state of  the 
particle is described by world-line q~= qi(~) in the space-time (q~ are co- 
ordinates, i = 0, 1, 2, 3; and z is a parameter along a world-line). Let 
there be an ensemble (i.e. a set) of such world-lines. Their density in the 
vicinity of the point q can be defined in the following way (Rylov, 1971). 
Let ds~ be an infinitesimal three-dimensional area at the point ql and dN 
be the number of world-lines crossing dsl. Then 

3 
d N =  ~ j* ds, 

i=0 

where f is a factor which is, by definition, the density of r-states (world- 
lines) at the point q of  the space-time. 

Let us assume, as in the traditional approach, that the state density is 
the statistical ensemble state. Then vec tor j l t  is the ensemble state. 

Let us consider a physical system consisting of  two particles. The r-state 
of the first particle is world-line L~: q l i =  ql*(~) (i = 0,1,2, 3) in the space- 
time V1 of the first particle. The r-state of the second particle is world-line 
L2:q2 ~ = q2i(z) ( i=  0,1,2,3) in the space-time V2 of the second one. It is 
evident that any combinations of r-states of the first and second particle 
are possible. For  this reason the r-state of  the whole system is a two- 
dimensional surface S = L ~  | in the eight-dimensional space V12 = 

I11 | V2, where | denotes a tensor product. Let x" = {q~i,q2 ~} (a = 1,2,.. . ,  8) 
be coordinates in V~2. Let there be an ensemble (a set) of surfaces S in space 
V~z. For the determination of the density of  surfaces S in the vicinity of the 
point x = { q l , q 2 }  of  the Vlz, one chooses an infinitesimal six-dimensional 
area dSab = -dS~a (a, b = 1,2,... ,  8) in the point x, and calculates the number 
dN of two-dimensional surfaces S crossing dsab. It is evident that 

8 
1 dN = ~ /~ jab dSab 

a,b=l 

whereff  b is a factor. The antisymmetric tensor j  ab is by definition the r-state 
density of  two-particle systems in the point x of  the space V~2. Th e j  ob is to 
be identified with the state of  statistical ensemble of two-particle systems. 

In the case of the three-particle system the r-state density is described by 
an antisymmetrical tensorj  abe in the twelve-dimensional space V12a, and so 
o n .  

t T h e j  i considered at  a certain m o m e n t  o f  t ime is the  ensemble  n-state. The  same  
j i considered in the  whole  space-t ime is the  r-state. In  this sense the  r-state o f  the  ensemble  
coincides with the  n-state. 

5* 
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Thus the statistical ensemble density, which is based on the r-state, may 
be a vector j  ~, a tensorj  a~, and so on, depending on the number of particles 
in the system. 

The method of transition from the system r-state to the statistical ensemble 
state is defined. It coincides with the traditional way: the ensemble state is 
the state density of constituting ensemble systems. 

The reverse transition from the statistical ensemble to the system pro- 
perties cannot coincide with the traditional one, because the traditional 
way is based on the fact that the ensemble state W(q ,p )  is the probability 
density to detect the system in the state (q,p). Strictly speaking, neither j ~ 
no r j  a~ can be treated in such a way. For  this reason the transition from the 
statistical ensemble to the non-deterministic system is based on the use of 
additive quantities. 

Definition. The quantity B is an additive one if the value of B for several 
independent systems is equal to the sum of values B for every system. 

Energy, momentum, angular momentum and their densities are examples 
of additive quantities. The statistical ensemble is a set of independent sys- 
tems. For this reason any additive quantity attributed to the statistical 
ensemble as a dynamical system is a sum of values of  this quantity for all 
systems constituting an ensemble. As the ensemble behaviour does not 
depend on the number of  systems in the ensemble, the equations for the 
ensemble state j are invariant with respect to transformation j - +  Cj (C = 
constant). Hencejcan be n ormed on one system. Herej  denotes any ensemble 
state: W, j i ,  jab, . . . 

In this case the value of any additive quantity of ensemble is equal to the 
mean (over ensemble) value of this quantity for systems constituting an 
ensemble. 

In the non-relativistic approximation, when one of components j is 
non-negative and conserved (for instance, jo for a one-particle system), 
it is possible to treat this component as a corresponding probability density. 
In this case, it is possible to obtain additional information on motion of  
systems constituting an ensemble. But this takes place in non-relativistical 
approximation only. 

Let us formulate the foregoing in the axiomatic form. 

The statistiealprinciple. A non-deterministict dynamical system A, whose 
state is described by quantities 4, corresponds to a deterministic dynamical 
system, which is called a statistical ensemble and has the following pro- 
perties. 

(1) A state j of  the statistical ensemble is a state density of systems A. 

t The statistical principle can be applied to the deterministic system, if its initial con- 
ditions are not determined exactly. 
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(2) The equations for the ensemble state j are invariant with respect 
to transformation j-+ Cj (C = constant). 

