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Annotation 

A six-dimensional complex formalism for analysis of Lamb waves 
propagating with subsonic speed in anisotropic plates is formulated. 
Conditions for non-existence of certain Lamb waves in anisotropic plates are 
obtained. An example of transversely isotropic plate having “forbidden” 
speed at which no subsonic Lamb wave propagates, is presented. 
 

 
 
1. Introduction 
 Beginning from Lamb’s pioneering work [1] in which the governing 
equations for harmonic waves propagating in isotropic plates with traction-free 
boundaries were first derived, in most of the subsequent theoretical works on 
Lamb waves in plates it was assumed that such a wave consists of several partial 
waves of the form 
 
 )()( ctirir

kk ee k −⋅⋅γ= xnxmxu ν  (1.1) 
 
where ku  is the displacement field of the k -th partial wave; km  is vectorial, in 
general, complex amplitude determined by the Christoffel equation (this 
equation will be introduced in Sec. 2); kγ  is a root of the Christoffel equation; r  
is the wave number; ν  is the unit normal to the middle plane of a plate; n  is the 
unit vector determining direction of propagation of Lamb wave; c  is the phase 
speed; and t  is time. For existence of the resulting Lamb wave all partial waves 
should have the same wave number and phase speed. Bearing in mind that the 
Christoffel equation has six roots, representation for Lamb wave takes the form 
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where kC  are arbitrary complex coefficients determined up to a multiplier by 
boundary conditions.  
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 REMARK 1.1. a) Representation (1.1) for partial waves composing Lamb wave is also 

used for analysis of Rayleigh waves propagating on the traction-free plane boundary of an 
elastic half space, see [2-8]; and for Stoneley interfacial waves propagating on the plane 
boundary between contacting dissimilar elastic half spaces, see [9-12]. 

 b) For Rayleigh waves roots kγ  in representation (1.1) should be complex with 
0)Im( <γk , this ensures attenuation of Rayleigh wave in the “lower” half-space 

0)( <⋅xν . If 0)Re( =γk  for all partial waves composing Rayleigh wave, then such a 
wave is called genuine Rayleigh wave; if 0)Re( ≠γk  for some k , then it is sometimes 
called generalized Rayleigh wave [8]. For Lamb waves cases 0)Re( =γk  and 

0)Re( ≠γk  usually are not distinguished.  
 
 
 The following analysis indicates that for Lamb waves propagating with 
subsonic phase speed in anisotropic plates (subsonic phase speed does not 
exceed the minimal speed of all bulk waves propagating in the same direction) 
representation (1.2) needs in correction: in some cases dependent on anisotropy 
Lamb wave may consist in fewer components, than it is assumed in traditional 
approaches [13 - 16]. This phenomenon results in a statement asserting 
possibility to exist “forbidden” subsonic speed, at which no Lamb wave can 
propagate. An example of the transversely isotropic plate having “forbidden” 
speed is constructed.  
 
 
2. Basic notations 
 In the absence of body forces the equation of motion for anisotropic 
medium can be written in the form 
 
 0div),( =ρ−⋅∇⋅≡∂∂ uuCuA xxtx  (2.1) 
 
where ρ  is the material density; C  is the fourth order elasticity tensor assumed 
to be positive definite:  
 
 0)(

,,,0),( 33
>≡⋅⋅⋅⋅∀ ∑

≠⊗∈ nmji
mn

ijmn
ij

RRsym
BCBBCBB

BB
 (2.2) 

 
Substituting partial wave (1.1) in Eq. (2.1) produces the Christoffel equation: 
 
 ( ) 0)()( 2 =⋅ρ−γ+⋅⋅+γ kkk c mInCn νν  (2.3) 
 
where I  is the unit diagonal matrix. Equation (2.3) admits an equivalent form 
 
 ( ) 0)()(det 2 =ρ−γ+⋅⋅+γ InCn ckk νν  (2.4) 
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Left-hand side of Eq. (2.4) can be regarded as a polynomial of degree six with 
respect to the parameter kγ .  
 
 

 REMARK 2.1. а) Since polynomial coefficients in the left-hand side of Eq. (2.4) are 
real, corresponding roots kγ  are either real or complex-conjugate.  
 b) It can be shown (see, for example, [5]) that Eq. (2.4) has no real roots if the phase 
speed is less than the so called (lowest) limiting speed lim

3c . In its turn, lim
3c  does not 

exceed the lowest speed of all bulk waves propagating in the same. Hereinafter, the 
following condition will be imposed on the phase speed  
 
 lim

30 cc <<  (2.5) 
 
Condition (2.5) ensures absence of the real roots of Eq. (2.4). 

