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I. Trigonometric, exponential, and 
hyperbolic functions 

 
1.1. Basic properties of trigonometric functions 
 
 
Definitions 1.1.1. for sine and cosine functions: 
(1) These are functions defined by the following series:  
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(2) These are the solutions of the following differential 
equation: 
 

 

2

2 1 ( ) 0d f x
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⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
Theorem 1.1.1  

Power series in the right-hand side of (1) converge 
everywhere in ( , )−∞ ∞ , and both sine and cosine are 
(real) analytic functions 



 
 
 
Definition 1.1.2 

A function is analytic (in a particular vicinity), if it can 
be expanded into a power series, convergent in that 
vicinity. 

 
 
Remark 1.1.1  

From definitions (1) and (2) it can be difficult to 
deduce that both sine and cosine functions are periodic 
ones. 
 
 

Remark 1.1.2.  
Taylor’s series in the right-hand sides of expressions 
(1) demonstrate that the round off error at numerical 
computations increases with the increase of x . 



1.2. Introduction of a complex variable 
 
Definition 1.2.1.  

A complex variable z is a variable that can be 
represented by  
 
z x iy= +  
 
where 1i = − ; x  is a real part, and y  is an imaginary 
part, 
denoted also by Re( )z  and Im( )z  
 
 

 
Geometric representation for a complex variable. 

 
 
 
 
 
 
 
 

 
 

 (cos sin )z r i= ϕ + ϕ   where [ )0; 2ϕ∈ π  

 

ϕ 

x 

y 

r 
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Other useful formulas: 
 
 2 2r z x y≡ = + ;   arctan( / )y xϕ =  

 
 
 
A complex conjugate variable. 
 
 z x iy= −  
 
 (cos sin )z r i= ϕ − ϕ  
 
 
 
Question 1.2.1. 

In a geometrical representation, where does the 
complex conjugate variable lie? 

 
 
Module of a complex variable. 
 

 2 2z x y r zz≡ + = =  
 



 
Basic properties of complex variables 
 

1 2 1 2 1 2( ) ( )z z x x i y y+ = + + +  
 

( )
1 2 1 2 1 2 1 2 2 1

1 2 1 2 1 2

( ) ( ) ( )
cos( ) sin( )

z z x x y y i x y x y
r r i

= − + + =

= ϕ + ϕ + ϕ + ϕ  

 
( )1 1 1 1

1 2 1 2
2 2 2 2

cos( ) sin( )z x iy r i
z x iy r

+
= = ϕ − ϕ + ϕ − ϕ

+  

 
( )( ) cos( ) sin( )p p pz x iy r p i p= + = ϕ + ϕ  

 
 
Remark 1.2.1. 
 

It should be noted that generally speaking raising to a 
power p can be ambiguous, as the following examples 
show 

 



 
Examples 1.2.1. 
 

 (1) cos sin
4 4

i iπ π
= +   

 
   and another value  
 

  5 5cos sin
4 4

i iπ π
= +  

 
 

 (2) cos sin
2 2

z r iϕ ϕ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
   and another value  
 

  cos sin
2 2

z r iϕ ϕ⎛ ⎞⎛ ⎞ ⎛ ⎞= + π + + π⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
 
 

(3) This example gives n values for the n-th root 
 
 

2 2cos sin , 0,... 1n n k kz r i k n
n n n n
ϕ π ϕ π⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 



1.3. Exponential function of a complex variable 
 
 
Definition 1.3.1. for the exponential function 
 

 (1) 
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or the exponent is a function satisfying the following 
equation: 
 

 (2) 
2

2 1 ( ) 0d f x
dx

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 
Theorem 1.3.1. 
 a) Power series in the right-hand side (1) converges 

everywhere in ( ; )−∞ ∞  
 b) Exponential function is (real) analytic everywhere in 
( ; )−∞ ∞  
 
 
Remark 1.3.1. 
 In representation (1) an independent variable x can be 
complex. 
 
 



Trigonometric representation for the exponential 
function: 
 
 (3)  exp( ) (cos sin )xz e y i y= + , where z x iy= +  
 
  since also  
 
 (4)  (cos sin )z r i= ϕ + ϕ  
 
  we arrive at  
 
 (5) ( ) ( )cosexp( ) (cos sin sin sin )rz e r i rϕ= ϕ + ϕ  



1.4. Hyperbolic functions 
 
Definition 1.4.1. for hyperbolic sine and cosine functions 
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Both sinh and cosh satisfy the following differential 
equation: 
 

 (2) 
2

2 1 ( ) 0d f x
dx

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
 
Theorem 1.4.1. 
 a) Power series in the right-hand side (1) converge 

everywhere in ( ; )−∞ ∞  
 b) Both hyperbolic functions are (real) analytic in 
( ; )−∞ ∞  
 



 
Basic properties of hyperbolic functions 
 

 (3) sinh( ) ; cosh( )
2 2

x x x xe e e ex x
− −− +

= =  
 
 (4) 2 2cosh ( ) sinh ( ) 1x x− =  
 

 (5) 2 2cosh ( ) sinh ( ) cosh(2 )x x x+ =  
 
 (6) cosh( ) cosh( )cosh( ) sinh( )sinh( )x y x y x y± = ±  
 
 (7) sinh( ) sinh( )cosh( ) cosh( )sinh( )x y x y x y± = ±  
 

 (8) sinh( ) cosh( ); cosh( ) sinh( )d dx x x x
dx dx

= =  
 
 
Remark 1.4.1. 
 In representation (1) an independent variable x can be 
complex. 
 



 
Relations between hyperbolic, exponential, and 
trigonometric functions 
 

 (9)  sinh( ) ; cosh( )
2 2

z z z ze e e ez z
− −− +

= =  
 

 (10)  sin( ) ; cos( )
2 2

iz iz iz ize e e ez z
i

− −− +
= =  

 
 (11)  sin( ) sinh( ); cos( ) cosh( )z i iz z iz= − =  
 
 (12)  exp( ) cos( ) sin( )iz z i z= +  



II. Matrix algebra 
 
 

 
2.1. Basic definitions 

 (matrix, eigenvalue, and eigenvector) 
 
Definition 2.1.1. A matrix is a digital table of the form: 
 

 (1)  
11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

A  

 
In a definition above the matrix A is a rectangular one, 
the following matrix is a square one: 

 

 (2)  
11 12 13

21 22 23

31 32 33

b b b
b b b
b b b

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

B  



Definition 2.1.2.  
Transposition of a matrix  
(can be applied to an arbitrary matrix) 

 

 (3)  
11 21 31

12 22 32

13 23 33

t
b b b
b b b
b b b

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

B  

 
or if the matrix is not a rectangular one 
 

 (4) 
11 12 13 14

21 22 23 24

31 32 33 34

a a a a
a a a a
a a a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

A  

 
then 
 

 (5) 

11 21 31

12 22 32

13 23 33

14 24 34

t

a a a
a a a
a a a
a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

A  

 



 
Multiplication of two matrices  

(defined for two rectangular matrices n m×  and 
m p× ) 

 

(6)  
11 21

1311 12
12 22

21 22 23
13 32

b b
aa a

b b
a a a

b b

⎛ ⎞
⎛ ⎞ ⎜ ⎟⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎝ ⎠

 

 
 

Matrix C , called the product of matrices A and B  will 
have dimension n p×  (matrices –multipliers have 
dimension n m×  and m p×  respectively) 

 
 
Definition 2.1.3. 

The following formula defines components of the 
matrix-product in terms of the components of two 
matrices-multipliers: 

 

 (7)   
1

m

rs rk ks
k

c a b
=

= ∑  

 
If the two middle numbers don’t match, you cannot 
multiply the matrices 



 
Corollary.  

Multiplication for square matrices is well defined, 
provided both matrices have the same dimension 
 
 

Theorem. 2.1.1. 
If multiplication of two matrices A and B  is well-
defined, then 

 

(8) ( )t t tA B B A⋅ = ⋅  
 
Exercise 2.1.1. 