(3) I f  the ensemble state j has a proper normalisation (on one system), 
every additive quantity B, attributed to the statistical ensemble as a 
dynamical system, is the mean value of quantity B for system A. 

The statistical principle settles the question about determination of  the 
ensemble state and about determination of the non-deterministic system 
properties, but it does not determine which equations are obeyed by en- 
semble state. 

This problem needs special consideration. It was solved for the one- 
particle case (Rylov, 1971). On the basis of the statistical principle (although 
it has not been formulated in the definite form) it was shown that in the 
one-particle case it is possible to choose an equation (or Lagrangian) 
for the statistical ensemble so that conclusions, obtained on the base of 
statistical principle, are equivalent to those of one-particle quantum 
mechanics. 

In this paper the analogous problem is put for the two-particle case. 
The problem is to define the statistical ensemble as a dynamical system in 
such a way that conclusions obtained on the basis of the statistical principle 
coincide with those of quantum mechanics. To define the statistical en- 
semble as a dynamical system means one has to write a motion equation 
(or Lagrangian) for the ensemble. It is shown in this paper that this is possible. 
The rule for writing a Lagrangian is given. For this purpose, the ensemble 
of two-particle deterministic systems is considered first. For  such an en- 
semble, a Lagrangian is the sum of Lagrangians of  individual systems. One 
takes into account indeterminism by means of an additional term containing 
Planck's constant. Then one gets conception which is equivalent to quantum 
mechanics. This is the purpose of the present paper. For  simplicity, only 
the case of two independent particles in two-dimensional space-time is 
considered. 

The two-particle system ensemble has two peculiarities that distinguish 
it from the one-particle system ensemble. Firstly, the space V12 contains 
two times and the ensemble s tatej  a~ evolves in two times at once. For  this 
reason the number of  independent equations is twice that of  independent 
components of j  ab. The compatibility conditions of the equations complicate 
attempts to conclude them from the variational principle. 

Secondly, at every point of space V12 the direction of two-dimensional 
surface, which represents the r-state of two particles, can be described by 
means of  a simple bivector-~ tangent to this surface. At every point the state 
surface density jab is proportional to a mean value of  the tangent bivector 
in the vicinity of  this point. In general, the mean tangent bivector is not a 
simple bivector and does not represent the direction of  any two-dimensional 
surface, because the sum of simple bivectors is not a simple bivector in general. 

t The  s imple bivector n ab is defined as a bivector tha t  can  be represented in the  form 
n ab = v a " v 2  b - v x b v 2  " ,  where  v l  a and  132 a a r e  vectors. 
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1. E n s e m b l e  o f  T w o - P a r t i c l e  S y s t e m s  

Let us consider a system consisting of two non-interacting particles 
moving in a two-dimensional space-time. The r-state of  the first particle 
is represented by world-line LI:  ql~ = q ~ ( z )  (i = O, 1) in the two-dimensional 
space-time V~. The r-state of  the second particle is represented by world- 
line L 2" q2 f =  qzf(z)  (i = 0,1) in the two-dimensional space-time V2. t~ = 
ql ~ ql = ql 1 are coordinates on V1; t2 = q2 ~ q2 = q21 are coordinates in V2. 
The r-state of  the two-particle system is represented by the two-dimensional 
surface S = L~ |  in the four-dimensional space V12 = V 1 ~) V2, where | 
stands for tensor product. Let x" (a = 1,2, 3, 4) be coordinates in V12. 

x 1 = ql  ~ x 2 ql  I, x 3 = q2 ~ x 4 = q21 (1.1) 

Tensor indices in V12 are numerated by the small letters of  the Latin alpha- 
bet. 

The two-dimensional surface S is described by the equation 

qa ~ = qA'(ZA) (i = 0, 1 ; A = 1,2) (1.2) 

where zA are parameters. Let us call S a state surface or the r-state of  the 
two-particle system. 

Motion of the two-particle system is assumed to be non-deterministic. 
This means that even if the tangential bivector of  state surface S is known 
at the moment  of  time t~ = t2 = 0, it is impossible to determine the surface S 
(but it exists). Although the non-deterministic system behaviour cannot be 
described exactly, it can be described statistically. For  this purpose, ac- 
cording to the statistical principle, a non-deterministic system corresponds 
to a deterministic system (statistical ensemble). According to definition, the 
ensemble state is the r-state density of  the non-deterministic system (i.e., 
the density of  state surface S). The r-state of  the ensemble has the property 
that if  it is given at moment  tl = t2 = O, then it can be determined for any 
moments (q, t2) by means of  motion equations. 

Using the fact that the ensemble state is the r-state density of  a non- 
deterministic system, one can make some statistical conclusions about the 
evolution of the non-deterministic system. 

For  the determination of  the density of  surfaces S in the vicinity of  a 
point x ~ of  space V~2, let us consider at the point x the infinitesimal two- 
dimensional area 

dS~b = X/lgr c -2 e.bca dl x c d2 x a (1.3) 

Here d~ x c and d2 x a are two infinitesimal linear independent vectors form- 
ing the two-dimensional area ds,  b, eabca is antisymmetrical over all indices 
pseudotensor (e~za, = 1), g is determinant of  the metric tensor in V~2, c is 
light speed. 

