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ABSTRACT: In a previous publication [1] existence of “forbidden” planes for some transversely isotropic half spaces 
upon which the genuine Rayleigh waves cannot propagate was established. Now, it is shown that for specific cubic 
crystals and the directions of elastic symmetry there arise exponentially attenuating with depth surface waves of the 
non-Rayleigh type.  
 
 
1.INTRODUCTION  
In our previous paper [1] it was shown that some 
transversely isotropic media exhibit property of non-
existence of the genuine Rayleigh waves. The latter 
can be defined by the following expression 
 

 
3

( )

1

( ) kir ct
k k

k
C e ⋅ + ⋅ −

=

= ∑ x n xu x m νγ  (1.1) 

 
where kC  are complex coefficients determined up to a 
multiplier by the traction-free boundary conditions; 

km  are complex eigenvectors of the Christoffel 
equation, which will be introduced further; these 
eigenvectors correspond to complex roots kγ  of the 
characteristic polynomial; r  is the (real) wave 
number; ν  is an outward normal to the boundary Πν  
of the half-space along which the surface wave 
propagates; ∈Πn ν  is the unit vector determining 
direction of propagation of the surface wave, and c  is 
the phase speed. The terms  
 
 ( )( ) kir ct

k ke ⋅ + ⋅ −≡ x n xu x m νγ  (1.2) 
 
are called partial waves.  
 As was shown in [1], the existence of the 
“forbidden” planes upon which the genuine Rayleigh 
wave cannot propagate is due to appearing the Jordan 
blocks in a specially constructed 6 6× -matrix 
associated with the Christoffel equation.  
 The following analysis reveals that the 
situation regarded in [1] appears to be more 
complicated. The Jordan blocks in the regarded matrix 
lead to a qualitative change of the structure of the 
partial waves (1.2) and, while the genuine Rayleigh 

wave (1.1) at the situation considered in [1] does not 
exist, there remains an exponentially attenuating with 
depth surface wave of the non-Rayleigh type. It should 
also be noted that some surface waves of the non- 
Rayleigh type were reported in [3-5] by applying 
Stroh’s sextic formalism. 
 
 
2 BASIC NOTATIONS 
Equations of motion for an anisotropic elastic medium 
can be written in the form 
 
 ( , ) div 0x t x x∂ ∂ ≡ ⋅⋅∇ − =A u C u uρ ,(2.1) 
 
where u  is the displacement field; ρ  is the density of 
a medium; and C  is the fourth-order elasticity tensor 
assumed to be positive definite: 
 
 

3 3( ), 0
( ) 0

sym R R∈ ⊗ ≠
∀ ⋅⋅ ⋅ ⋅ >

A A
A A C A  (2.2) 

 
 The sign “ ⋅ ” in (2.1), (2.2) and henceforth 
means the scalar multiplication in the corresponding 
unitary or Euclidian vector space: 
 

 k
k

k
a b⋅ = ∑a b  (2.3) 

 
 Substituting partial waves (1.2) in Eq. (2.1) 
produces the Christoffel equation: 
 
 2( ) ( ) 0k k kc⎡ ⎤+ ⋅ ⋅ + − ⋅ =⎣ ⎦n C n I mν νγ γ ρ  

 
where I  is the unit diagonal matrix. Equation (2.3) 
can be written in the equivalent form: 
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 2det ( ) ( ) 0k k c⎡ ⎤+ ⋅ ⋅ + − =⎣ ⎦n C n Iν νγ γ ρ  (2.4′) 

 
The left-hand side of Eq. (2.4′) represents a 
polynomial of degree 6 with respect to kγ .  
 
 
 REMARK 2.1. It can be shown, see [1], that if 
the phase speed does not exceed the so called lower 
limiting speed ( lim

3c ): 
 
 lim

3c c< , (2.5) 
 
then all the roots of Eq. (2.3) are complex with 
Im( ) 0k ≠γ . The inequality (2.5) ensures that there 

exist three (not necessary aliquant) roots kγ  with 

Im( ) 0k <γ , which ensure attenuation with depth in a 
“lower” half-space at ( ) 0⋅ <xν . Only attenuating 
with depth partial waves, as being physically 
reasonable, will be considered. 
 