Perform multiplication 
 

 a) 

1 5
6 0

2 4
3 7

1 2

⎛ ⎞
⎛ ⎞⎜ ⎟ ⋅ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟

⎝ ⎠

 

 b) 

1 5 5 4 2
2 4 1 5 6

3 2 31 2

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⋅⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 



 
Definition 2.1.4. 

Integer power of a square matrix 
(well-defined for any square matrix,  
not defined for a rectangular matrix) 

 

 (9) 11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

...

n

n times

b b b b b b
b b b b b b
b b b b b b

=

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

B

 

 
Exercise 2.1.2. 
 
 Compute  
 

 (a) 
21 0

0 2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 

 (b) 

31 0
2 4
0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 



 
Definition 2.1.5. 

The inverse matrix 1−A  
(well defined for some square matrices, not defined 
for rectangular matrices) 

 
 (10) 1− ⋅ =A A I  
 

where I  is the unit matrix: 
 

(11)  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

I  

 
Remark 2.1.1. 

Even for a diagonal matrix the inverse matrix may not 
exist: 
 

   

2 0 0
0 3 0
0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 



 
Definition 2.1.6.  
 for the right eigenvector (right principle vector): 
 

 (12) 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

b b b v v
b b b v v
b b b v v

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ = λ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

or 
   r r⋅ = λB v v  
 
Definition 2.1.7.  
 for the left eigenvector (left principle vector): 
 
 (13)  l l⋅ = λv B v  
 
Remark 2.1.2. 
 Eigenvalues are defined only for square matrices 
 
Definition 2.1.8. 
 An eigenvalue can be defined in two ways: 

1) It is a multiplier λ  in expressions (12), (13) 
2) It is a root of the equation 

 
 (14)  ( )det 0−λ =B I  



Question. 2.1.1. 
What type of equation does the left-hand side of Eq. 
(14) is? 
Can the eigenvalue be zero? 
Can the eigenvector be zero? 

 
Theorem 2.1.2. 

Any square matrix has exactly n  eigenvectors (some 
can be complex). 

 
Remark 2.1.3.  

Eigenvalues for the corresponding right and left 
eigenvectors coincide 

 

Examples 2.1.1.  
1) Compute eigenvalues for the matrices 

(1.a) 
2 0
0 3
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

(1.b) 
0 1
1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2) Check if the vector ( )1,1  is a left eigenvector for the 
matrix: 

 (2.c) 
0 1
1 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

3) Check if the vector ( )1,0  is a left eigenvector for 
the same matrix 



 
2.2. Extension of the notion of a matrix to higher 

dimensions 
 
 Sometimes a square matrix is called a second order 
tensor, if we consider a three-dimensional table that is a set 
with 3 indices, then we call such a table a tensor of the third 
order: 
 
(15)

111 112 113 121 122 123 131 132 133

211 212 213 221 222 223 221 222 223

311 312 313 321 322 323 321 322 323

; ; ; ; ; ; ; ;

; ; ; ; ; ; ; ;

; ; ; ; ; ; ; ;

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

B  

or 
 ( )ijkb=B  
Similarly, we can define tensors of the fourth order: 
 
(16)

( )1111 3333; ......................................................;b b=B  

or 
 
 ( )ijklb=B  



2.3. Functions of a matrix 
 
Definition 2.3.1.  

Let f  be an analytic function of a real at ( ; )x∈ −∞ ∞  
and let this function be represented by the following 
(absolutely convergent) Taylor series: 
 

(17)  
0

( )
!

kk

k

a
f x x

k

∞

=
= ∑  

 
then the function ( )f A , where A  is an arbitrary 
square matrix is defined by 
 

(18)  
0

( )
!

kk

k

a
f

k

∞

=
= ∑A A  

 
Definition 2.3.2.  

To evaluate the zero order term in expression (18) we 
need the following definition 
 
(19)  0 ≡A I  
 
which can be applied to any square matrix. 



Examples 2.3.1.  
According to the definitions for some analytic functions 
represented by the series introduced in the Part I, the 
following functions of a matrix are well defined for any 
square matrix 

 

 (20) 

2 3

1

1 1 1 1exp( ) ...
0! 1! 2! 3!
1
!

k

k k=

= + + + +

= ∑

A I A A A

A
 

 

 (21)  3 51 1 1sin ...
1! 3! 5!

= − + −A A A A  

 

 (22)  2 41 1 1cos ...
0! 2! 4!

= − + −A I A A  

 

 (23)  3 51 1 1sinh ...
1! 3! 5!

= + + +A A A A  

 

 (24)  2 41 1 1cosh ...
0! 2! 4!

= + + +A I A A  

 



Remark 2.3.1.  
The following should be remembered: 
 

 (25) 
11 1

1

( ) ... ( )
( )

( ) ... ( )

n

n nn

f a f a
f

f a f a

⎛ ⎞
⎜ ⎟≠ ⎜ ⎟⎜ ⎟
⎝ ⎠

A  

 
 
Remark 2.3.1.  

It is interesting to note that the other definition for the 
hyperbolic function of a scalar argument 
 

(26) sinh
2

x xe ex
−−

=    and   cosh
2

x xe ex
−+

=  
 

can also be applied due to definition (20). 
 
 

Remark 2.3.2.  
Similarly to the preceding definitions a polynomial of 
an arbitrary square matrix is well defined 
 



 
Scholium 2.3.1.  

Sometimes functions are not analytic everywhere, then 
there can appear terms containing negative powers in 
the corresponding power series, for example 
 

(27)    1 31 1cot( ) cotan( )= ...
3 45

x x x x x−≡ − − −  

 
in such a case definition for the function of a matrix can 
be applied only to the invertible square matrices, for 
which we have 

(28)  1 31 1cot( ) cotan( )= ...
3 45

−≡ − − −A A A A A  

 
 

Remark 2.3.3.  
The problem of defining the square root of a matrix 

A , or more generally, any non-integer power of a 
matrix αA  will be defined for symmetric matrices or 
Hermitian matrices. The corresponding definition will 
be introduced later on. 

 



2.4. Classification of square matrices 
 
Type of a matrix Real matrix Complex matrix

Transposed tA  
Hermitian Conjugate _ * t=A A  

Normal t t⋅ = ⋅A A A A  * *⋅ = ⋅A A A A
Symmetric t =A A  
Hermitian – * =A A   

Orthogonal 1t −=Q Q  _ 

Unitary matrix – 1* −=U U  !!! 
Simple matrix Having n  linearly independent eigenvectors 

(possibly not mutually orthogonal) 
Nilpotent (of order n ) n =A 0  

 
Examples 2.4.1.  

Hermitian conjugate  

(29)    
4 5 2 4 3

*
3 15 5 2 15

i i i
i

+ − + −⎛ ⎞ ⎛ ⎞
= ⇒ =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

A A  

 
Symmetric 

(30)  

1 2 5
2 0 7

5 7 15

−⎛ ⎞
⎜ ⎟− −⎜ ⎟⎜ ⎟−⎝ ⎠

 



 
Hermitian 

(31)  

2 1 3
1 5 2

3 2 0

i
i i

i

+ −⎛ ⎞
⎜ ⎟− −⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
Orthogonal 

(32)  
sin cos
cos sin
ϕ ϕ⎛ ⎞

= ⎜ ⎟− ϕ ϕ⎝ ⎠
Q  

 
Unitary 

(33)  
0
1 0

i−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

U  

 
Nilpotent (of order 3) 

(34)  

0 15 0
0 0 15
0 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

A  

 
Relations between matrix classes real symmetric 
 
( ) ( ) ( ) ( )simple normal Hermitian real symmetric⊃ ⊃ ⊃
 



2.5. Properties of matrices 
 
Theorem 2.5.1.  

(A)   Any normal matrix A  can be reduced by a unitary 
transformation H  to a diagonal form D: 
(35)  * ⋅ ⋅ =H A H D . 
 
(B)   If a given matrix A  can be reduced to the 
diagonal form by a non-degenerate unitary 
transformation, then such a matrix is normal. 
 
(C)   Any normal matrix of the order n  has n  linearly 
independent mutually orthogonal eigenvectors (may 
be complex) 

 
Definition 2.5.1.  