The number d N  of  state surfaces crossing ds~b is defined by the relation 

d m = � 8 9  b (a,b = 1, 2, 3, 4) 0.4) 

As usual, summation is made on like super- and subscripts, j,b =j~b(x ) 
is a factor. According to definition, j,b is a state density at the point x. 
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jab is an antisymmetric tensor and describes the mean density and direction 
of  state surfaces at the point x. 

According to definition, ja~ is a statet of statistical ensemble. 
The number of systems in ensemble is defined by 

1 FF.ab N: jj, <o 

where ~ is an infinite spacelike surface in V~2. It means that the projection 
of any vector which is tangent to ~ into space V~ or V2 is a spacelike vector. 

Definition. Ensemble of surfaces S:~ is called a simple one in region f2 
of  space V12 if surfaces S of ensemble do not cross in f2. Ensemble simple 
in the whole V~z is called simple one. 

It is easy to see that any ensemble of surfaces S, which are derived as a 
tensor product of world-line L1 and L2, placed correspondingly in V~ and 
Vz has the properties 

j12 =j21 =j34 =j4a = 0 (1.5) 

As a matter of fact, the bivectorj  ab tangent to surface S has the form 

j a b  = u l a  hi2 b __ bllb 1,12 a (1.6) 
where 

uE = {u,L u~'-,0,0}, u / =  {0,0,u23,u24} 

(1.5) follows from (1.6) for simple ensemble. Equation (1.5) is valid for 
any ensemble because any ensemble can be represented as a sum of simple 
ensembles. 

It follows from (1.6) that the simple ensemble has the property 

j~aj24 _jx4jza = 0 (1.7) 

2. The Simple Ensemble 

At first, let us consider the case of a statistical ensemble of deterministic 
systems. This allows us to conclude two-time equations for the ensemble 
state ja~ from a variational principle. After this the variational principle 
needs only to be generalised in the case of an ensemble of non-deterministic 
systems adding some terms to the Lagrangian. 

In this section the action and equations of motion for the statistical 
ensemble of the deterministic two-particle system will be obtained, proceed- 
ing from action for individual particles. 

The motion law of every individual ensemble system is supposed to be 
known. For  simplicity, systems consisting of two free particles with masses 

t Tensorj "b considered in the whole V12 is r-state, and considered at q, t2 = constant 
it is n-state. 

:~ The term 'ensemble of surfaces S' is used for short, instead of 'statistical ensemble of 
systems which states are represented by surfaces S'. 



72 vu. A. RYLOV 

rn~ and m E are considered. Let each ensemble system be numerated by two 
numbers: r ~ and 412. An action for a simple ensemble is the sum of actions 
for individual systems. 

S= S~ + Sz 
qa OqA 

Sa=Sa[qA~]=--mac ~-z g~k-ff~-z d4~d~a2dz (i,k=O, 1;A=l,2) 

(2.1) 

Summation is made on like tensor (Latin) super- and subscripts. Summation 
on capital indices which numerate particles is always designated by the sign 
of summation. 

g~k is the metric tensor 

gik= 0 2 __~ (2.2) 

q j  = qa'(z, 4~ ~, 412) (i = 0,1 ; A = 1,2) (2.3) 

where c is light speed. 

I f  4~ 1 and 412 are fixed, then qa ~ = qA~(Z) describes the world-line of  the 
Ath particle, z is a parameter along a world-line of  the first particle as well 
as the second one. Only a world-line has a physical sense but not a parameter 
along it. Formally, it follows from the invariance of actions $1 and $2 
with respect to transformation that 

z -+z '  = Z(z) (2.4) 

where g(z) is an arbitrary monotone function of z. The transformation may 
be different for S~ and $2. 

To obtain two-time equations f rom the variational principle, the action 
S = S[4] is written in the form of an integral over a three-dimensional 
surface ~/(x)= C = c o n s t a n t  in space V~2, integrand containing only 
derivatives tangent to surface q = C. Equations obtained from the variation- 
al principle allow us to obtain a solution on the surface q = C. I f  initial data 
are given on two-dimensional surface tr (for instance, t~ = t2 = 0) then a 
solution can be calculated at any point x. To do this it is sumcient to choose 
the surface q = C in such a manner that surface r /=  C should pass through tr 
and x. I f  a solution does not depend on the choice of  q, then two-time 
equations exist and are compatible. The solution can be calculated by means 
of these equations if initial data are given on the two-dimensional surface. 