 
3 SIX-DIMENSIONAL FORMALISM  
Following [1], a more general representation for the 
partial wave than (1.2), will be considered: 
 
 ( )( ) ir ctx e ⋅ −′′ n xv  (3.1) 
 
where x ir′′ = ⋅xν  is the dimensionless complex 

coordinate, ( )x′′v  is an unknown vector function, and 
the exponential multiplier in (3.1) corresponds to 
propagation of the plane wave front along the direction 
n  with the phase speed c . Substituting representation 
(3.1) into Eq. (2.1) yields the following system of 
ordinary differential equations: 
 
 

2

2

( ) ( )
( ) 0

( )
x x x

c
′′ ′′⎛ ⎞⋅ ⋅ ∂ + ⋅ ⋅ + ⋅ ⋅ ∂ −

′′ =⎜ ⎟⎜ ⎟⋅ ⋅ −⎝ ⎠

C C n n C
v

n C n I

ν ν ν ν

ρ
  (3.2) 
 
Direct analysis of system (3.2) is rather difficult, and 
reduction to the first-order system can considerably 
simplify it.  
 Introduction of a new vector-function 

x′′= ∂w v  allows us to reduce the second-order 

system (3.2) in 3C  to the first-order one in 6C : 
 

 6x′′
⎛ ⎞ ⎛ ⎞

∂ = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

v v
R

w w
 (3.3) 

 
In (3.3) the complex six-dimensional matrix 6R  has 
the form 
 

 6
⎛ ⎞

= ⎜ ⎟− −⎝ ⎠

0 I
R

M N
 (3.4) 

 
where three-dimensional matrices M  and N  have the 
form 
 

 
1 2

1

( ) ( )
( ) ( )

c−

−

= ⋅ ⋅ ⋅ ⋅ ⋅ −

= ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

M C n C n I
N C C n n C

ν ν

ν ν ν ν

ρ
 (3.5) 

 
In (3.4) I  stands for the unit (diagonal) matrix in the 
three-dimensional space.  
 A surjective homomorphism 6 3: C Cℑ → , 
such that  
 
 ( , )ℑ =v w v  (3.6) 
 
will be needed for the subsequent analysis.  
 The following Proposition takes place [1]: 
 
 
 PROPOSITION 3.1. Let lim

3(0; )c c∈ :  

 a) Spectrum of the matrix 6R  coincides with 
the set of all roots of polynomial (2.4); 
 b) If γ  is a complex eigenvalue and 

( , )′ ′′=m m m , 3, C′ ′′∈m m  is the 
corresponding six-dimensional eigenvector of the 
matrix 6R , then γ  is also an eigenvalue with the 

corresponding eigenvector ( , )′ ′′=m m m ; 

 c) The matrix 6R  admits the following Jordan 
normal forms 
 

 

( )(I)
1 2 36 1 2 3

11(II)
36 3

1 1

diag , , , , , ,

1 1
diag , , , ,

0 0

=

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

J

J

γ γ γ γ γ γ

γ γ
γ γ

γ γ

(3.7) 

 

11
(III)

16 1

1 1

1 01 0
diag 0 1 , 0 1

0 0 0 0

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

J

γγ
γ γ

γ γ

 

 
 d) According to the Jordan normal forms the 
following three types of representations for surface 
waves occur: 
 (i) for the Jordan normal form (I)

6J , the 
corresponding representation is given by (1.1);  
 (ii) for the Jordan normal form (II)

6J , the 
representation is as follows: 
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1

1

3

( )
1 2 1

( )
2 2

( )
3 3

( ) ( ) ir ct

ir ct

ir ct

C ir C e
C e
C e

⋅ + ⋅ −

⋅ + ⋅ −

⋅ + ⋅ −

′= + ⋅

′+

′+

x n x

x n x

x n x

u x x m

m

m

ν

ν

ν

ν γ

γ

γ

 (3.8) 

 
where 3

1 1( ) C′ = ℑ ∈m m , and 1m  is the eigenvector 

of 6R  corresponding to the eigenvalue 1γ ; 
3

2 2( ) C′ = ℑ ∈m m , and 3
2 C∈m  is the generalized 

eigenvector associated with 1m , and the eigenvector 
6

3 C∈m  corresponds to the eigenvalue 3γ ;  

 (iii) for the Jordan normal form (III)
6J , the 

representation is as follows: 
 

 
1

1

1

21
1 2 32

( )
1

( )
2 3 2

( )
3 3

( ) ( ( ) )

( )

ir ct

ir ct

ir ct

C ir C C ir

e
C ir C e

C e

⋅ + ⋅ −

⋅ + ⋅ −

⋅ + ⋅ −

= + ⋅ + ⋅ ×

′ +

′+ ⋅ +

′

x n x

x n x

x n x

u x x x

m

x m

m

ν

ν

ν

ν ν

ν

γ

γ

γ

 (3.9) 

 
3

1 1( ) C′ = ℑ ∈m m , and 1m  is the eigenvector 

corresponding to the eigenvalue 1γ ; and 
6

2 3, C∈m m  are the generalized eigenvectors 

associated with 1m . 
 
