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Numerical simulation of the thermal gravity-driven convection near the thermodynamic critical point in a square
cavity with side heating is performed. Governing equations of the non-perfect gas (Navier-Stokes equations with
equation of energy) in approximation to low-speed flows with van der Waals equation of state are used. The “real”
dimensionless parameters based on the near critical properties are introduced. Near critical fluid and perfect gas with
“real” parameters are compared under unsteady and steady conditions. It was obtained that unsteady dynamics of two
media is different but in steady flows there is some analogy.

Thermal gravity-driven and vibrational convection of the near critical fluid in microgravity is simulated. It was
shown that vibrations with sufficiently small values of frequency and amplitude may induce the average convective
motion. Numerical results are compared with results of experiments on MIR station. These results allow to qualitatively
interpret experimental optical pictures, obtained in near-critical fluid after heat pulse input.

Near-critical properties

Near-critical fluid is characterized by the temperature and pressure which are close to these values in the
thermodynamical critical point. Under these conditions fluid displays specific static and dynamical properties. Static critical
properties (asymptotic discrepancy of the constant-pressure heat capacity, coefficients of isothermal compressibility and heat
expansion) relate with equation of state in which first and second derivatives ρ∂∂ /p  and 22 / ρ∂∂ p  in the critical point
must be zero ( p  - pressure, ρ  - density). Dynamical critical properties include the anomalistic behavior of the transport
coefficients, for example, large increasing of the thermal conductivity [1]. These peculiar properties lead to certain different
features in heat and mass transfer in compared with perfect gas. It is known that in enclosures temperature may propagates
very fast as a result of the piston-effect [2] obtained numerically in 1D- [3], [4] and 2D-simulation [5].

Thermal gravity-driven convection is characterised by Rayleigh number rRa  and Prandtl number rPr . If external
mass force is varied quickly or cavity with fluid oscillates the vibrational convection is induced; it is described by
vibrational Rayleigh number rRv . Undimensional criteria above include the real parameters of the near-critical fluid
and signed by subscript “r”. For the fluid with density 'ρ  and viscosity 'η  in the cavity with size 'l  and temperature
difference 'Θ  they are defined as
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Fluid is affected by static mass force 'g  and oscillations with frequency 'ω  and amplitude 'A ; primes represent

dimensional values. Coefficient of heat expansion 'β  and constant-pressure heat capacity pc '  increase in near-critical

region and defined by equation of state

( ) ''/''/1' pT∂∂−= ρρβ    ( ) ( ) ''/'''/''/''' 22
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In this investigation equation of state in form Van der Waals equation is taken into account but it may be different [6].
For this form the «real» parameters become the follows (we consider critical isochor)
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The last relations include Rayleigh, Prandtl numbers Ra , Pr , vibrational Rayleigh number Rv  and the ratio of
specific heats γ  which don’t depend on the vicinity to the critical point and defined by characteristics far from this
point (characteristics of the perfect gas)
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The subscript “0” denotes values in perfect gas; gRB '/'' µ=  is the constant of perfect gas 'R  per molecular weight

g'µ . Near-critical features are associated with parameter ( ) cc TTT '/''−=ε  - the temperature distance from the

critical point and with the coefficient of thermal conductivity which depends on ε  and described as ψελ −Λ+= 1 .
Consequently the only temperature parameter ε  is responsible for the near-critical properties indicated in “real”
undimensional criteria. In near-critical region where 0→ε  these criteria strongly increase and asymptotically diverge:

∞→−2~ ψεrRa ,  ∞→−1~Pr ψεr ,  ∞→−3~ ψεrRv  ( 1<ψ ).
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Fig.1. Experimental and calculated “real” Rayleigh number rRa  and vibrational Rayleigh number rRv

as a functions of the temperature distance from the critical point cTT ''−

Fig. 1 represents the “real” Rayleigh number rRa  and vibrational Rayleigh number rRv  calculated with help of

relations (3). These criteria are compared with values rRa  and rRv  defined on the experimental (variable with

temperature) characteristics of the real fluids ( 2CO  and 6SF ) [7]. The results show a good agreement between criteria
calculated on the basis of Van der Waals equation of state and they experimental analogies and prove the validation of
applied mathematical model. On the other hand, fig. 1 demonstrates the strong dependence of the near critical processes
on gravity because real criteria may increase on some orders and become in microgravity conditions the same as on the
Earth for perfect gases.