Matrices A  and B  are called similar if there exists a 
non-degenerate transformation W , such that 
(36)  1−= ⋅ ⋅A W B W  

 
Theorem 2.5.2.  

Matrices A  and B  commute with each other, i.e. 
 
(37)  ⋅ = ⋅A B B A  
 
if and only if they are similar. 



Theorem 2.5.3.  
(A)   Any symmetric real(!) matrix A  can be reduced 
by an orthogonal transformation Q to a diagonal form 
D: 
(38)  t ⋅ ⋅ =Q A Q D. 
 
(B)   If a given matrix A  can be reduced to the 
diagonal form by an orthogonal transformation, then 
such a matrix is real symmetric. 
 
(C)   Any symmetric real matrix of the order n  has n  
linearly independent and mutually orthogonal real 
eigenvectors.  
 
 

Theorem 2.5.4.  
(A)   Any Hermitian matrix A  can be reduced by a 
unitary transformation H  to a diagonal form D (with 
real numbers on the main diagonal): 
(39)  * ⋅ ⋅ =H A H D . 
 
(B)   If a given matrix A  can be reduced to the 
diagonal form by a unitary transformation, and the 
diagonal matrix is real, then such a matrix is Hermitian. 
 
(C)   Any Hermitian matrix of the order n  has n  
linearly independent and mutually orthogonal 
eigenvectors.  



Remark 2.5.1.  
If a matrix is not normal one, then  
(A) It cannot be reduced to the diagonal form by a 

suitable unitary transformation (35). 
(B) It does not have a complete set of the mutually 

orthogonal eigenvectors  
 

Question 2.5.1.  
What is the diagonal structure (this is called the 
Jordan normal form) of an arbitrary matrix, not 
necessary normal one? 
 

Answer: 
It contains, along with possibly other eigenvalues, 
the Jordan block(s) on the main diagonal 

(40)  

1

2

2

3

7

d
d

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

D J
J

J

 

where 

  (41)     2 3

1 0
1

, 0 1 ,.....
0

0 0

µ⎛ ⎞
λ⎛ ⎞ ⎜ ⎟= = µ⎜ ⎟ ⎜ ⎟λ⎝ ⎠ ⎜ ⎟µ⎝ ⎠

J J  



Remark 2.5.2.  
Any Jordan block can be represented by the sum of the 
unit matrix I , multiplied by a corresponding 
eigenvalue, and a nilpotent matrix: 

(42)  2
1 1 0 0 1

0 0 1 0 0
λ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

≡ = λ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟λ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
J  

where 

(43)  
0 1
0 0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

is a nilpotent matrix. 
 
 

Question 2.5.1.  
Is there a simple procedure to see, whether the given 
matrix contains the Jordan blocks after reducing to the 
Jordan normal form? 
 
Answer: 

No, only after reducing it to the (quasi) diagonal 
form (the Jordan normal form). 

 
Example 2.5.1. 

 Check, if matrix 
0 1
1 0

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

A  is a normal matrix 

 



 
 

Marie Ennemond Camille Jordan 
 

1838 - 1922 
Place of birth: 

 



 
2.6. Non-integer powers of normal matrices 

 
Definition 2.6.1.  

Let A  be a normal matrix and α  be a non-integer 
power, then 
(44)  *α α= ⋅ ⋅A H D H 
 
 

Example 2.6.1. 
Verify definition (44) at 1/ 2α =  
 
1. By the definition 
(45)  1/ 2 * 1/ 2≡ ⋅ ⋅A H D H 
 

2. Consider ( )21/ 2A : 

(46) 

( ) ( ) ( )21/ 2 * 1/ 2 * 1/ 2

* 1/ 2 * 1/ 2

*

≡ ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅ =

A H D H H D H

H D H H D H

H D H A

 

Question 2.6.1. 

What is 
1/ 24 0

0 9
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ? 

 



III. Application of matrix algebra to 
solving systems of the second order 

differential equations 
 

3.1. Basic definitions 
 
Definition 3.1.1. 

Let a system of the linear ordinary differential 
equations (with homogeneous coefficients) be of the 
type: 
 
(1)  ( )t⋅ + ⋅ + ⋅ =M x C x K x f  
 
where  
(2) , ,M C K  are symmetric matrices of the order n ,  
(3) ,x f       are n -dimensional time-dependent vectors. 
 
 

Remark 3.1.1.  
A. Quite often such systems arise at the 

analyses of different vibration processes of 
systems with discrete masses. 

B. Higher-order (than the second-order) 
equations cannot arise in the theory of vibrations 
of systems with discrete masses (explain, why?).  

C. Sometimes, matrices ,C K  can depend upon 
x  or(and) x , in these cases the equation (1) 
becomes non-linear one. 



3.2. The main stages of setting up and solving 
systems of the second-order ODE (ordinary 

differential equations) with constant 
coefficients  

 
1. Physical stage. Setting up a system of the 

corresponding differential equations 
2. Matrix stage.  

(a) Regrouping equations and obtaining a 
three matrix representation (1) containing 
n -dim matrices and vectors 

(b) Obtaining a 2n -dimensional matrix 
representation, and analyzing its structure 

3. Free vibration stage (General solution 
stage). Constructing the general solution for the 
free-vibration problem  

(a) Euler’s exponential representation  
(b)  Constructing the general solution 
(c) Satisfying the initial conditions 

4. Stationary vibration stage. Constructing a 
partial solution for a harmonic loading 

5. Transient response analysis. Constructing 
the partial solution satisfying the initial 
conditions. 

 

May not 
be needed 



3.3. Physical stage  
Setting up a system  

of the second-order differential equations 
 
Example 3.3.1. Two mass system with dampers 

Let the two-mass system with dampers be as follows: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Remark 3.3.1. 

To adjust the notations, henceforce we will denote the 
viscosity coefficients kη  as kc . 



The corresponding equations of motion are as follows: 
 

(4) 1 1 1 1 2 1 1 2

2 2 1 1 2 1 1 2 2 2 2 2 0

( ) ( ) 0

( ) ( ) i t

m x c x x k x x

m x c x x k x x c x k x P e ω

+ − + − =⎧⎪
⎨

− − − − + + =⎪⎩
 

 
Remark 3.3.2. 

Herein we assume that , ,n n nm c k , where 1,2n = , 
are some positive constants. 
 

Remark 3.3.3. 
Sometimes, coefficients nc  can be assumed to depend 
upon nx  (“viscosity depends upon speed”),  

or  
coefficients nk  can be assumed to depend upon nx  
(“stiffness depends upon deformation”) 
in these cases Eqs. (4) become non-linear. Solution of 
the non-linear differential equations is much more 
difficult, than linear equations.   



3.4. Matrix Stage (a). 
Regrouping equations and obtaining matrix 

representation containing n -dim matrices and 
vectors 

 

Example 3.4.1.  
 

Now, we are going to represent system (4) in a matrix 
form: 
 

(5)

1 1 1 1 1

2 2 1 1 2 2

1 1 1

1 1 2 2

0
0

0
i t

m x c c x
m x c c c x

k k x
k k k x Pe ω

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞ ⎛ ⎞
+ ⋅ = ⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

denoting 
 

(6) 

1 1 1

2 1 1 2

1 1 1

1 1 2 2

0
, ,

0

0
, , ( ) i t

m c c
m c c c

k k x
t

k k k x Pe ω

−⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

⎛ ⎞−⎛ ⎞ ⎛ ⎞
= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

M C

K x f

 

 
we arrive at the desired matrix representation: 
 

(7)  ( )t⋅ + ⋅ + ⋅ =M x C x K x f  



3.5. Matrix Stage (b). 
Constructing the 2n-dimensional matrix 

representation 
 
Remark 3.5.1.  

A. The necessity to construct an auxiliary 2n -
dimensional matrix is due to the principle 
impossibility to resolve the system (1) at 
arbitrary symmetric matrices M, C, K (from 
physical considerations matrix M must be non-
degenerate). 

B. But, there exists a method of resolving any 
system of the first-order differential equations 
with constant coefficients of the kind  
 
(8) = ⋅z G z  
 
with no restrictions imposed on matrix G . 

 
The main idea of this stage  

is to reduce the given system of the second-order 
differential equations to the system of the first-order 
differential equations. 