 
 COROLLARY. For any of the Jordan normal 
forms of the matrix 6R  the three-dimensional 

components ,k k′ ′′m m  of the (proper) eigenvector 

km , satisfy the equations 
 

 
( )2 0

k k k

k k k

′′ ′=

′+ + ⋅ =

m m

I N M m

γ

γ γ
 (3.10) 

 
 Proof. When the matrix 6R  has no Jordan 
blocks, the solution of Eq. (3.3) in view of (3.4) leads 

to Eqs. (3.10). Thus, the component k′m  belongs to 

the kernel space of the matrix ( )2
k k+ +I N Mγ γ . The 

analogous situation takes place for any of the proper 
eigenvectors. 
 
 
 
4 CONSTRUCTING  THE GENERALIZED 
EIGENVECTOR FOR ( II)

6J   
In view of [2] the solution of Eq. (3.3) corresponding 
to a Jordan block of the second rank can be 
represented in the form 
 

 
( )

( ) ( )( )
1

1 1 1

2 1 1 2 2

,

, ,

x
C

e
C x

′′

⎛ ⎞′ ′′ +⎜ ⎟
⎜ ⎟

′ ′′ ′ ′′′′ +⎜ ⎟
⎝ ⎠

m m

m m m m

γ  (4.1) 

 
where as before x ir′′ = ⋅xν .  
 
 
 PROPOSITION 4.1. a) The three-dimensional 
components 1 1,′ ′′m m  of the genuine eigenvector 
satisfy Eqs. (3.10); 
 b) Components 2 2,′ ′′m m  of the generalized 
eigenvector satisfy the following equations: 
 

 
( ) ( )2

1 1 2 1 1

2 1 1 2

2′ ′+ + ⋅ = − + ⋅

′′ ′ ′= +

I N M m I N m

m m m

γ γ γ

γ
 (4.2) 

 
 c) At lim

3(0; )c c∈  the matrix ( )12 +I Nγ  is 
not degenerate; 
 d) At the same speed interval the vectors 

( )1 12 ′+ ⋅I N mγ  and 1 ( )′ ⋅ ⋅ ⋅m Cν ν  are orthogonal.  
 
 
 Proof. Conditions a) and b) flow out by direct 
substituting the solution (4.1) into Eq. (3.3). 
 To prove c) it is sufficient to demonstrate that 
the matrix 
 

 
( )1

1

( ) 2
2 ( ) ( )

⋅ ⋅ ⋅ + =

= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

C I N
C C n n C

ν ν

ν ν ν ν

γ
γ

 (4.3) 

 
is not degenerate. Considering multiplication of the 
right-hand side of (4.3) by any nonzero conjugate 
complex vectors 3, C∈a a  and accounting Remark 

2.1, which ensures 1Im( ) 0≠γ , we arrive to 
 

 ( )( )1

1

Im 2 ( ) ( )

2 Im( )( ) 0

⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ =

⊗ ⋅⋅ ⋅⋅ ⊗ ≠

a C C n n C a

a C a

ν ν ν ν

ν ν

γ

γ
 (4.4) 

 
In obtaining (4.4) we took into consideration that 

( )( )Im 0⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ =a C n n C aν ν , since the matrix 

( )⋅ ⋅ + ⋅ ⋅C n n Cν ν  is (real) symmetric. The last 
inequality in (4.4) completes the proof of condition c). 
 To prove d) Eq. (4.2) can be transformed into 
equivalent one by multiplying both sides by the 
nondegenerate matrix ( )⋅ ⋅Cν ν , this gives 
 
( )

( )

2 2
1 1 2

1 1

( ) ( ) ( )

2 ( ) ( )

c ′⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ =

′− ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅

C C n n C n C n I m

C C n n C m

ν ν ν ν

ν ν ν ν

γ γ ρ

γ
  (4.5) 
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Now, the vector 1′m  belongs to the kernel space of 
the matrix in the left-hand side of Eq. (4.5), this flows 
out from Proposition 4.1.a. Moreover, the regarded 
matrix is complex symmetric, hence its left and right 
eigenvectors coincide. The latter allows us to write for 
the left-hand side of Eq. (4.5) 
 

2
1 1

1 22

( ) ( )
0

( )c

⎛ ⎞⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
′ ′⋅ ⋅ =⎜ ⎟⎜ ⎟+ ⋅ ⋅ −⎝ ⎠

C C n n C
m m

n C n I

ν ν ν νγ γ

ρ
 (4.6) 

 
Similarly, for the right-hand side of Eq. (4.5) 
 

( )1 1 12 ( ) ( ) 0′ ′⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ =m C C n n C mν ν ν νγ  (4.7) 
 
In view of (3.5), Eq. (4.7) completes the proof. 
 