For realisation of  this idea let us suppose 

qA' = qA~(~Oa, ~02, ~Xl, ~12) ( i =  0,1;A = 1,2) (2.5) 

40' = 4o~(Z), 4o 2 = r (2.6) 

It  is easy to see that (2.5) and (2.6) are equivalent to (2.3). After substi- 
tution of (2.5) and (2.6) into (2.1), action S takes the form of an integral over 
the surface (2.6). The equation of the surface can be written in the form 

r/(4o ~, 402) = C = constant (2.7) 
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Then (2.1) takes the form 

f /[  0(qA',r/) O(qAk, r/) '~ ~, d4 
s~=s~[q2]=-m~cjd~~g,~o(4o l ,4o~)Jo tr / -c )  4 

(d 4 4 = d~o I d411 d~o 2 d ~  2) (2.8) 
Let us suppose now, that 

4~ a = ~,A(x) (i = 0,1 ;A = 1,2) (2.9) 

r/--- r/(4o 1, ~o 2) -- r/(x) (2.10) 

Let us introduce designations 

41 = "b', ~2 ~ r/, 43 = 411, 44 =412 (2.11) 

0(~1, 42, 43, ~:4) 0rl 0~ 
J--~ O(xl  x2  x3  x4 )  , ~]a ~ ~ x  a ' "rJa ~ OX a (2.12) 

(J  is Jacobian). c oo I oo Oo 
g Xb= -1  0 0 , 2 0 0 0 

0 0000 g['5= 00 O0 c 20 (2.13) 

OJ 02J  
jab t/b = ~ = ~ 0~/b t/b (2.14) 

Action (2.8) can be written in the form 

.4=1 ( 02J  

,~(r/- C)d4x (d4x = dxldx2dx3dx*) (2.15) 

Here p,  are Lagrangian multipliers, which introduce designation (2.14) 
into Lagrangian. 

Let us suppose that one system of ensemble corresponds to a unit range 
of  variables 411 and 412. It is easy to verify that j  "b defined by (2.14) is a den- 
sity of  state surfaces in the sense of (1.4). 

Due to the identity 
l_[oj oJ oJ 

OT, aOr/b - -  j \O. faOr/b ~ Z b ~ a  ] (2.16) 

and the arbitrariness of~/a in (2.14)j "b is a simple bivector. 
Varying (2.15) with respect t o y  ~ and 4c one gets: 

m A C A .ca 

where 
RA = %/(ja"r/bg~aejCar/a) (2.18) 
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a 
OS ~Xa{P rlb 03J (~c,,t O~c'~ 

OZaO~lb O~c,d) 6(tl -- C) = 0 ~ (2.19) 6~c ax  a] 

Variation with respect to Pa leads to the equation (2.14), which is to be 
fulfilled on surface ~/= C. 

According to (2.7) the surface ~/= C is chosen arbitrarily, therefore only 
solutions which are defined in the whole Vi2 or in the four-dimensional 
region of V12 and do not depend on choice of I/are of interest. Thus, one 
looks for solutions where Pa and jab do not depend on the choice ~/= C. 

From (2.17) it follows that 
2 A "cd mA CgacJ rla 

P .  = - .el A "hi (2.20) 
a=x  "V/(J tlfgehJ rh) 

According to (2.13) gA~jcatla is a projection of vector jC%/a into Va. 
The two components do not vanish: a = 1,2 for A = 1 and a = 3, 4 for A = 2. 
The vector g~cj~atla/Ra is a unit vector with two non-vanishing components. 
The condition of independence ofpa on 11 is written in the form 

jzc 11 c j4c 1I c 
j l a t l -  a = vl ,  j3atla - v2 (2.21) 

where vl and v2 do not depend on q and are treated as mean velocities for 
the first and second particle. 

Let us introduce the designation 

j13 = p (2.22) 

Then from (2.21) it follows due to arbitrariness of q 

j 2 3  = p v l ,  j14 = pv2 (2.23) 

j 2 4  = P/)I 132 (2.24) 

It is easy to see that (l.7) follows from (2.22), (2.23) and (2.24). Substitution 
of (2.22)-(2.24) into (2.20) leads to 

m a C 2 m A VA 
P(o) V(1 - va2/c2) ' P(~)  - %/(1 - vA2/c 2) (A = 1,2) (2.25) 

Here, another mode &designation is used. The index a = 1,2, 3, 4 is replaced 

the double index ( 5 )  (i = 0,1; A = 1,2) by 

1-+ (~),  2--+ ( I ) '  3-+ (~),  4-+ (~) (2.26) 

where A is the number of the particle and i is the tensor index in space Va. 
Due to the arbitrariness ofe ,  from (2.14) we have 

02J 
j . b  (2.27) 

Ov~ Otlb 
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After transformations, the equations (2.17) are reduced to the form 

OvA Ova 
+ = o 

Ova Ova 0 (2.28) + vA = 

Thej  ao obeys a conservation law 
Oaj "b = 0 (2.29) 

This is verified easily by substituting (2.27) into (2.29). The identity appears. 
Substituting (2.22)-(2.24) into equation (2.29), one obtains the following 

f o r b =  1 and b = 3: 

(q =ql~ =qll ;A = 1,2) 

(t 2 =q2~ =qzl;A = 1,2) 

(2.30) 

ap a(pv0 
0 

Otl Oql 
Op a(pv2) 

0 
Ot2 Oq2 

It is easy to verify that equation (2.29) for b = 2, 4 is a corollary of (2.28) 
and (2.29). 