Reducing homogeneous system (1) (with the zero right-
hand side) to the system (8) 

 

Let 
 

(9)  =x v ,  
 

then (homogeneous) system (1) takes the form 
 

(10)  ⋅ + ⋅ + ⋅ =M v C v K x 0  
 

or in a following form : 
 

(10*) 1 1− −= − ⋅ ⋅ − ⋅ ⋅v M C v M K x  
 

Combining (9) and (10*) we arrive at 
 

(11)  1 1

0
− −

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟− ⋅ − ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

Ix x
v vM K M C

 

 

or in a more compact form 
 

(12)  = ⋅z G z  
 

where 
 

(13) 1 1

0
;− −

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟− ⋅ − ⋅ ⎝ ⎠⎝ ⎠

I x
G z

vM K M C
 

 

Remark 3.5.2.  
If matrix G  is a normal matrix (i.e. t t⋅ = ⋅G G G G ), 
then it has a set of 2n  orthonormal eigenvectors.  



Example 3.5.1.  
For the considered two-mass system the desired 2n -
dimensional matrix G  takes the form 

(14) 11 1

2

2

1 0
0

0 10

mm
m

m

−

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟= ⇒ =⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

M M  

 

(15) 1 1 1 1

1 1 2 1 1 2
;

c c k k
c c c k k k

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟− + − +⎝ ⎠ ⎝ ⎠

C K  

 

(16) 1 1

0
− −

⎛ ⎞
= ⎜ ⎟

− ⋅ − ⋅⎝ ⎠

I
G

M K M C
 

 

(17)

1 1 1 1

1 1 1 1

1 1 2 1 1 2

2 2 2 2

0 0 1 0
0 0 0 1
k k c c
m m m m
k k k c c c
m m m m

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −= ⎜ ⎟
⎜ ⎟

+ +⎜ ⎟− −⎜ ⎟
⎝ ⎠

G

 



and 

(18)  

1

2

1

2

x
x
v
v

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

x
z

v
 

Finally, the system of the first-order differential 
equations for the considered case becomes: 
 

1 1

2 21 1 1 1

1 1 1 11 1

2 21 1 2 1 1 2

2 2 2 2

0 0 1 0
0 0 0 1x x

x xk k c c
m m m mv v

v vk k k c c c
m m m m

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −= ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎜ ⎟⎝ ⎠ ⎝ ⎠− −⎜ ⎟
⎝ ⎠

(19) 
 

Remark 3.5.3.  
Even for the considered relatively simple case of a two-
mass system, the constructed matrix G  can be not a 
normal matrix.  



3.6. Free vibration stage (a)  
Euler’s exponential representation 

 
Leonard Euler suggested to search a general solution of 
the system (8) in the form 
(20)  ( ) ptt e=z m  
 
where m is a constant 2n -dimensional vector, called 
the amplitude, and the exponential term describes 
possible oscillations (if p  contains a non-zero 
imaginary part), and possible attenuation (if p  contains 
a negative real part).  
 
Substituting (20) into Eq. (8) yields:  
 
(21)  p = ⋅m G m or ( ) 0p − ⋅ =I G m  
 
Thus, the problem of finding the solutions to the system 
(8), reduced to the problem of finding eigenvectors m  
and eigenvalues p  of the matrix G . 
 

Remark 3.6.1.  
Now, it is clear, why the question, whether matrix G  is 
normal one is so important. For a normal matrix the 
number of eigenvectors equals to the order of a matrix, 
and all the eigenvectors are mutually orthogonal. 



3.7. Free vibration stage (b)  
Constructing the general solution 

 
I. Matrix G is normal 

 
Let ( )1 2,..., np p  be a set of all eigenvalues of the 

matrix G , and ( )1 2,..., nm m  is the corresponding 
set of all eigenvectors (they are mutually 
orthogonal due to normality of the matrix). 
 
 

Remark 3.7.1.  
All the eigenvectors ( )1 2,..., nm m  are 2n-
dimensional that means: 

(22)  

1

2

2

k

k

k

n
k

m

m

m

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⋅⎜ ⎟
⎜ ⎟⋅
⎜ ⎟
⎜ ⎟
⎝ ⎠

m  

 
where numbers 1 2 2, ,..., n

k k km m m  are generally 
complex. 



Theorem 3.7.1.  
The general solution for the problem (8) has the form: 
 

(22)  
2

1
( ) k

n
p t

k k
k

t C e
=

= ∑z m  

 
Scholium 3.7.1.  

Thus, for a normal matrix G , there exists 2n  
eigenvalues (called the natural frequencies or 
spectral values), and 2n  different and mutually 
orthogonal eigenvectors (called natural modes) 
 
 

Remark 3.7.2.  
Not all the natural frequencies should be different, but 
some may coincide (this corresponds to appearing 
multiple roots in the corresponding characteristic 
equation),  
 

but  
 

all the eigenvectors (natural modes) are necessary 
different. 
 
 

Remark 3.7.3.  
Coincidence of the natural frequencies means that at 
the coinciding frequency, different modes of vibration 
can occur. 



II. Not-normal matrix G 
 

For a not-normal matrix G  the number of its 
eigenvalues can be less than the dimension of the 
matrix, and being reduced to the Jordan normal 
form it may contain Jordan blocks.  

 

Theorem 3.7.4. 
For a not-normal matrix having the Jordan blocks (non-
simple matrix) the general solution of the problem (8), 
has the following form 

1

2 2

1 1

3

2

3 3

2 2

1

2

( )

( ' ) ' '

1( ' '' )
2

( ' '' ) ' '' ''

.......

k

k k

k

k k

l
p t

k k
k
l l

p t p t
k k k k k

k l k l

l
p t

k k k k
k l

l l
p t p t

k k k k k
k l k l

t C e

C C t e C e

C C t C t e

C C t e C e

=

= =

=

= =

= +

+ + +

+ + +

+ + +

∑

∑ ∑

∑

∑ ∑

z m

m m

m

m m

 

(23) 



3.8. Free vibration stage (c)  
Satisfying the initial conditions 

 (Normal or simple matrix G) 
 
Let the general solution (22) satisfy the initial conditions at 
some time 0t  (usually 0t  is taken to be zero, but that is not 
necessary): 

(24)  0 0

0 0 0

( )
( ) ( )
t
t t

=⎧
⎨ ≡ =⎩

u u
u v v

 

 
or in the form 
 

(25)  0 0( )t =z z  
 
where as before 
 

 (26)  0
0

0

( )
( ) ;

( )
t

t
t

⎛ ⎞⎛ ⎞
≡ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

uu
z z

v v
 

 
Recalling that the general representation for the vector z  is 
given by (22), we arrive at the following system for finding 
the unknown coefficients kC : 

(27)  
2

0 0
1

( )
n

k k
k

C t
=

=∑ z z  



Theorem 3.8.1.  
For any normal (and not degenerate) matrix Gand any 
2n -dimensional vector 0z  the system (27) is uniquely 
solvable.  

 
 
Question 3.8.1.  

Why for a normal and non-degenerate matrix G , the 
system (27) is uniquely solvable? 

 
 
Remark 3.8.1.  

A. For a non-normal matrix G  the initial value 
problem (27) is also uniquely solvable, but the 
construction of the solution can be more elaborate. 

B. Eigenvalues of the matrix G  (natural frequencies) 
satisfy the following polynomial equation of the 2n -
order: 

 

(28)  ( )2det 0p p+ + =M C K  

 
This equation is derived by substituting the reduced 
Euler’s representation (for the n -dimensional 
amplitude vector 'm ) into the initial differential 
equation (1). 



 
Theorem 3.8.2.  

All the eigenvalues p  have non-negative real part 
Re( ) 0p ≤ , provided matrices ,C K  are positive 
semi-definite and matrix M  is positive definite. 
 