Governing equations of the non-perfect gas

Navier-Stokes equations and equation of energy for non-perfect gas with arbitrary two-parametrical equation of
state are applied. The approximation to low-speed flows is used therefore total pressure p  is decomposed into two

parts: equilibrium thermodynamical pressure ep  and dynamical pressure 1p ; 12/1 pMpp e γ+=  ( M  - Mach
number). To close the set of equations the integral mass balance is involved.
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Stratification is described in linear approximation («e» - in equilibrium, «*» - on boundary):
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Reynolds number '/'''Re 0ηρ lUc= , temperature difference cT '/'Θ=Θ  and parameter of hydrostatic

compressibility ( )''/'' cg TBlg=ε  arise in governing dimensionless equations (5)-(6) in addition to mentioned above

parameters. To simulate heat and mass transfer in the frame of the model (5)-(6) equation of state should be defined. We
use Van der Waals equation of state ( ) 21/ ρρρ abTpe −−=  ( a  and b  are constants) to describe near-critical fluid

and equation of state Tpe ρ=  for perfect gas. This choice allows us to define derivatives ( )ρ∂∂ Tpe /  in equation of

energy (5) and ( ) **/* Tp∂ρ∂  in equation of density stratification (6).

Governing equations are solved numerically by novel program complex using finite difference implicit methods
(SIMPLE-type method and others).

Thermal gravity-driven convection without vibrations

Thermal gravity-driven convection in square cavity with size cml 1' =  subjected to side heating without

vibrations is considered. Initially fluid is isothermal (with KTT c 1'' =− ) and at rest. Then temperature on the left side

increases during 1 s to K,10  and after this remains the same. Right boundary is isothermal, horizontal boundaries are
adiabatic. Due to heat pulse input heat and mass transfer is developed in fluid. In the initial period this process is
unsteady but in time it become steady. Near-critical unsteady problem in square cavity with side heating is realised
previously for the case of one isothermal and other adiabatic boundaries [5]. In contrast with this situation when motion
decays in time the maintaining of two opposite walls at different fixed temperatures leads to steady convection.
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Fig.2. Temperature differences T∆  in the central horizontal section at times 't =2,75 (1), 10 (2), 69 (3), 137 s (4)
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Numerical simulation was performed using undimentional criteria 41085,3Re ⋅= , 4103,3 −⋅=Θ , 4,1=γ ,
91086,2 −⋅=gε , 028,0=Λ , 74,0=ψ  based on the scales scmU /5,28' = , st 0351,0' =  and critical values.

Two media were considered: near-critical fluid with 3103,3 −⋅=ε , 310=Ra , 1Pr =  and perfect gas with essentially
larger parameters which are equal to “real” parameters of the near-critical fluid calculated in (3) that is perfect gas with

61006,6 ⋅=Ra , 30Pr = .
During a short time near-critical fluid inside the cavity is heated rapidly due to piston effect. Because the vertical

boundaries are supported at constant temperatures (after heating pulse) thermal boundary layers are formed – see fig. 2
(left picture). As a result upstream rises near the left warm surface and downstream moves near the cool right surface.
This two-stream convective structure is shown in fig. 3 (left). Perfect gas is heated very slowly by means of diffusion
and its temperature in the bulk doesn’t increase sufficiently in compare with near-critical fluid (fig. 2). Gas inside the
cavity remains cool for a long time, thermal boundary layer is formed only near heated side that leads to forming a
single stream; fig. 3 (right) demonstrates this process.
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Fig.4. Steady convection: isotherms (left), isolines of the stream function (centre) for near-critical fluid
and perfect gas and distributions of different characteristics in the central vertical section (right)

for near-critical fluid (solid lines) and for perfect gas (dashed lines)

On the long time defined by characteristic time of heat diffusion convection in cavity become steady. Heat and
dynamic fields of two media are similar (fig. 4, left, centre), but fields of density contrast with each other because of
hypercompressibility in the near-critical fluid (fig. 4, right).

Thermal gravity-driven and vibrational convection

Thermal gravity-driven and vibrational convection of the near-critical fluid in microgravity is simulated. Left
boundary of the cavity with initially isothermal fluid (its temperature is over the critical temperature on K,50 ) is heated

during 1 s to K,10  then heating is stopped. Other boundaries are thermally isolated. As against problem above in this
consideration cavity may oscillates along vertical axis that is given by the variable mass force in governing equations:

)cos,0( 0 tAgg ω⋅+=
!