Thus,j ab is determined by three independent quantities p, vl, v2, which obey 
six equations (2.28) and (2.30). The equations determine derivatives of 
p, Vl, vz with respect to t~ and t 2 if p, v~, v2 are given as a function ofq~, q2. 
The two-time system of equations is obtained. One can verify that all 
equations are compatible, and the compatibility conditions do not add any 
new restrictions. 

3. Quantum Ensemble 

In the foregoing section the equations for a simple ensemble were ob- 
tained from the variational principle. It is necessary to generalise the 
method for a non-simple ensemble where the condition (1.7) is not fulfilled. 

It will be done in this section. The expression for action of the statistical 
ensemble of the non-deterministic system will be obtained. It will be shown 
that the description of the non-deterministic system by means of this en- 
semble is equivalent to the quantum mechanical description of two inde- 
pendent particles. 

(1.7) follows from relation (2.27), identity (2.16) and relation (1.5). 
The equation (2.16) does not occur if in (2.15) and (2.16) J is replaced by 

s--1 ,. 
0(27, ~],~2i+1, ~21+2) 

J '  = ~ (s > 2) (3.1) a(xly-,x3,x') 
where ~ are variables. 

Besides (2.16), the relation (1.7) follows from (2.21) if it is valid for arbi- 
trary function ~/. To avoid this the arbitrariness of choice of the surface ~/= 
constant has to be restricted. Let us suppose that 

q = ~?(tl, t2) (3.2) 
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This is a non-relativistical condition, and it is no use considering relativistic 
action. Expand the Lagrangian (2.15) in a series over powers of  c-L A 
non-relativistic case is supposed to occur, i.e. inequalities are fulfilled 

! iJ,,l ~ iJ,3l, 11j231 ~ ij,~ ] 
C C 

1 
c~ I j2,1 ~ [j*~l (3.3) 

Giving to action a non-relativistic form, the relativistic content is con- 
served; namely, the two-time and tensor character of  the ensemble state 

jab.  

Let us consider now an ensemble of  non-deterministic systems. An action 
is chosen in the form 

S = S[j"b,p,, ~i] = Sol + Sq 

2j(~)~1 c 
2 0 

S.  = - ( d4x  g(rl - C) ~ hz [(OJG)"/Oqal)rl"]2o 
" a=z 2m~ j(A) 11 ~ 

(3.4) 

02J ~t a ~ d J  (3.5) 

(3.6) 

Here, both manners of  designation (2.26) are used. S o is an additional 
term, which takes into account non-determinism of motion of individual 
systems, i.e. the influence of deflection of individual system motion f rom 
mean motion upon mean motion. The more the gradient of  state density 
j,b is, the more the influence. In the non-relativistic case thereis only one large 
componen t j  13-- p. This is taken into account in (3.6). Planck's constant 
h is a factor of  proportionality and describes the influence of the chaotic 
motion upon the mean one. 

I shall call statistical ensemble (3.4)-(3.6) the quantum ensemble for two 
particles. The prime by J '  will be omitted. 

Let (1.5) be fulfilled, j,b and Pa do not depend on ~/. Then, using (2.22) 
one gets relations (2.23), and instead of (2.25) one gets relations 

~A = p(~,) = m a  vA (A = 1 ,2 )  

7.t A 2 ]~2 1 O2"~ / p 

eA = p(]) = -- 2m~a + 2m~ ~r Oqal Oqa~ (A = 1,2) (3.7) 

Variation with respect to Pa leads to relation (2.14). For  all cases except 
a = 2, b = 4 and a = 4, b = 2, (2.27) follows from (2.14) due to (3.2). The 
quant i tyj  z4 is absent in equations obtained as a result of  variation of (3.4) 
thereforej z4 can be chosen in such a way that equation (2.29) should always 
be fulfilled. 
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one can get f rom (2.19) 
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Variat ion with respect to ~c ( c =  3,4 . . . . .  2S) leads to equat ion (2.19), 
where c = 1, 2 . . . .  2s.~ Using (2.27) and identities 

0 2 J  - a O z J  ~ a 0 2 J  - b 

O'r a Orlb OZa Orlb o'C a otl~ 

(3.8) 

(3.9) 

(3.10) Rab 2 b = 0 

where 
0 2 J  

R,b = �89 O~c Oqd 

)Cab = 36a19 b __ ObPa ' 2a = -~a o,bca.,bc ~" qa (3.1 1) 

and e,b~e is ant isymmetr ical  over all indices unit  pseudo-tensor.  
Let  

[ 0 2 J  "13 ) 2  
detllR,bll = [ O z ~ j  _j14j23~ r 0 (3.12) 