 
 
3. Six-dimensional formalism 
 Since it is not known in advance, whether representation (1.1) for partial 
wave is the only possible one, a more general representation for a harmonic 
wave with the plane wave front and non-homogeneous amplitude will be 
considered: 
 
 )()( ctriex −⋅′′ xnv  (3.1) 
 
where )(x ′′v  is a non-constant complex-valued vector-function; x⋅=′′ νirx , 
thus, x ′′  is dimensionless (imaginary) coordinate in the direction determined by 
vector ν . Exponential multiplier in (3.1) corresponds to movement of the plane 
wave front in the direction of propagation with the phase speed c . At this stage, 
no a priory restrictions on smoothness are imposed on function )(x ′′v . 
 Substituting representation (3.1) in Eq. (2.1) yields the following 
differential equation of the second order 
 
 ( ) 0)()()()( 22 =′′ρ−⋅⋅+∂⋅⋅+⋅⋅+∂⋅⋅ ′′′′ xcxx vInCnCnnCC νννν  (3.2) 
 
Direct analysis of Eq. (3.2) is difficult. Situation can be simplified by 
introducing additional vector-function 
 
 )()( xx x ′′∂=′′ ′′vw  (3.3) 
 
Bearing in mind (3.3) and the positive definite condition for the tensor C , Eq. 
(3.2) can be reduced to a matrix differential equation of the first order with 
respect to six-dimensional vector-function ( )wv,  
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In (3.4) real matrices M  and N  are as follows 
 

 
)()(

),()(

1

21

νννν

νν

⋅⋅+⋅⋅⋅⋅⋅=

ρ−⋅⋅⋅⋅⋅=

−

−

CnnCCN

InCnCM c
 (3.5) 

 
Taking into account the structure of matrix 6R , it is convenient to represent 
corresponding six-dimensional eigenvectors of 6R  in the form );(6 mmm ′≡ , 
where 3, C∈′mm  (here kC  denotes k -dimensional complex vector space).  
 A surjective homomorphism 36: CC →ℑ , such that  
 
 mm =ℑ )( 6  (3.6) 
 
will be needed for the subsequent analysis.  
 
 

 REMARK 3.1. а) Due to (3.4), (3.5), determinant of the matrix 6R  can be 
represented in the form 
 

 ( )1 2
6det det ( ) ( )c−= ⋅ ⋅ ⋅ ⋅ −ρR C n C n Iν ν  (3.7) 

 
Right-hand side of (3.7) shows that matrix 6R  is not degenerate at any phase speed 

with the exception when 3,2,1),(2 =⋅⋅λ=ρ kc k nCn  (here kλ  denotes an 
eigenvalue of the corresponding matrix); i.e. degeneracy occurs when the phase speed 
coincides with the speed of one of the bulk waves propagating in the same direction. It is 
clear that for Lamb wave with the phase speed satisfying (2.5), matrix 6R  is not 
degenerate.  
 b) Since matrix 6R  is not symmetric, its left and right eigenvectors generally are 
different. In the subsequent analysis term “eigenvector” will be referred to right 
eigenvector of matrix 6R .  
 c) Matrix 6R  resembles one, which is used for constructing the “fundamental 
elasticity tensor”. Such a tensor and the corresponding matrix were introduced in [17] 
and were used later on for analysis of Rayleigh and Stoneley waves propagating in 
anisotropic halfspaces, see [4 - 8, 11, 12]. 
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 PROPOSITION 3.1. a) A set of all roots of the Christoffel equation (2.4) 
coincides with a set of all eigenvalues of matrix 6R ; 
 b) Spectral space of the Christoffel equation (2.3) coincides with 
surjection (3.6) of the spectral space of matrix 6R . 
 
 
 Proof. Let kγ  be a root of the characteristic polynomial (2.4) and km  be the 

corresponding eigenvector of Eq. (2.3). Substituting functions x
k

kex ′′γ=′′ mv )(  and 
x

kk
kex ′′γγ=′′ mw )(  in Eq. (3.4) yields  

 

 ⎟⎟
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k
k m

m
R

m
m

6  (3.8) 

 
Thus, every root of Eq. (2.4) is an eigenvalue of matrix 6R , and the corresponding 
eigenvector of Eq. (2.3) coincides with the vector )( 6mℑ . 

 Further, let kγ  be an eigenvalue, and 3,),;( Ckkkk ∈′′ mmmm  be the 
corresponding eigenvector of matrix 6R  
 

 ⎟⎟
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k m

m
R
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6  (3.9) 

 
Relation (3.9) along with (3.4), (3.5) yield 
 
 ( ) 0)()()( 22 =⋅ρ−⋅⋅+⋅⋅+⋅⋅γ+⋅⋅γ kkk c mInCnCnnCC νννν  (3.10) 
 
But (3.10) coincides with (2.3).  