 
 COROLLARY. In the factor-space 

( )3 2
1 1/ KerC + +I N Mγ γ , the vector 2′m  admits 

the following representation  
 

( ) ( )12
2 1 1 1 12

−
′ ′= − + + ⋅ + ⋅m I N M I N mγ γ γ  (4.8) 

 
 
 
 REMARK 4.1. At the regarded speed interval 

lim
3(0; )c c∈  the eigenvectors of the complex 

symmetric matrix appearing in Eq. (4.6) may not form 
a set of mutually orthogonal vectors in 3C , in contrast 
to the mutually orthogonal eigenvectors of any real 
symmetric matrix. 
 
 
 
5 DISPERSION EQUATION FOR ( II)

6J  
The traction-free boundary conditions on the surface 
Πν  can be written in the form: 
 

 0
∈Π

≡ ⋅ ⋅⋅∇ =
x

t C u
ν

ν ν  (5.1) 

 
Substituting the displacement field into Eq. (5.1) 
yields 
 

 
3

1

0k k
k

C
=

=∑ t  (5.2) 

 
where kt  are the partial surface traction. 
 The following two cases for the partial surface 
traction fields will be considered: 
 (i) For the Jordan normal form (I)

6J  and the 
representation (1.1), the partial surface tractions are of 
the form 

 
 ( ) ( )ir ct

k k k e ⋅ −′= ⋅ ⋅ + ⋅ ⋅ ⋅ n xt C C n mν ν νγ  (5.3) 
 
 (ii) For the Jordan normal form (II)

6J  and the 
representation (3.8), the partial surface tractions are of 
the form 
 

 

( )
( )

( )
( )

( )
1 1 1

1 1 ( )
2

1 2

( )
3 3 3

ir ct

ir ct

ir ct

e

e

e

⋅ −

⋅ −

⋅ −

′= ⋅ ⋅ + ⋅ ⋅ ⋅

′⋅ ⋅ ⋅ +⎛ ⎞
= ⎜ ⎟⎜ ⎟′⋅ ⋅ + ⋅ ⋅ ⋅⎝ ⎠

′= ⋅ ⋅ + ⋅ ⋅ ⋅

n x

n x

n x

t C C n m

C m
t

C C n m

t C C n m

ν ν ν

ν ν

ν ν ν

ν ν ν

γ

γ

γ

γ

 (5.4) 

 
 Equations (5.2) can be regarded as linear 
system with respect to the unknown coefficients kC . 
Existence of nontrivial solution of Eqs. (5.2) is 
equivalent to vanishing of the following determinant: 
 
 1 2 3 0∧ ∧ =t t t  (5.5) 
 
Equation (5.5) provides a necessary and sufficient 
condition for existence of the surface wave. This 
equation is equally applicable to both cases (i) and (ii), 
since (5.5) is equivalent to linear dependence of the 
partial surface tractions 1 2 3, ,t t t , which flows out 
from boundary conditions (5.2). Thus, the form of Eq. 
(5.5) remains unaltered when Jordan blocks arise. The 
only difference between cases (i) and (ii) is in 
representation for the partial surface tractions. 
 Equation (5.5) is known as the dispersion 
equation despite the fact, that the phase speed 
determined by this equation does not depend upon the 
wave number, or the wave frequency. 
 