Proof.  
Consider Eq. (20) with a 2n -dimensional eigenvector 
m representing in a form  
 

(29)  
'
"

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

m
m

m
  

 
where ', "m m  are n -dimensional vectors (due to (13) 

'm  stands for displacements and "m  stands for 
speeds). Substituting vector m  in the form (29) into 
Eq. (20), we arrive at 
 
(30)  2 ' ' ' 0p p⋅ + ⋅ + ⋅ =M m C m K m  
 
no we multiply both sides by the same vector 'm , and 
find the equation for p : 
 
(31) 2 ' ' ' ' ' ' 0p p⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =m M m m C m m K m  
 



roots of the latter equation are 
 

2' ' ' ' ' '
2 ' ' 2 ' ' ' '

p ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎛ ⎞= − ± −⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠

m C m m C m m K m
m M m m M m m M m

(32) 
 
The condition of the theorem ensures both of the roots 
to have a non-positive real part. 
 
 

Scholium 3.8.1.  
The condition Re( ) 0p ≤  is of high importance for the 
whole theory of vibrations. It states that nevertheless of 
complexity of the vibrating system, all the vibrations 
can be either attenuating with time, or constantly 
oscillating, with no exponential (or any other) growth. 
Thus, no unbounded motions can exist. 
 
 

Question 3.8.2.  
A. Why matrix M  is positive definite one, and 

matrices ,C K  are positive semi-definite?  
B. What does semi-definiteness mean? 
C. What is a necessary and sufficient condition for 

purely oscillating motion without attenuation? 
(consider expression for the roots (32)) 



Addendum (1) to the free vibration stage  
 

Another useful representation for the general 
solution based on 2n-dimensional formalism 

 
Herein, we assume that matrix G  has simple structure. 
Now, we shall regard matrix   
 
 (A1.1) teG   
 
Theorem A1. 

Matrix (A1) is a fundamental matrix: each column of 
this matrix is the corresponding (right) eigenvector 
 

Proof.  
Substituting matrix (A1.1) into Eq. (12), yields the 
following identity: 
 
 (A1.2) t te e⋅ = ⋅G GG G  
 
It can also be proved that each column corresponds to 
an eigenvector.  

 
Satisfying initial conditions (27) by using matrix (A1.1) 
yields:  
 
 (A1.3) 0 00 0

t te C C e−⋅ = ⇒ = ⋅G Gz z  



Now, from the last equation in (A1.3), we can represent the 
solution, satisfying initial conditions (27) in the following 
elegant form: 
 
 (A1.4) 0( )

0( ) t tt e −= ⋅Gz z  
 
 
Remark A1. 

A. The solution of the homogeneous equation (12) 
in the form (A1.4) is valid for any non-degenerate 
matrix G  having simple structure (without Jordan 
blocks). 

B. If matrix G  is not simple (i.e. it has the Jordan 
blocks, then the solution of the stationary vibration 
problem in the form (A1.4) cannot be obtained, 
and a more elaborate method should be used. 

 



 

3.9. Eigenproblem for a two-mass system  
Constructing the general solution 

 
Example 3.9.1. 

Let for the considered in Sec. 3.3 the dynamical two 
mass-system, matrices , ,M C K  be as follows: 

(33)  1

1 02 0 2
10 3 0
3

−

⎛ ⎞
⎜ ⎟⎛ ⎞

= ⇒ = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟⎜ ⎟

⎝ ⎠

M M  

 (34)  
1 1 2 2

;
1 5 2 7

− −⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

C K  

 
then 
 

(35)  1 1
2 2

7 52 1
3 3 3 3

0 0 1 0
0 0 0 1
1 1

⎛ ⎞
⎜ ⎟
⎜ ⎟=
− −⎜ ⎟
⎜ ⎟− − −⎝ ⎠

G  

 
Remark 3.9.1. 

Direct verification reveals that matrix (35) is not a 
normal one, but still it has 2n  eigenvectors (linear 
independent, but not mutually orthogonal) 



Eigenvalues or natural frequencies of the matrix G  
(obtained numerically): 
 

(36)  
0.199 0.764
0.199 0.764
0.884 1.375
0.884 1.375

i
i
i
i

− +
− −
− +
− −

 

 
Remark 3.9.2. 

A. Sign “–“ at the real part of the eigenvectors 
means attenuating with time 

B. Complex structure of the eigenvalues means 
that oscillations are not constant with time. 

 

Eigenvectors km  of the matrix G  (obtained numerically): 
 

 

(37)  

 

 



Remark 3.9.3. 
At this stage the complex structure of the eigenvalues 
should be retained.  

 
Satisfying boundary conditions by solving Eq. (27) 
Matrix consisting of the eigenvectors: 

 
 

The right-hand side (initial conditions) : 

(38)  

0
1
0
2

0 0
1
0
2

5
7
0

10

x

x

v

v

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟≡ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

z  

Question 3.9.1.  
How to interpret the last vector in the right-hand side of 
(38), what the first two components (5,7) and the last 
two (0,10) represent? 

 

Solving system (27) gives values for the unknown 
coefficients , 1,2,3,4kC k = : 

(39)  



Remark 3.9.4. 
And at this stage the complex structure of the 
coefficients should be retained.  
 

Now, we are able to write the complete solution in the form 
(22) for the regarded free-vibration problem by multiplying 
eigenvectors (37) (with the corresponding exponents) by 
coefficients (39) 

(40)  
4

1
( ) kp t

k k
k

t C e
=

= =∑z m  

 
 

Remark 3.9.5. 
Even at this stage the complex structure of the general 
solution should be retained, as the exponents can also 
be complex, and they are complex for the considered 
case; see eigenvalues (36). 
 

Question  3.9.2. 
A. What are the first two and the last two elements 

in each column? 
B. How to evaluate the exponent 1p te ? 

Thus, the general solution satisfying the initial conditions is 
constructed. Only now, we should retain either real or 
imaginary part of the solution. 



3.10. Stationary vibration stage  
Constructing a partial solution for  

harmonic loading 
 
Basic assumptions. 

A. Let a harmonic loading applied to the 
corresponding masses be  

 

 (41)  

1

2
0( )

:
i t i t

n

f
f

t e e

f

ω ω

⎛ ⎞
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎝ ⎠

f f  

 

where kf  are the external force amplitudes, and ω 
is the forcing frequency (ω is real, and kf  can be 
complex)  

 

B. From now it is assumed that the loading frequency 
ω does not coincide with any of the eigenvalues 
(natural frequencies) , 1,...,2kp k n= .  

 
 
Remark 3.10.1. 

If the parameter iω coincides with any one of the 
natural frequencies, then the solution does not exist, 
this is called the resonance.  



Constructing the solution. 
There can be two variants of constructing the solution: 
 

I. ON THE BASIS OF n -DIMENSIONAL MATRICES: 
 

A. We are looking the solution in the form: 
 

(42)  0( ) i tt e ω=x x  
 

where 0x  is the unknown n -dimensional 
amplitude vector.  
 

B.  Obtaining vector 0x  is done by substituting both 
(41) and (42) into Eq. (1), arriving at: 
 

(43)  ( )2
0 0i−ω + ω + ⋅ =M C K x f  

 

and since the matrix ( )2 i−ω + ω +M C K  is 

invertible, the final solution takes the form: 
 

(44)  ( ) 12
0 0i

−
= −ω + ω + ⋅x M C K f  

 
Remark 3.10.2. 

The vector 0x  can be complex, and its complex 
structure should be retained up to multiplication by 
the complex exponent i te ω . 



II. ON THE BASIS OF 2n -DIMENSIONAL MATRIX G : 
 

A. We are looking the solution in the form: 
 

(45)  0( ) i tt e ω=z z  
 

where 0z  is the unknown 2n -dimensional 
amplitude vector (the first n  elements of which are 
amplitudes of  displacements, and the last n  are 
the amplitudes of speeds). This vector should 
satisfy the equation with the external forces: 
(12′) ( ) ( ) ( )t t t= ⋅ +z G z w  
 

B. Now, we construct an auxiliary 2n -dimensional 
loading vector: 

 (46)  0 1
0

( ) i t i tt e eω ω
−

⎛ ⎞
= ≡ ⎜ ⎟⎜ ⎟⋅⎝ ⎠

0
w w

M f
 

 

C. Obtaining 0z . since iω does not coincide with 
any of the natural frequencies, we can invert 
matrix ( )iω −I G  and write the solution for 0z  in 
the form: 
 

(47)  ( ) 1
0 0i −= ω − ⋅z I G w  

 

Remark 3.10.3. 
In Eq. (47) matrix I  is the 2n -dimensional identity 
matrix. 



