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Quantum Mechanics a s  a Theory of Relativistic 
6RowNian Motion 

By Yu.A. RYLOV 

Abstract 
It is shown that  non-relativistic quantum mechanics can be treated as a kind of relati- 

vistic statistical theory which describes a random motion of a classical particle. The theory 
is relativistic in the sense that  for the description of the particle behaviour the relativistic 
notion of the state is used. This is very important because a statistics is a state calculus and 
the result depends on the definition of the notion of state. 

Attempts by different authors [1-1411) to treat quantum mechanics from 
the position of classical theory did not lead to full success2). Though it may seem 
paradoxical, the reason there of, in our opinion, lies in the fact that the attempts 
to  understand non-relativistic quantum mechanics were based on non-relati- 
vistic classical mechanics. 

In  this paper we shall show that quantum mechanics is a variety of the re- 
lativistic theory of BRowNian motion3). The difference of our approach from 
approaches of others lies in the fact that  we treat n o n - r e l a t i v i s t i c  quantum 
mechanics from the point of view of r e l a t i v i s t i c  c lass ica l  mechanics .  
New principles are not needed for understanding the quantum mechanics of a 
single particle in this approach. In  particular, such specific quantum mechanical 
principles as the uncertainty and the correspondence principle may be under- 
stood from the classical position. The clue to such an approach is the relativistic 
notion of system state. 

1. The notion of state 
In  non-relativistic physics the state of a physical system is defined4) as a set 

of quantities which are given a t  a certain moment of time and determine these 
quantities at  any subsequent moment of time. For this purpose equations of 
motion are used. They describe the time evolution of the system state. The 
state and the equations of motion describing the time evolution of the state are 
two essential elements of any non-relativistic physical theory. 

l) A more comprehensive bibliography in [15]. 
2, The paper [IS] is a n  exeption. The success here was reached, i t  seems, because what 

3, We call BRowNian motion any indeterministic motion of particles irrespective of 

4, Sometimes the state is defined as a set of independent variables. For our purpose 
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we call a relativistic notion of the state has been taken into account. 

the causes of its indeterminism. 

the independence is unessential. 
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As follows from the definition, the state of the system is given a t  a certain 
time moment. But in relativistic theory simultaneity is relative. Which events 
are synchronous and which are not depends on the choice of a frame of reference. 
If, for example, one knows a state of a physical system in a frame of reference K 
one could describe the state in a frame of reference K’ moving relative to  K only 
in the case when the equations of motion are known and can be solved. Thus, in 
the relativistic theory the state and the equations of motion are connected 
closely. Because there is no absolute simultaneity in the relativistic theory it 
seems more consistent to define the state of a system not for a given moment but 
over all space-time. In  this case the conception of state will include the law of 
evolution of the physical system. The equations of motion are treated now as 
constraints imposed on the possible states. 

From all possible states not all states are realized but only those which 
satisfy certain equations. We shall call them the constraint equations. In  re- 
ality they are the same equations of motion but now they do not describe the 
time evolution of the state but are restrictions which choose the physically 
allowable states from the virtual ones. 

In  short, in the non-relativistic theory the unique division of the physical 
phenomena description into states and equations of motion corresponds to  the 
unique division of space-time into space and time. In  the relativistic theory 
where the division of space-time into space and time is conventional and not 
unique the division of the physical phenomena description into states and equa- 
tions of motion is not unique either. The physical system state defined over all 
space-time corresponds much better to  the indivisible space-time. 

The manner of division of the description of a physical system into states 
and equations of motion is unimportant for the dynamics but is important for 
the statistics because statistics is the calculus of states. It is important for sta- 
tistics what is understood by “state ”. In  general, a statistics that corresponds 
to a different division of the description of a physical system into states and 
equations of motion leads to different results. 

Let us describe the state of a single particle by giving its world-line over all 
the space time, i.e. by giving four functions 9% = q 2 ( t ) ,  i = 0,1,2,3, where z 
is some parameter along the world-line. We need not give the momenta, pro- 
vided the mass m of the particle and its state are known. If the world-line is 
known the momenta are determined by the relations 

where c is light speed, q , k  the metric tensor 

; l c 2  0 0 O /  

1,o 0 0 - 1  1 
In  equation (1.1) and henceforth the latin subscripts take the values 0,1,2,3 

and greek ones take 1 ,2 ,3 .  As usual summation is made on like super- and sub- 
scripts. 
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2. The quantum ensemble 
Let us suppose that the state of a particle, i.e. its world-line, is a random 