 
6 NON-RAYLEIGH WAVES IN CUBIC 
CRYSTALS 
Let the unit vectors ke  and 1,2,3k =  be oriented 
along the directions of elastic symmetry for a cubic 
crystal, then the elasticity tensor C  can be 
represented in the following form:  
 

 

11

12

444 sym( ) sym( ) ,

k k k k
k

k k m m
k m

k m k m
k m

c

c

c
≠

<

= ⊗ ⊗ ⊗ +

⊗ ⊗ ⊗

⊗ ⊗ ⊗

+

∑

∑

∑

C e e e e

e e e e

e e e e

 (6.1) 

where 11 12,c c , and 44c  are the elastic constants, and  

 1
2sym( ) ( )k m k m m k⊗ ≡ ⊗ + ⊗e e e e e e  (6.2) 

The positive definite condition (2.2) applied to the 
elasticity tensor (6.1) gives 
 
 11 12 11 12 440, 2 0, 0c c c c c− > + > > . (6.3) 
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 REMARK 6.1. If 11 12 442c c c= + , then such an 
elasticity tensor corresponds to isotropic material with 
Lamé’s constants 11c=λ  and 44c=µ . For isotropic 
material the positive definite condition (6.3) yields the 
well known 
 
 3 2 0, 0+ > >λ µ µ . (6.4) 
 
 Let the vectors ν , n , and = ×w nν  be 
directed along the crystallographical axes defined by 
the vectors ke   1,2,3k = , substitution of the 
elasticity tensor (5.1) into Eq. (3.5) gives 
 

 

2
44

11
2 2

11 44

44 44

c c
c

c c c c
c c

−
= ⊗ +

− −
⊗ + ⊗

M

n n w w

ν ν
ρ

ρ ρ
 (6.5) 

 12 4412 44

11 44

c cc c
c c

++
= ⊗ + ⊗N n nν ν

  
 
The following Proposition flows out directly from the 
analysis of the eigenproblem for the matrix 6R  [1]: 
 
 PROPOSITION 6.1. Suppose that the condition 
(6.3) is satisfied and the phase speed determined by 
the equation 
 

 

( )12 44 11 44 11 12 12 44 11
2

11 44

11 44 11 12 12 44 11
2

11 44

2 ( )( 2 )2
( )

( )( )( 2 )
( )

c c c c c c c c c

c c

c c c c c c c
c c

c + + + −

−

+ + + −

−

=

−

ρ
 (6.6) 

 
satisfies also the equation 
 

 

3 2 2 2
11 11 44 11 11 12

2 2 2 2
11 12 11 12 11 44

2 2 2
44 11 12

( ) 2 ( )

( )( 2 )

( ) 0

c c c x c c c x
c c c c c c x

c c c

− − − +

− − + −

− =  (6.7) 

 
where 2x c= ρ , then 
 a) At this value of the phase speed the matrix 

6R has the Jordan normal form (II)
6J ; 

 b) The different roots kγ  of the Christoffel 

equation (2.4′) with Im 0k k≡ <γ α  corresponding to 
Eq. (6.6) are as follows: 
 

 

1/ 4 1/ 42 2

1
44 11

1/ 22

3
44

1 1 ,

1 ,

c ci
c c

ci
c

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

ρ ργ

ργ

 (6.8) 

 

where 1γ  is the multiple root. 

 c) The complex amplitudes k′m  in the 
representation (3.8) have the form: 
 

1/4 1/42 2

1
11 44

1/4 1/42 2

2 44 11
44 11

3

1 1 ,

1 1

,

c cp i
c c

c csp c i c
c c

⎛ ⎞⎛ ⎞ ⎛ ⎞
′ ⎜ ⎟= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
′ ⎜ ⎟= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
′ =

m n

m n

m w

ν

ν

ρ ρ

ρ ρ  (6.9) 

where p  is the normalization factor: 
 

 

1/21/2 1/22 2

11 44

1 1c cp
c c

−
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

ρ ρ
 (6.10) 

 
and the parameter s  is obtained by Eq. (4.8): 
 

1/2 1/22 2

11 44
11 44

11 21/2 1/22 2

11 44
11 44

1 1

1 1

c cc c
c c

s c
c cc c

c c

⎛ ⎞ ⎛ ⎞
− + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=−
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

ρ ρ

ρ ρ
 (6.11) 

 
 d) The dispersion Eq. (5.5) takes the form: 
 
 1 2 30, 0C× ≡ =t t  (6.12) 
 
 
 REMARK 6.2. a) Direct analysis reveals that the 
complex amplitudes k′m  defined by Eq. (6.8) are not 

orthogonal (the case 11 44c c=  at which they could be 
orthogonal, is inconsistent with the positive definite 
condition and Eqs.(6.6), (6.7)). 
 b) Equation (6.6) defines also a transition point 
between decaying non-oscillating waves (genuine 
Rayleigh waves) and decaying oscillating waves 
(generalized Rayleigh waves).  
 
 
 Thus, Proposition 6.1 completely characterizes 
the surface wave propagating on a basal plane of the 
cubic crystal half space and corresponding to the 
representation (3.8). 
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