Remark 3.10.4. 
Both of the considered methods can be applied to 
systems of harmonic loadings containing m  different 
loadings corresponding to m  different frequencies 
(number of different loadings m  can be arbitrary), 
namely  

 (48)  
1

( ) k
m

i t
k

k
t e ω

=
= ∑f f  

where kf  are n -dimensional vectors, representing force 
amplitudes, applied to the considered system with n -
masses. Provided neither of frequencies kω  coincide 
with the natural frequencies (eigenvalues). 
 

In view of (48), we can obtain the following expression 
for displacements of vibrating masses, which 
generalizes method, based on the n -dimensional matrix 
approach; see formula (44): 

(49)  

( )
1

12

1

( ) k

k

m
i t

k
k

m
i t

k k k
k

t e

i e

ω

=

− ω

=

= =

−ω + ω + ⋅

∑

∑

x x

M C K f

 

 
Generalization of the 2n -dimensional method is 
similar. 



Remark 3.10.5. 
Both of the considered methods can be applied to 
systems of harmonic loadings with exponential 
attenuation or even exponential growth:  

 

(50)  ( )

1
( ) k k

m
i t

k
k

t e α + ω

=
= ∑f f  

where 0kα <  corresponds to attenuation, and 0kα >  
corresponds to exponential growth. The solution is 
available, provided neither of k kiα + ω  coincide with 
the corresponding eigenvalues. 
 
The following formula generalizes formula (49): 
 

( )

( ) ( )( )
( )

1
12

1

( ) k k

k k

m
i t

k
k

m

k k k k k
k

i t

t e

i i

e

α + ω

=

−

=
α + ω

= =

α + ω + α + ω + ⋅ ×

×

∑

∑

x x

M C K f

(51) 
 

 



 Addendum (2) to the free-vibration stage: 
Definition and properties of the fundamental 

matrices 
 
Definition of the fundamental matrix. 

Fundamental matrix is a functional matrix ( )tM , when 
substituted in the initial differential equation (12) 
instead of vector ( )tz , satisfies this equation, i.e. 
 

(A2.1) = ⋅M G M  
 

Remark A2.1. 
The fundamental matrix may be not a unique matrix 
(there can be several or even infinite different 
fundamental matrices) 
 

Theorem A2.1. 
Suppose that matrix G  is a simple matrix (it does not 
contain any Jordan blocks), then a matrix composed of 
eigenvectors of the matrix G  multiplied by the 
exponents with the corresponding eigenvalues in the 
indices, is the fundamental matrix, i.e. 
 

(A2.2) ( )211 2;...; np tp t
ne e=M m m  

 
where km  are eigenvectors, and kp  are the 
corresponding eigenvalues. 



Proof of the Theorem A2.1. 
A. Let us multiply matrix G  by the first column of 

the matrix M , i.e. 2n -dimensional vector 
11

p tem , this yields 
 

(A2.3) 1 11 1 1
p t p te p e⋅ =G m m  

 

Performing this multiplications for other columns 
of the matrix M , we get 
 

(A2.4) ( )211 1 2 2;...; np tp t
n np e p e⋅ =G M m m  

 
B. Differentiating matrix M , gives 

 

(A2.5) ( )211 1 2 2;...; np tp t
n np e p e=M m m  

 
C. Comparing right-hand sides in (A2.4) and (A2.5), 

we conclude that matrix M  satisfies the equation 
(A2.1), thus M  is a fundamental matrix. 

 
Proposition A2.1. 

For a simple matrix G , the correspondent matrix M  is 
not singular (det 0≠M ). 

Proof. 
Proof is obvious, since simple matrix G  has 2n  linear 
independent eigenvectors. 



Theorem A2.2. 
Suppose that matrix G  is a simple matrix (it does not 
contain any Jordan blocks), then matrix teG  is the 
fundamental matrix, i.e. 
 

(A2.6) t td e e
dt

= ⋅G GG  

 
Proof of the Theorem A2.2. 

Proof is straightforward, since after differentiating the 
left-hand side becomes equal to the right-hand side. 
 
 
 

Proposition A2.2. 
For a simple matrix G , matrix teG  is not singular 
(det 0te ≠G ). 

 
Proof. 

Let us reduce matrix G  to the diagonal form: 
 
(A2.7) 1−= ⋅ ⋅G W D W  
 
where W  is an arbitrary non-singular square matrix. 
Now, we consider definition for the exponential matrix, 
and use decomposition (A2.7): 



(A2.8) 
0 !

k k
t

k

te
k

∞

=
= ∑G G

 

 

In the right-hand side of (A2.8) I’ll use decomposition 
(A2.7), it gives for the k -th power: 
 

1 1 1

1

1 1 2

2

...k

k

k
k

k
n

d

d

d

− − −

− −

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⋅ ⋅ = ⋅ ⋅⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

G G G
G W D W W D W W D W

W D W W W

(A2.9) 
 

By use of (A2.9), we can now represent teG  in the 
form: 
 

(A2.10) 

1

2

2

1

n

d t

d t
t

d t

e

ee

e

−

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⋅ ⋅⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

G W W  



and since the exponent function never vanishes (at any 
exponents either real or complex), formula (A2.10) 
completes the proof. 
 

 
Properties of the fundamental matrices. 
 
Proposition A2.3. 

Matrices G  and eG commute with each other: 
 
(A2.11)  e e⋅ = ⋅G GG G  
 

Proof. 
The proof follows from multiplying the Taylor series 
representation for eG by matrix G  (initially from left): 
 

(A2.11) 
1

0 0! !

k k

k k
e

k k

+∞ ∞

= =

⎛ ⎞
⋅ = ⋅ =⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑G G GG G  

 
It is clear that the result of multiplication of eG by G  
from right will give the same. 

 
Corollary 1. 

Matrices G  and eG  can be reduced to the diagonal 
form by the same non-degenerate transformation W . 



Corollary 2. 
Matrices G  and eG  have the same set of 2n  linearly 
independent eigenvectors (but their eigenvalues 
differ). 
 

Remark A2.1.  

If 
1

2

...

n

d

d

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 are eigenvalues of matrix G , then  

1

2

...
n

d

d

e

e

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 are eigenvalues of the matrix eG 

 
Corollary 3 (The most important). 

Matrices M  and teG  coincide (possibly up to an 
arbitrary scalar multiplier). 

 
Concluding remark. 

Thus, instead of computing eigenvalues and 
eigenvectors to construct then the fundamental matrix 
M , which can be rather complicated procedure 
especially for high dimensional problems, it is possible 
to compute matrix teG , and that will give us the same 
fundamental matrix.  



Addendum (3) to the stationary vibration stage 
Inverting matrix ( )iω −I G  

 

Definition of the von Neumann method. 
Let a harmonic loading applied to the corresponding 
masses has oscillation frequency ω  satisfying the 
inequality 

 

(A3.1)  , 1,...,2kp k nω> =  
 

That means that the loading frequency is higher than 
any of the eigenfrequencies (natural frequencies). 
 
Now, the inverse matrix to the matrix ( )iω −I G  can 
be obtained by  Neumann’s series: 
 

(A3.2) ( ) 1 1

0
( ) ( ) n n

n
i i i

∞
− − −

=

⎛ ⎞
ω − = ω ω⎜ ⎟⎜ ⎟

⎝ ⎠
∑I G G  

 

Thus, if condition (A3.1) is satisfied, then for obtaining 
amplitudes 0z  by applying (47), we do not need to invert 
matrix ( )iω −I G , but perform only successive 

summations of matrices ( ) n ni −ω G . 
 

Theorem A3.1. 
Series in the right-hand side of (A3.2) converge 
absolutely, provided condition (A3.1) is satisfied. 



3.11. Transient response stage  
 

Part I. 
 

Constructing the solution  
for non-harmonic loading by the  

fundamental matrix method  
 
 
 
Basic assumption. 