quantity. Let us take for the sake of simplicity that the world-line cannot turn 
back in the time direction, i.e. that dqo/dt always keeps its sign. To describe the 
random states let us introduce the notion of state density. We consider a t  a 
point q a  of space-time an infinitesimal area dX,. It is evident that  the number 
dN of world-lines which cross the area dS, is proportional to the value of the 
area, that is 

dN = jkddSk 
where j k  is a factor. The vector j k  is proportional to  the density of the world- 
lines in the vicinity of the point q. According to definition j k  is the state density 
vector. This is connected with the fact that the object of statistics are one-di- 
mensional lines and not points as in non-relativistic statistics. According to  
the definition of jk the time component jo represents the mean density of particles 
and the space components j’ represent the mean density of the particle flux. 

Thus the difference of principle between the non-relativistic and relativistic 
statistics consists in the fact that, for the former the state density is a scalar 
while for the later it may be, for example, a vector. Because the state density 
is a vector we shall be able to represent quantum mechanics as a theory of the 
relativistic &owxian motion. Later on we shall consider only the non-relati- 
vistic case, adopting from relativity only the relativistic notion of state density. 

Let us consider now a statistical ensemble of world-lines. Suppose the case 
is non-relativistic, i.e. the world-lines derivate but little from some constant 
direction in space-time. We choose this direction as the time axis, then 

cjo  9 l j ” / .  (2.1) 
The ensemble state is described by the state density. This means that the statre 
of the ensemble is considered as the state of some deterministic physical 
system. The state of the system is determined by the vector j k .  The statistical 
ensemble is a deterministic system with the help of which one can describe non- 
deterministic ones. In  the non-relativistic case the state density W is a function 
defined in the phase space. W is the ensemble state in the sense that beeing 
given a t  a moment of the time i t  can be uniquely determined for any following 
moment. There is another aspect. W is a non-negative quantity and witha 
suitable normalization WdQ can be interpreted as the probability to find the 
particle in the volume element dQ of the phase space. Together with the fact 
that W is a state this fact gives us a chance to speak about the random 
MARxovian process. In  general, the two aspects of a statistical ensemble are 
independent, i. e. the state of the ensemble, being a state density, can not be a 
probability density. 

I n  the relativistic case it is important that the statistical ensemble described 
by the vector j k  is a deterministic physical system. The fact that jkdS, can be 
interpreted as a probability to find a particle in the 3-volume dS, is valid only 
when the world-lines of particles do not zigzag in time. For relativistic particles 
when the generation of paires is possible such an interpretation is not suitable. 

We shall obtain the equations for the vector j k .  I n  the simplest case the en- 
semble consists of strait world-lines which do not cross each other. It describes 
the motion of a gas of zero temperature. I n  such a gas the velocity of a single 
1* 
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molecule coincides with the mean velocity of the gas stream. The chaotic mo- 
tion of the molecules and their diffusion are absent and there is no pressure 
a t  all. I n  this case the equations have the form 

When the diffusion of world-lines is taken into account an additional term com- 
prising the gradient of the particle density appears in the second equation. 

I n  order to find the form of this term let us consider an example of the one- 
dimensional ensemble of world-lines. We shall describe it as one-dimensional 
continuous medium with the help of the action 

Here t is a LAGRANGian variable describing the position of an element of the 
medium. The first term describes the kinetic energy and the second one des- 
cribes an interaction of the elements of the medium (the potential energy) which 
is connected with the fact that the motion of a single particle differs from a 
mean motion. If  U = U ( e )  then the equation (2.3) describes some hydrodyna- 
mics where the pressure is I, = -e2dU/de and Q = 1-1 = at/aq is the medium 
density. To describe diffusion it is necessary to  suppose that U depends on the 
gradient of density Q because diffusion is connected with the density gradient. 

Let us suppose for simplicity 

where k is the constant diffusion factor. The fact that dependence on @/at  
(not on ae/aq) is taken is explained by the demand that U be invariant with 
respect to the transformation 

This invariance of U with respect to (2.5) means that the equations are indepen- 
dent of the number of particles in the ensemble. Variating q we get from (2.3) 

5 --f 5’ = A t ,  A = const. ( 2 . 5 )  

Transforming the LAGRANian variables ( t , t )  to the EuLERian variables ( t ,  a) 
and using the notations 

we get after some calculations 

The continuity equation 

(2.9) 

was used. I n  the LAaRmaian coordinates this equation is an identity. 
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The equation (2.8) can be extended to  the three dimensional case. Let 
rE = A2/(4m,) and suppose that in the non-relativistic approximation (2.1) only 
the ensemble states jk satisfying the equations 

are possible, where 

(2.10) 

(2.1:l) 

(2.12) 

A is the PLANCK'S constant, m, - the mass of the particle of the ensemble. The 
statistical ensemble the state of which is described by the vector jk satisfying 
equations (2.11) we shall call quantum ensemble. 