Then  (3.10) has only trivial solution z b = 0, and therefore 

f~btl~ + f~.rlb + fb~tl. = e.bcaz a = 0. (3.13) 

Being equal to zero coefficients before q~ and q2, one gets 

f~b = O~Pb - Obp, = 0 (3.14) 

for  any combinat ions  of  a and b except a = 1, b = 3 and a = 3, b = 1. 
In  the case, when detlrR,bjI = 0, it follows f rom (3.10) 

f12 = 0, f 34  = 0 

f2a = --vzfz4, A4 = --viA4 (3.15) 

Consider  the general case (3.12). The general solution of  (3.14) has the 
fo rm 

= - - ,  eA = -~A + f a ( q '  t2) (A = 1,2) (3.16) rca Oqa 

where 
r = r x = {xl ,x2,xa,x4),  fA = f . ( t l ,  tz) 

are arbi t rary  functions o f  their arguments.  Substituting (3.16) into (3.7) one 
obtains 

90 1 { 0 4 9 ]  2 h 2 1 0 2 % / p  
OtA t- ~ \~qa] 2mA ~/p Oqa Oqa =fa( t l ,  t2) (3.17) 

The  condit ion o f  compatibi l i ty  of  two equations (3.17) has the fo rm 

= ~ftA [A = 1 , 2 ; f  = f ( q ,  t2)] (3.18) fA 

5 Equa t ion  (2.19) is the  identity for c = 1, 2 (v = ffl,q = ~2). 
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Hence t he f c a n  be included in the ~b and one can suppose in (3.17) without 
loss of generalityfx =f2  = 0. 

By means of  (3.16) and (3.7) the conservation laws (2.30) can be written 
in the form 

Op 0 { p 0~b~=0 (A =1 ,2 )  (3.19) 
Ot--A + ~q~qa ~ma Oqa] 

Equations (3.17), (3.19) describe the evolution of p and ~b in times 
tl and t2. The compatibility of these equations can be proved by a direct 
verification. In order that the conservation laws (2.23) are valid in the cases 
b = 2 and b = 4, it is necessary to suppose instead of (2.24) 

j 2 4  = pu  1 V2 _~ (~, 

h z [' 0 zp 10p Op) 
~b = 4m~ m2 ~-0~ ffq2 P Oq~ Oq2_ + ~ (3.20) 

where ~ does not depend on ql and qz. 
Let ~ = 0. Now the ensemble statej a~ is determined by two quantities p and 

~b. Neglecting quantum effects (h = 0), or in the case when p = P~(qa)P2(q2), 
the ensemble satisfies the condition (1.6), and it may be corresponded by a 
simple ensemble. 

Let us multiply (3.17) by ~/pexp(iqb/h) and (3.19) by ihexp(i(9/h)/(2a/p) 
and add them. As a result one has 

ih~7-~ + = 0 (A = 1,2) (3.21) 
2ma Oqx OqA ota 

where 

~J = ~/p exp(i(a/h) (3.22) 

Compatibility of two equations (3.21) is evident. Equation (3.21)is 
equivalent to the equations (3.17)-(3.19) and equations (3.17), (3.19) are 
compatible too. Ensemble evolution is completely described by equations. 

Let us take the non-relativistical point of view, i.e. renounce the two-time 
description. This means that only ensemble behaviour at like times tl = tz 
is of interest. Let the plane tl = tz of space V12 be called V3'. Let us realize 
a transformation of variables in (3.21) 

t ~ tl + t2 T =  ta - tz 
~ '  2 (3.23) 

As a result one has instead of (3.21) 

ih -~ 2m~ Oq~-~qt + 2mz Oqz Oqz] = 0 (3.24) 

ih -~ 2ml Oql Oql 2m20q~ Oqz] = 0 (3.25) 
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It is remarkable that equation (3.24) does not contain a derivative with 
respect to T, instead it contains Tas a parameter. This means that if function 
r is given at a certain t and T = 0 (i.e. t = t, = t2), then $ can be calculated 
by means of  (3.24) for any t and T = 0, equation (3.25) being not used. 

Thus in the space V3' the ensemble evolution is described by (3.24), 
which is Schr6dinger's equation for two particles. 

Let us represent now the state of ensemble in the space V3'. Let us intro- 
duce coordinates ya, a = - 1 ,  0, 1, 2 in the space V,2 and coordinates f f  
i = 0, 1, 2 in the space V3' 

y-1 = T, yO = t, yl  = q~, y2 = q2 

In the space V3' the system r-state is represented by a one-dimensional 
line, and therefore a number of r-states dN in a two-dimensional area 
d& = e- l  Vlga[e,k,d, yk d2fl is 

2 
a N =  E c-*~/[g3[~mJ'd, y k 4 Y ' = j ' d s ,  (3.26) 

i,k,l=O 

where ga is determinant of the metric tensor in the space Va', f is the state 
density in Va', e~t is a unit antisymmetrical over all indices pseudotensor 
in space Va', dly k, and d~ff are two infinitesimal vectors forming area ds~. 
On the other hand, according to (1.3) and (1.4) 