Let a harmonic loading applied to the 
corresponding masses be  

 

 (52)  

1

2

( )
( )

( )
:

( )n

f t
f t

t

f t

⎛ ⎞
⎜ ⎟
⎜ ⎟==
⎜ ⎟
⎜ ⎟
⎝ ⎠

f  

 
where ( )kf t  are the external forces, applied at the 
corresponding masses. From now we will assume, 
that this loading was applied at the moment 0t . 

 



 
Now, the equation of forced vibrations in a 2n -
dimensional space takes the form:  
 
(53)  ( ) ( ) ( )t t t= ⋅ +z G z w , 
 
where as in the harmonic loading stage ( )tw  is a 
modified 2n -dimensional loading vector of the form 
 

(54)  1( )
( )

t
t−

⎛ ⎞
= ⎜ ⎟

⋅⎝ ⎠

0
w

M f
 

 
To understand how we obtained this vector, it is needed 
to regard the initial Eq. (1) and, as before, by 
introducing a new vector function =v x , to reduce Eq. 
(1) to the following form 
 

(55)  
( )t

=
⋅ = − ⋅ − ⋅ +

x v
M v K x C v f

 

 

or in the equivalent form 
 

(55′) 1 1 1 ( )t− − −

=

= − ⋅ ⋅ − ⋅ +

x v

v M K x M C v M f
 

 

or in another equivalent form, given by (53).  



Proposition 3.11.1. 
The equation  
 

(56)  ( ) ( )t td e e t
dt

− −⋅ = ⋅G Gz w  
 

is equivalent to the initial Eq.(53). 
 

Proof. 
Equivalence is verified by performing differentiation in 
the left-hand side of (56), and recalling that matrices G  
and teG  (and te−G ) commute with each other. 
 
 

Constructing the desired solution of Eq. (56) 

(57)  0

0

0( ) ( ) ( )
t

tt

t
e t e t e d−− − τ⋅ − ⋅ = ⋅ τ τ∫GG Gz z w  

from which we obtain the desired solution for ( )tz : 

(58)   0

0

( )
0( ) ( )

t
t t t

t
t e e e d− − τ= ⋅ + ⋅ ⋅ τ τ∫G G Gz z w  

 

Remark 3.11.1. 
It is easily verified that the constructed solution (58) 
satisfies at 0t t=  the initial condition 0z  (since the 
integral in (58) for any locally integrable function w  
vanishes at 0t t= ). 



Example 3.11.1.  
Heaviside loading applied at time 1t . 

 
(59)  1 1( ) ( )t h t t= −f f  
 
where 1f  is a constant force loading applied at masses 
of the considered system, and 1( )h t t−  is the 
Heaviside function: 
 

(60)  1
1

1

0,
( )

1,
t t

h t t
t t
<⎧

− = ⎨ ≥⎩
 

 
 
 
 
 
 

Now, according to (54) we must construct the auxiliary 
2n -dimensional loading:  

(61)     1 11
1 1

( ) ( )
( )

t h t t
h t t−

⎛ ⎞
= = −⎜ ⎟⎜ ⎟⋅ −⎝ ⎠

0
w w

M f
 

 

where  

(62)  1 1
1

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

0
w

M f
 

t1



 
substituting this loading into Eq. (58) and performing 
integration gives: 
 

 (63) ( )( )
0

1

( )
0

1
1 1

( )

( ) ( )

t t

t t

t e

e h t t

−

−−

= ⋅ +

⋅ − ⋅ −

G

G

z z

G I w
 

  
 
 
Remark 3.11.2. 

Appearing the Heaviside function in the right-hand side 
of (63) is because of necessity to reflect the fact that 
time is irreversible (event at time 1t  cannot affect 
earlier events). 

 
 
Remark 3.11.3. 

This solution is especially important, because any 
continuous function can be approximated with any 
accuracy (on a bounded interval) by a sequence of 
Heaviside functions, this is called the step-function 
approximation. 
 



 
Example 3.11.2.  

Step loading applied at time 1t  and stopped at 2t . 
 
 
 
 
 
 
Performing direct integration by (58), or applying 
superposition of two previous solutions (one for 

1 1( )h t t−w  and another for 1 2( )h t t− −w , we get: 
 

( )( )
( )( )

0

1

2

( )
0

1
1

1
2

( )

( )
( )

( )

t t

t t

t t

t e

e h t t

e h t t

−

−

−
−

= ⋅ +

⎛ ⎞− −⎜ ⎟
⋅ ⋅⎜ ⎟

− − −⎜ ⎟
⎝ ⎠

G

G

G

z z

I
G w

I

 

(64) 
where 1w  is defined by (62).  
 

Remark 3.11.4. 
Again, appearing Heaviside functions in the right-hand 
side of (64) reflects the fact that time is irreversible 
(events applied at times 1t  and 2t  cannot affect earlier 
events). 

t1 t2



Example 3.11.3.  
An impulse (δ-function) loading applied at time 1t . 
Let  
 
(65)  0 1( ) ( )t t t= δ −f f  
 
where 0f  is a force loading applied at masses of the 
considered system. According to (54) we must 
construct the auxiliary 2n -dimensional loading:  
 

(66)  0 11
0 1

( ) ( )
( )

t t t
t t−

⎛ ⎞
= = δ −⎜ ⎟⎜ ⎟⋅ δ −⎝ ⎠

0
w w

M f
 

 

where 0 1
0

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

0
w

M f
 

 
substituting this loading into Eq. (58) gives: 
 

 (67)   0 1( ) ( )
0 0 1( ) ( )t t t tt e e h t t− −= ⋅ + ⋅ −G Gz z w  

 
Remark 3.11.5. 

As before, Heaviside function in the right-hand side of 
(67) reflects the fact that time is irreversible, and event 
at time 1t  cannot affect earlier events. 



Example 3.11.4.  
A triangle loading applied at time 1t  and stopped at 
time 2t . 
 
 
 
 
 
 
 
 
(68)  ( )1 1 2 1( ) ( ) ( ) ( )t h t t h t t t t= − − − −f f  
 
where 1f  is a vectorial constant corresponding to the 
load intensity. As before, at first we construct an 
auxiliary 2n -dimensional loading ( )tw :  
 

(69)  ( )1 1 2 1( ) ( ) ( ) ( )t h t t h t t t t= − − − −w w  
 

where 

(70)  1 1
1

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

0
w

M f
 

 
Then, performing direct integration by (58), we get: 

t1 t2



(71)  
0( )

0

1

( )

( )

t t

t

t e

e t

−= ⋅ +

⋅ ⋅

G

G

z z

B w
 

where 2n -dimensional matrix ( )tB  is 
 

( )( )11 2
1

1 2

( ) ( )

( ) ( )

tt tt e t t e e

h t t h t t

−− − − −= − ⋅ − + ⋅ − ×

× − −

GG GB G G
 

 (72) 
 
 

Remark 3.11.5. 
Analyzing expressions (69) and (72) we can observe 
that the unit step from example 3.11.2 can be 
represented in either additive or multiplicative form: 

1 2( ) ( )h t t h t t− − −  or 1 2( ) ( )h t t h t t− −  
 

Exercise 3.11.1.  
Try to construct the solution for the following triangle 
loading: 

 
 
 
 
 
 
 
 

 
t1 t2



Example 3.11.5.  
An exponential loading of the form: 
 
 
 
 
 
 
 

(73)  
2

1( )
1( ) a t tt e −=f f  

where 1f  is a vectorial constant corresponding to the 
load intensity (height of the peak value), parameter 1t  
corresponds to the position of the extreme, and 
parameter a  is responsible for the “width” of the graph.  
 

Remark 3.11.6. 
The following plot demonstrates influence of the 
parameter a  on the width of the graph 
 
 
 
 
 
 
 
The lower values for a  lead to wider graphs.  

t

0

0.2

0.4

0.6

0.8

4 2 2 4t



Remark 3.11.7. 
Strictly speaking, function (73) does not have the finite 
support (it means that the function does not vanish 
outside any finite interval), but if the parameter a  is 
sufficiently large (>1) and time 1t  is distant from 0t  (in 
the plots, 0t  coincides with the origin), then in practice 
it can be assumed that this loading vanishes at 0t t< . 
 