From the non-relativistic point of view the four equations (2.10), (2.11) are 
the equations of motion of the ensemble and enable us, if a state jk is given a t  a 
certain moment of time, to determine the state a t  any following moment. 

Let us introduce the notation 
va = j"/@, (2.13) 

where v" = v"(q) is a mean velocity of the ensemble particles a t  point q, and let 
us suppose that the velocity has a potential 

It can be shown [3, 121 that under restrictions (2.14) the equations (2.10)-(2.11) 
are equivalent to SCHRODTNQER'S equation 

ay, f i 2  

at 2m 
i~ - + - a,a,y = o ( 2.1 !j) 

where y is the quantity 

y = I/eexp (ipllfi). (2.16) 
According to our definition of the ensemble of world-lines the quantity jkddSrk 
represents the mean number of world-lines crossing dSk. 

I n  the non-relativistic case (2.1) this quantity reduces to edS, = pdV and, 
under the normalization condition 

(2.1'7) 

can be interpreted as probability to  find the particle in the volume dV. If the 
normalization condition (2.17) is satisfied a t  some moment of time then, due 
to  (2.10), it will be satisfied a t  any time moment. 

Hence, the relativistic notion of state (the vector character of the state 
density) permits to present SCHR~DINQER'S equation as the equation of motion 
of a statistical ensemble. 
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3. The variational principle for a quantum ensemble 

a variational principle if the action is chosen as 
The equations (2.10)-(2.11) for a quantum ensemble can be derived from 

s = J ~ a 4 ~ ,  aaq aqo dql aq2 aq3, (3.1) 

Here, vector j k  = {jo) j"}, e = jo is the state density of the ensemble where 
jk are known functions of variables ti = Ei(q); rn, is the mass of the ensemble 
particles ; p is introduced as LAGmNGian multiplier and it means the energy 
per particle. The independent variables are coordinates qi in space-time. The 
variables 5 = (4, El, t2, E 3 ) ,  e, p are to  be varied. If the quantum emsenble 
is considered as some liquid, t19 t2, t3 are LAGRANGian coordinates of the liquid 
elements, i.e. the set of tl, t2, t3 is "a label" of the liquid element. to is a LAGRANG- 
ian time coordinate. But it is fictitious and L is independent on to. The variables 
enter into L through the state density jk; and 

where 

LAGRANGian coordinates E ,  describe not the motion of single particles of 
the ensemble but the m e a n  motion of the ensemble particles. The first term 
in the LAGRANGian (3.2) is a density of the ensemble kinetic energy m,~v"v"/2. 
The second term is a density of the internal (potential) energy of the ensemble. 
This energy is connected with the chaotic motion of ensemble particles. Appar- 
ently this isn't the total energy of the chaotic motion but only the part that 
influences the ensemble motion. The second term is proportional to  the square 
of the density gradient aplaq". It is clear because the influence of the chaotic 
motion on the ordered one manifests itself in diffusion that appears in the pre- 
sence of density gradient. This fact is well-known from BRowNian motion 
theory. The last term is a means of introducing the notation 

@ = jo  (3.5) 
by means of LAcRANcian multiplier [17]. After the notation (3.5) is introduced 
the LAGRaNGian (3.2) has only the variables to be varied ti, p, p and their first 
derivatives. It can be shown that the equation of motion derived from (3.1) by 
varying p, e, t, after exlusion of p and use of the notations (3.3), coincide with 
(2.11). I n  this case the continuity equation (2.10) in terms of p, e, ti is an in- 
dentity. 

The existence of the LAGRANCian allows to  introduce by the canonical 
method [18] the energy E,  the momentum Po and the angular momentum Me@ 
of the quantum ensemble 
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where T,O, Tlj and MO,>p are an energy density, a momentum density and :t 
density of the angular momentum, respectively. These quantities for the 
LAcRANcian (3.2) are determined by the formulae 

T j  = -m.jB = m j p ,  j p  = gpt jk  (3.8) 
Jf03*B yBTao - q"TN = fn,(qBj" - q"j8). (3.9) 

Let condition (2.17) be fulfilled. Then, according to  the conception of a 
statistical ensemble, E ,  P, and M"8 from (3.6) represent the mean energy, the 
mean momentum and the mean angular momentum of a quantum particle, 
respectively. 