2 2 
d N =  (2c2) -~ ~/]g4] Z Z eabkzjabdlykd2y ~ (3.27) 

a,b---1 k,l=O 

Where g4 is determinant of the metric tensor in V~2. Comparison of 
(3.26) with (3.27) leads to the relation 

Vlg4/ga[c-aj -~ ,  (i = 0, 1, 2) (3.28) 

By means of  (2.22), (2.23) and (3.20) one calculates in the coordinate system 
ya, thatj~b has the form 

T t ql q2 

l Op p p v  1 p v  2 

2j~b = - 0 - f l y  I fly 2 
pv~ pvl 0 pv~ [72 ~- 

[--PV2 --P/P2 - -pv , / ) 2  - -  ~ 0 (3.29) 

Using (3.28) one gets f o r j  I 

jo  = V2 p, j l  = V2 pv l ,  .]2 = V2 pv2. (3.30) 

The conservation law f o r f  follows from (2.30) 

ap a(pvO  (pv2) = 0 a-t + Oq~ aq2 (3.31) 

If  P(q~,q2) is normed properly, then it can be treated as a probability 
density to detect the first particle at the point q~ and the second one at the 
point q2. J* and j  2 can be treated as spatial components of probability flux. 
f is expressed through r in the usual way. 
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4. Energy and Momentum of Ensemble 
In this section it will be shown that expressions for energy, momentum 

and angular momentum of  statistical ensemble coincide with expressions 
for these quantities defined according to the rules of  quantum mechanics. 

Energy, momentum and angular momentum can be attributed to any 
dynamical system, including quantum statistical ensemble. These quantities 
can be obtained in the canonical way from the variational principle. Let us 
present the equation of the integration surface t /=  C in the form 

x" = xa(a) (a = 1, 2, 3, 4; a = {al, ez, cq}) (4.1) 

Then expression (2.15) can be represented in the form of an integral over a 
region I2 of variables aa, a2, e3. Varying functions (4.1), the variation 6S 
of action (2.15) can be expressed in the form of integral over boundary 
of region f2, becuase coefficients before variations fix" vanish inside f2 due 
to equations of  motion. 

Let us designate the two-dimensional region of variables x" corresponding 
to region ~ of  variables ~1, ~2, e3 through o-. The variation 6S can be ex- 
pressed in the form of an integral over region o- of variables x" 

6s=�89 f T~Cfxbds,c (a,b,c= 1,2,3,4) (4.2) 
cr 

where ds, b is given by the expression (1.3). 
It is remarkable that in the case when condition (3.2) is fulfilled, Tg c 

does not depend on the manner of parametrisation (4.1) and the choice 
of surface q = C, if its boundary a is fixed. Tg c is energy-momentum tensor. 
T~ c is a tensor of  rank 3, not of 2 as is usually the case. It is connected with 
the fact that the action variation is expressed in the form of  an integral 
over a two-dimensional surface in a four-dimensional space. Tg c satisfies 
a conservation law 

0 
~ ~xaTg ~ = 0 (b = 1,2,3,4) 

A S  ~2  = ~4. = 0 and t/l, q3 are arbitrary 

0 
oxaT~,c=O for e =  1,3, b = 1,2,3,4 (4.3) 

The conservation law allows us to introduce a conservative vector in space 
V12 

P~=--~ f Tg* ds.c = f~f T~3 dql dq2 (4.4) 
or" ~o0 

where a' is chosen in the form tl = constant, t2 = constant. 
According to definition, Pb is an additive quantity. Besides, components 

P1 = P(%,., and P3 = P(o) are connected with q and t2 time translations re- 

spectively. For  this reason, according to statistical principle they can be 
identified with the mean energy of  the first and second particles respectively. 
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P2 = P(1) and P4 = P(2) are connected with spatial translations in the direc- 
%&J 

tions of axes ql and q2 and can be identified with the mean momentum of 
the first and second particles respectively. 

Thus the variational principle allows us to obtain not only energy and 
momentum but two energies and two momenta according to a number of 
particles in the system. 

The calculation gives for Tg c 

i f  02J ~ h 2 a, 0 T~c=---~Ipb~+a=I~--~A(--1)t-ApA.4~ (a-A) ~oc 

@ h2 [ p2v +P~ 0 
+ ? p 

+ ~  h 2 PA ;(~ I (c+-+a) (4.5) 
- -  - -  i d b j  A~--i 2map I 

where 
Op 02 p Op 

PA = 0q----A' Paa 0qA 0qA Po -- Ux b 

-(c+-,a) means that it is necessary to subtract the term obtained from the 
foregoing term by transposition indices c and a. 