 
 
 

As before, at first we construct an auxiliary 2n -

dimensional loading 
2

1( )
1( ) a t tt e −=w w , where 

constant 2n -dimensional vector 1w  have the form: 

 (74)  1 1
1

−

⎛ ⎞
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

0
w

M f
 

Applying integration procedure (58), we arrive at 
 

(75)  
0( )

0

1

( )

( )

t t

t

t e

e t

−= ⋅ +

⋅ ⋅

G

G

z z

B w
 

where 2n -dimensional matrix ( )tB  is 
 

(76)  ( )1( ) erf 2 ( )
2

it C a t t
a

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

B I G  

 

 and C  is an imaginary multiplier.  



Concluding remarks for 3.11. Part I. 
A. The great advantage of the considered 

method is in its principle ability to construct the 
solutions for loadings either bounded or 
unbounded in time domain, and without any 
restriction on the explored time interval (the 
time parameter t  in (58) can be either small or 
large).  

B. The other benefit of the method is in its 
straightforward nature (we do not need to 
expand the time dependent loading into any 
series to get the solution). 

C. The only possible disadvantage of the 
method is in necessity to construct and operate 
with the fundamental matrix teG .  

 
 

 
 



3.11. Transient response stage 
Part II. 

Constructing the solution  
for non-harmonic loading by the  

Fourier transform method  
 

In contrast to the preceding part, where formula (58) 
allowed us to construct the solution for any loading 
(having finite support or unbounded in time), herein it 
is assumed that the applied loading has finite support. 

 
Let the analyzed time period and the applied loading 
are contained in the time interval ( )0 1;t t . We can 
expand the applied loading into Fourier series: 
 

(77)  2 /( ) i kt p
k

k
t e

∞
π

=−∞
= ∑f f  

 
where 1 0p t t= −  and (generally complex) Euler 
coefficients are obtained by integration: 
 

(78)  
1

0

2 /1 ( )
t

i kt p
k

t
t e dt

p
π= ∫f f  



After expanding into series (77), we can apply a 
method, developed in Section 3.10, and exploit either 
n -dimensional or 2n -dimensional approaches for 
constructing the resulting solution in the form of 
Fourier series; see Sec.3.10 for detailed analysis.  
 
 

Remark 3.11.8. 
At applying formulas (49) the parameters kω  are: 
 

(79)  2 /k kt pω = π  
 
 

Remark 3.11.9. 
A. The analyzed time interval ( )0 1;t t  can be large, 

than the time interval of the applied loading: 
 
 
 
 
 
 

But, the interval ( )0 1;t t  cannot be smaller than 
the time interval of the applied loading, otherwise, 
the series expansion (77), (78) will not correspond 
to the applied load.  

t0 t1



 
B. It can be proved that the series (77) with Euler 

coefficients (78) and the constructed by (48) 
solution converge in 2L -topology for any 
integrable in ( )0 1;t t  time-dependent vector-
function ( )tf . But, the problem of summation 
Fourier series (sometimes it is called Fourier 
synthesis) with numerically obtained coefficients 
is an ill-posed problem. This means that if we 
retain large number of series, the solution instead 
of being convergent, becomes oscillating due to 
presence of numerical errors. 

 
 

Concluding remarks for 3.11. Part II. 
A. The obvious advantage of the Fourier 

expansion method is in its principle ability to 
avoid constructing the teG -matrix. 

B. But, it has at least two main disadvantages: (i) 
it cannot be applied to loadings with the 
unbounded time domain, and (ii) the problem of 
summation is an ill-posed, and special 
regularization methods should be applied to 
achieve the numerically stable results. 

 



3.12. Problems without damping.  
Decoupling method 

 

In such a case the equations of motion are 
 

(80)  ( )t⋅ + ⋅ =M x K x f  
 

Free vibration stage.  
Obtaining eigenvectors (natural modes) and 
eigenvalues (natural frequencies) 

 

For the free vibration analysis we have two possibilities: 
1. To apply the general method related to 

constructing an auxiliary 2n -dimensional 
matrix, as it was done in the preceding sections. 

2. To develop an alternative approach (known as 
decoupling method) without necessity to 
construct a 2n - dimensional matrix.  

 

For the regarded case equations of motion are 
 

(81)  0⋅ + ⋅ =M x K x  
 

The eigensolution for Eq. (81) is represented in the 
form of Euler’s solution (20): 
(82)  ( ) ptt e=x m  
 

Where m is a constant n -dimensional eigenvector 
(this vector is sometimes called as an amplitude), and 
p  is the corresponding eigenfrequency (natural 
frequency).  



Substituting Euler’s solution (82) into Eq. (81) yields: 
 

(83)  ( )2 0p + ⋅ =M K m  

That is the Christoffel equation for the regarded 
problem. The Eq. (83) can be rewritten in the form: 
 

(84)  ( )2det 0p + =M K  

 
 
Remark 3.12.1. 

We would like to remind that both matrices M  and K  
are symmetric, and M  is positive definite (and in most 
situations is diagonal), while K  is positive 
semidefinite (in real physical situations it should be 
even positive definite, to ensure positive potential 
energy)  

 
 
The following theorem takes place 
 
 
Theorem 3.12.1. 

The eigenproblem for Eq.(81) admits n  linearly 
independent eigenvectors, corresponding to n  
eigenvalues (some of the eigenvalues can coincide). 
 



 
To reduce Eq. (83) to the diagonal form we rewrite 
Eq.(83) in the equivalent form: 
 

1/ 2 2 1/ 2 1/ 2 1/ 2 0p − −⎛ ⎞
⋅ + ⋅ ⋅ ⋅ ⋅ =⎜ ⎟⎜ ⎟
⎝ ⎠S

M I M K M M m   

(85) 
 
Now, since the matrix 1/ 2 1/ 2− −= ⋅ ⋅S M K M  is 
symmetric, we can make diagonalization: 

t= ⋅ ⋅S S SS Q D Q , so Eq. (85) will take place: 
 

 (86) ( )1/ 2 2 1/ 2 0tp⋅ + ⋅ ⋅ ⋅ ⋅ =S S SM I Q D Q M m  

or, taking into account that t ⋅ ⋅ =S SQ I Q I , in 
another form: 

( )1/ 2 2 1/ 2 0t p⋅ ⋅ + ⋅ ⋅ ⋅ =S S SM Q I D Q M m  

(87) 
 
The latter equation has an equivalent form analogous to 
Eq. (84): 
 

(88)  ( )2det 0p + =SI D  

Eqs. (87), (88) allows us to formulate 



Theorem 3.12.2. 
Let eigenvalues ( ) 1,...,k k np =  are stored in a main 

diagonal of a special matrix, known as the spectral 
matrix  

(89) 

1

2

n

p
p

p

⎛ ⎞
⎜ ⎟
⎜ ⎟

⋅ ⋅ ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

Ω =  

then 
 
A. The spectral matrix satisfies the equation 

(90)  ( )1/ 2= − SDΩ  
 

B. All the eigenvectors (natural modes) are 
linearly independent columns of the matrix: 

1/ 2− ⋅ SM Q .  
 

Property  
of the eigenvalues of the system without damping 
 

All the eigenvalues are imaginary with the non-zero 
imaginary part (provided matrix K  is positive definite). 
This flows out from considering expression (89) for the 
eigenvalues and the assumption that matrix K  is 
positive definite.  



Remark 3.12.2. 
Strictly speaking, in expressions (89), (90) there should 
appear 2n  eigenvalues. More correctly we should write 
expression (90) for the spectral matrix, as 
 

(91)  ( )1/ 2= ± − SDΩ  
 
but, now, it is clear that all the eigenvalues appear in 
the complex-conjugate pares, allowing us to retain 
eigenvalues with either positive sign at the imaginary 
part, as in (90), or retain eigenvalues with negative 
sign. The same remark concerns eigenvectors in the 
Theorem 3.12.1.b.  
 

 
Concluding remark 3.12. 

The subsequent analysis of the system without damping 
can be done by applying methods developed in the 
preceding sections for the system with damping. These 
methods are based on either n , or 2n -dimensional 
formalism. 
 