4. Statistical parameters of a quantum particle. 
Correspondence principle. Indeterminacy principle 

Let us denote the mean over the ensemble by angular brackets () and 
introduce the operator 

gm = - i t iajap, p = itiajaqa (4.1) 
We shall consider the potential condition (2.14) and the normalization condition 
(2.17) to be fulfiled. Due to (3.6)-(3.9) we have for mean energy, mean mo- 
mentum, mean angular momentum, and arbitrary function p($) of the space 
coordinates 3 : 

(Pp) = $navppdV = sy+&y d V ,  
Vo vo 

(4.2:) 

(4.3) 

(4.4:) 

(4.5) 

Here V,, is the ordinary space, and y+ is the complex conjugate of y. A quantum1 
statistical ensemble does not involve any information about particle distribitioni 
over the momentum which is defined by (1.1). Only the mean momentum it; 
known. 

<pa> = -(mv,> = J y+ p,ydV.  (4.6) 
vo 

A mean square value of the momentum may be defined by relation 

(4.7) 

Such an assumption is natural because the particle is effected by no syste- 
matic external forces but only by a stochastic interaction with the mediumi 
(ether). We get from (4.2) and (4.7) 

(4.8) <Pap%) = J y+iL+*y dV 
VO 
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From (4.8) and (4.2) - (4.6) we can conclude that to determine a mean value 
of a certain function F(q", pp) of coordinates q" and momenta p p  we need to 
build up an operator 

2 = mx, l i p )  
and calculate the value 

( F )  = 1 tp f j vd  V .  
vo 

(4.9) 

(4.10) 

The established rule holds for the values enumerated above : momentum, 
energy, angular momentum, and an arbitrary function of coordinates, i.e. for 
P(q", p s )  involving pp in a power not above two, 

Extrapolating this rule to  arbitrary functions we obtain the so-called cor- 
respondence principle. Meanwhile the validity of such kind of extrapolation is 
not obvious. Essentially, such extrapolation is based on formal but not physical 
reasons. I n  addition, consistently using the correspondence principle [5] one con- 
cludes that the distribution function over the coordinates and momenta si- 
multaneously does not exist but the distribution function exists either over the 
coordinates or over the momenta. It results that we cannot speak about the 
world-lines of the particles. This contradicts our main assumption that quantum 
mechanics is a statistical ensemble of relativistic BRowNian particles. 

From our point of view the fact the quantum ensemble does not involve 
complete information about the momentum distribution does not mean absence 
of such distribution. Hence from our concept if follows that the applicability 
of the correspondence principle is limited. 

The superposition principle and the linearity of the quantum mechanical 
equations are a matter of principle in the usual interpretation of quantum me- 
chanics ([19], cpt I, $ 4 ) .  

If we consider quantum mechanics as a relativistic statistical ensemble the 
linearity of SCHR~DINGER'S equation, which is derived from (2.11) as a result of 
the restriction (2.14) and substitution of the variables (2.16), is something acci- 
dental and unimportant. The method of calculating mean values and the mean- 
ing of all the quantities are determined by the conception of a statistical en- 
semble and do not depend on the linearity of the equations derived from equa- 
tions (2.11). 

Hence, from our point of view the superposition principle is not an essential 
feature of quantum theory. It is possible that it is not valid in the relativistic 
case and is valid only in the non-relativistic approximation [ 201. 

We consider now the indeterminacy principle. For a coordinate q1 and the 
momentum p , ,  i t  can be written in the form 

(4.11) 

(4.12) 

It is similarly written for the other components q", p,. Formally (4.11) is a 
mathematical consequense of the definition of the operator 17, (4.1) and the rule 
of calculating mean values (4.10). The similarity between the momentum ope- 
rator I j x  and the momentum pi defined by equation (1.1) is in that that both 
have the same mean values (p,) and (jP) = (psp,>. Besides, let us assume 
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that they have the same mean values (papg) for a,  j3 = 1, 2, 3. Then the un- 
certainty principle (4.11) will related to  the momenta of the particles constitut- 
ing the quantum ensemble. The latter assumption is arbitrary and does not 
follow directly from our conception of a quantum statistical ensemble. 

The relation (4.11) is valid both for the usual interpretation of quantum 
mechanics ([21] cpt 3, 8 4) and for our conception, while the origin of the uncer- 
tainty principle is different in these two cases. It is impossible for the particle 
to have both definite coordinate and momentum in the case of the usual inter- 
pretation. This has often been connected with the effect of a measuring device. 
For example, if the coordinate is measured exactly, the momentum is said 
to  be perturbed in an inpredictable manner. 