. Oscillations have amplitude 1 mm and frequency 5 Hz and described by undimensional

parameters 1,0=A , 1,1=ω . Uniform part of mass force scaled by on-ground acceleration has value 40 103 −⋅=g
and produces Rayleigh number 21005,4 ⋅=Ra . Thermal conductivity is specified by constants 75,0=Λ , 5,0=ψ .

To obtain characteristics of average motion the variables were calculated with help of full equations (5)-(6) then
they were averaged over period of oscillations. Average large-scale convective motion is described by vibrational
Rayleigh number 2,2=Rv  defined in (4). This value includes the physical parameters of perfect gas and as Ra
doesn’t characterise near-critical convection. Convection in this medium is characterised by the “real” criteria

61046,1 ⋅=rRa  and 61024,3 ⋅=rRv  calculated in (3) which are larger on the orders. They are the criteria which are
responsible for the thermal gravity-driven and average vibrational convection in the near-critical fluid.
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Fig.5. Isotherms (upper) and velocity fields (bottom) at time 't =60 s under the influence
of vibrational mass force (a), uniform mass force (b) and they superposition (c)

Fig. 5 shows the results of simulation of near-critical convection in three cases: mass force is only oscillation
( 00 =g ), uniform ( 0=A ) and coupling. It may be seen that vibrational force induces symmetrical convective flow
with two oppositely rotated vortices, action of uniform force leads to forming a single vortex from the upstream and
more complicated asymmetrical structures are generated under superposition of two types of forces. Notice that as
parameters of fluid approach to critical parameters, the vibrational convection becomes more intensive in comparison
with thermal gravity-driven convection. It is clear because ∞→−1~/ εrr RaRv  when 0→ε  (see equations (3)).
This problem is discussed in more detail in [8].

         
Fig.6. Schemes of convection for the optical pictures obtained in a near-critical fluids

at KTT c 121,0'' =−  after heat input; 't =19 s (left), 65 s (right).

Numerical results and analysis of the “real” criteria make it possible to qualitatively interpret the optical pictures
obtained in a near-critical fluids onboard of the MIR station in experiments with Alice-1 instrument [7], [9]; schemes of
convection are shown in fig. 6 [7]. Real microgravity in the MIR station has high-frequency component with amplitude

eg36 1010 −− ÷  ( eg  is the gravitational acceleration on the Earth) and frequency 141,0 ÷  Hz [7]. These values agree

with vibrational Rayleigh number not over 3102 −⋅=Rv  which is too small. But fluid has parameters very close to
critical (temperature distance KTT c 121,0'' =−  and 4103 −⋅≈ε ) because it characterised by “real” number with

large value up to 5106 ⋅=rRv . Thanks to this large value high-frequency component of real microgravity may induce
the vibrational type of convection in near-critical fluids. Quasi-steady component of microgravity may disturb flow
forming more complete asymmetrical structures.



Conclusions

Heat and mass transfer in near-critical fluid was considered. Numerical simulation of the near-critical
thermohydrodynamics was performed on the basis of Navier-Stokes equations for the real gas with arbitrary two-
parametrical equation of state in approximation to low-speed flows. Near-critical fluid was described with help of van
der Waals equation of state. To interpret heat transport and convective motion in such media and to compare they with
perfect gas the “real” undimensional criteria based on the near-critical properties were introduced. It was shown that
“real” calculated criteria are in a good agreement with they experimental analogies that proves the validation of this
mathematical model.

Thermal gravity-driven convection in a square cavity with side heating in near-critical fluid and in perfect gas was
simulated. Undimensional criteria in governing equations for two media were different but criteria of perfect gas were
found as equal to “real” criteria of near-critical fluid. Results demonstrated that initial unsteady heat and mass transfer in
two cases has qualitative distinctions and essentially defined by the piston effect in near-critical fluid. In steady
convection heat and dynamic field are similar, but fields of density contrast with each other owing to
hypercompressibility near critical point.

Thermal vibrational convection, gravity-driven convection and superposition of these two types of motion were
simulated. Comparison with experimental optical pictures from MIR station explained possibility of vibrational average
motion in near-critical fluids. It is possible because as obtained “real” vibrational Rayleigh number may be very large
even for microaccelerations.
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