For energy-momentum density in particular, one gets 

~2 . 1 02 p ]~2 02 p 

T~a =--Pbp +-~miOb Oq~l+ ~28030q20q2 (4.6) 

Let us introduce an operator 
0 tga =-ih~q~q a , A = 1,2 (4.7) 

and suppose that there is such an ensemble that the wave function (3.22) 
vanishes rapidly enough if ql, q2-+ oo and it can be normed by 

~ r  4 dql dq2 = 1 (4.8) 
--CO 

where 4"  is the complex conjugate of  4. 
Substituting (4.6) into (4.4) and using (3.22) (3.7), one gets for mean energy 

(Ea)  and mean momentum (Pa)  of the particle 

( E ~ ) = P ( o )  fi" ,fiAfia = 4 ~ 4 dql dq2 (A = 1,2) (4.9) 
--co 

(Pa )  = P(~) =--.f.f__ 4*pa4dqidq2 ( A =  1,2) (4.10) 
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Expressions (4.9), (4.10) coincide with the expressions for energy and 
momentum which are given by quantum mechanics. The mean value of any 
function F(ql,q2) is calculated by the formula 

(F> = ff F(ql,q2)O aq~dq2 (4.11) 
- - o o  

because ~,*~ is the probability density for the first particle at point q~ and 
the second one at point q2. 

Thus, formulae (4.9)-(4.11) allow us to calculate the mean value of the 
arbitrary function of spatial coordinates, and the mean energy and mean 
momentum of each particle (angular momentum is equal to zero in one- 
dimensional configuration space). 

Traditional quantum mechanics (Neumann, 1932) uses the following 
rule for calculation of the mean value of an arbitrary function of coordinates 
and momenta F(ql, q2,Pl,P2) 

co 

( r )  = f f ~ .  r(q~, q2, ill, fi2) ~/dql dqz (4.12) 

From my point of view the rule (4.12) is a formal extrapolation of relations 
(4.9)-(4.11). Correctness of this extrapolation can be verified in experiment 
for arbitrary function of coordinates and for conservative quantities-- 
energy, momentum, angular momentum--only. In this case formulae ob- 
tained from statistical principle coincide with traditional formulae of quan- 
tum mechanics (Rylov 1971). 

5. The Case of  Identical Particles 
['~('~0 0 

If  particles are identical and indistinguishable then j~lJ~2J(t~,ql, t2,q2 ) 
dq~ dq2 is to be treated as the probability of detecting one of the particles 
in the volume dq~ at the moment tl and another in the volume dq2 at the 
moment t2. Besides an ensemble statej ab has to be invariant with respect to 
transposition of arguments of the first and second particles, i.e. 

j taJ~2'(t~,q~; t2,q2) = J '~2J(tz, q2; tl,qO (5.1) 

Due to (2.22), (2.23), (3.7) and (3.16) it follows from (5.1) that 

p(q,q~; t2,q2) = p(t2,q2; t~,qO 

Oq--~ c~(q,q~; t2,q2) = c~(t2,q2; q,q~) (5.2) 

In the case t - q = t2 it follows from (5.2) that 

p(t, ql, q2) = P(t, q2, qO 
r = (~(t, q2,qO (5.3) 
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Due to (5.3) the wave function (3.22) satisfies the condition 

~,(t,q~, q2) = • q2,ql) (5.4) 

(5.4) has a double sign because (3.22) contains a radical. In quantum mech- 
anics the particle's identity is known to be taken into account by means of 
relation (5.4). The sign of the right-hand side depends on a spin of particle. 
At this stage spin of particle is not yet introduced, and the sign in (5.4) 
remains indefinite. 

6. Conclusions 

It was shown in the example of two free particles that the basic relations 
of quantum mechanics can be obtained by proceeding from the conception 
of classical non-deterministic particles. Non-relativistic quantum mechanics 
are obtained from statistics of world-lines. It is remarkable that, from this 
point of view, non-relativistic quantum mechanics is a relativistic theory, 
because the use of relativistic notion of state (r-state) is a matter of principle. 
From this point of view the quantum properties are the result of relativism 
and statistics. The relativism is displayed in quantum mechanics on the 
level of notions, where transition to non-relativistical approximation is 
impossible. 

I hope that non-relativistical quantum mechanics of interacting particles 
can be represented as a non-relativistical approximation of the relativistic 
statistics of world-lines. Then, non-relativistical quantum mechanics will be 
grounded in the same sense as thermodynamics was grounded by means of 
statistical theory. The region of applicability of quantum mechanics will 
be found as comprehensively as that for thermodynamics. On the other 
hand, using the explicit relation of the world-line statistics can bring about 
the creation of 'relativistical quantum mechanics' on the new base. 

References 

Janossy, L. (1969). Acta Physica Acaderniae Scientiarum Hungaricae, 27, 35. 
Kaliski, S. (1970). Proceedings o[ Vibration Problems, 11, (1). 
Neumann, J. V. (1932). Mathematische Grundlagen der Quantenmechanik, Berlin. 
Rylov, Yu. A. (1971). Annalen derPhysik, 27, 1. 