I n  our concept the uncertainty principle (4.11) exists without reference to 
the measurement procedure. It results from the fact that the energy of the 
quantum ensemble becomes large if it is localized in a small volume ( ~ l q ) ~ .  Ao- 
tually, according to  (4.2), (4.6) and (4.7) we have 

(4.113) 

As e differs from zero only in the volume ( ~ l q ) ~  then leal w e /Aq  and ( A P ) ~  w 
P f A a k - 2 / 4 .  

\ I, I 

Thus, from our view point the uncertainty principle results from the fact 
that any quantum emsemble even a t  rest has an energy. This energy is condition- 
ed by the random motion of quantum particles and is the greater the more 
precisely the ensemble is localized. 

Finally, the property of a measuring instrument to disturb a studied object 
so that it becomes impossible to  measure both the coordinate and the momentum 
simultaneously, is from our point of view conditioned by properties of the 
quantum emsenble. The latters are conditioned by stochastic intereaction with 
the ether and therefore they are universal, i.e., true for ensemble of any particles. 

5. Non-relativistic quantum ensemble in the electromagnetic field. Ensemble 
stationary state 

Let us consider now the quantum ensemble of particles moving in a given 
electromagnetic field. To take into account the interaction between the particles 
of the quantum ensemble and the electromagnetic field we shall add to  the 

( 5 . 3 )  

Here Ai is the 4-potential of the electromagnetic field, e is the charge of the par- 
ticles which form the ensemble. 

Variation of (5.1) with respect t op ,  e,  Cj leads, instead of the equations (2.11), 
to the equations 

LAGRANGian (3.2) the term 

L e y  = t e n ,  + + i"& 
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which differ from the equations (2.11) multipled by m by the term ec-IjkFkg 
representing the LORENTZ force acting on the 4-current ejk. 

To obtain a complete set of equations, the equations (3.5) and (2.10) must be 
added to  (5.2). 

We shall assume the potential condition to be fulfilled, which, with 4-PO- 
tential Ai different from zero, takes the form 

(5.3) 

then it is possible to  show [13] that equat,ions (5.2), (3.5), (2.10), (5.3) are equi- 
valent to SCHR~DINGER’S equation for a spinless particle in the electromagetic 
field 

: C 
i t i-+-Aoy- aY e --itia,--A, -tia,--+=o (5.4) 

at c 

where y is defined by the relation (2.16). 
Let us consider now the problem of stationary ensemble states in a stationary 

electromagnetic field. It may be easily shown that the 4-potential can always be 
chosen as stationary for a stationary electromagnetic field. For the stationary 
ensemble state, i.e. the state that satisfies equation 

ajk -- 
at - O7 

(5.5) 

equations (5.2), (2.10), (3.5), (5.3) lead to the equation 

(5.6) 
- ( - ~ t i ~ , - ~ ~ ~ ) ( - ~ t i a a - ~ ~ , ) ~  1 - : A o y =  E y  
2m 

where E is a real constant and y is a complex function (2.16). It is required that 
function y decreases rather fast a t  infinity in order to  satisfy the condition 

J y + y d v = J @ d v =  1. (5.7) 
V .  VO 

This requirement results from the fact that edV is the probability of particle 
detection in the volume d V .  Hence, the consideration of stationary ensemble 
states has led us to  the eigenvalue problem. 

6. Conclusions 

We have shown that non-relativistic quantum mechanics (at least for a 
single particle) may be considered from the view-point of the relativistic classical 
mechanics as some theory of relativistic BRowNian motion. The expression 
“BRowNian motion” denotes only that the particle motion is accidental and un- 
predictable. The particle has a random world-line but the motion of the par- 
ticle ensemble is deterministic. The stochastic feature of the particle motion 
may be considered as a result of its interaction with the medium (ether). It is 
important that even non-relativistic quantum mechanics is in principle a rela- 
tivistic theory and may be understood only from the relativistic position. From 
our view-point quantum mechanics is not more than relativistic statistics. We 
get the quantum mechanical principles ; the linear superposition principle, the 
indeterminacy principle, the correspondence principle (the last in limited form) 
from the principles of relativistic mechanics and statistics. PLANCK’S constant R 
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is a measure of an interaction between particle and ether. Due to the fact that 
non-relativistic quantum mechanics is a relativistic theory the problem of con- 
structing a relativistic quantum theory may prove to be more simple than is 
generally believed. 
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