 
 
 Remark 2.1 ensures 
 
 

 COROLLARY. Under condition (2.5) all eigenvalues of matrix 6R  are 
complex and form spectrum of 6R  by the complex-conjugate pairs.  

 
 

 PROPOSITION 3.2. Under condition (2.5) matrix 6R  is not normal 
matrix, except may be one value of the phase speed c . 
 
 
 Proof. Definition of the normal (real) matrix gives  
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tt
6666 RRRR ⋅=⋅  (3.11) 

 
In view of (3.4) relation (3.11) implyies 
 
 IMM =⋅t  (3.12) 
 
Taking into account (3.5), relation (3.12) requires 
 
 ICnCn 2cρ=⋅⋅−⋅⋅ νν  (3.13) 
 
This completes the proof, since the left-hand side of (3.13) is independent of c .  

 
 

 COROLLARY. Under condition (2.5) eigenvectors of matrix 6R  do not 
form an orthogonal basis in 6C , except may be one value of the phase speed 
c  at which relation (3.13) holds. 

 
 
4. Representations for Lamb waves 
 Structure of the general solution of system (3.4) is determined by the 
Jordan normal form of matrix 6R  [18, Chap. IV, §5]. Due to Proposition 3.1 
and corresponding Corollary, for the phase speed which satisfies (2.5) only 
three types of the Jordan normal forms of matrix 6R  can occur 
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In expressions (4.1) eigenvalues kγ  are renumbered in such a way that they 
satisfy the following condition  
 
 ,...2,1,212 =γ=γ − kkk  (4.2) 
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Moreover, since matrix 6R  is real, a condition analogous to (4.2) is satisfied by 
eigenvectors of 6R : 
 
 );();( 221212 kkkk mmmm ′=′ −−  (4.3) 
 
 Transition from the system of the first order (3.4) to the initial system 
(3.2) allows to represent the general solution (the fundamental matrix) in the 
form 
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where kC  are unknown complex coefficients, and 1 2 3,k k C∈m m  are the 
generalized eigenvectors associated with the eigenvector km .  
 
 
5. Disperse equations 
 Traction-free boundary conditions are formulated on the plate surfaces 
 
 0=⋅∇⋅⋅±≡

±=⋅±=⋅
ν

hh νν
ν

x
x

x
uCt  (5.1) 

 
In (5.1) h2  is the plate thickness. 
 Substituting the displacement field (4.4) in the boundary conditions 
(5.1) and transition to the dimensionless coordinate )( x⋅=′′ νirx  gives 
 

 
6

1
0k x

k k
k x

C e ′′γ

= ′′=±ξ

=∑ t  (5.2) 
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where irh=ξ , and kt  is (up to the exponential multiplier) the surface traction 
corresponding the coefficient kC .  
 Solution of the boundary-value problem (5.2) can be treated as a non-
trivial solution of the linear system (5.2) with respect to unknown coefficients 

, 1,...,6kC k = . The latter is equivalent to vanishing all the determinants of the 
sixth-order associated with the 6 6× -matrix: 
 

 

61

61

1 6

1 6

( ) ... ( )
det 0

( ) ... ( )

e e

e e

+γ ξ+γ ξ

−γ ξ−γ ξ

⎛ ⎞ξ ξ
⎜ ⎟

δ ≡ =⎜ ⎟
⎜ ⎟⎜ ⎟−ξ −ξ⎝ ⎠

t t

t t

 (5.3) 

 
 Equations (5.3) are the disperse equations we are looking for. In the 
case of arbitrary elastic anisotropy solvability of Eqs. (5.3) has not been studied, 
however, the following propositions take place 
 
 

 PROPOSITION 5.1. Condition  
 

 
νν

ν
⊗⋅⋅⋅⋅⊗
⊗⋅⋅⋅⋅⊗

−=γ
kk

kk
k mCm

nmCm  (5.4) 

 
is necessary for Lamb wave to be composed by a single partial wave (1.1). 

 
 

 Proof. If at some k  corresponding partial wave satisfies boundary conditions, then 
Eqs. (5.2) yield 
 
 ( ) 0=⋅⋅⋅+⋅⋅γ kk mnCC ννν  (5.5) 
 
Multiplication of both sides of Eq. (5.5) by km  gives  
 
 0=⊗⋅⋅⋅⋅⊗+⊗⋅⋅⋅⋅⊗γ nmCmmCm kkkkk ννν  (5.6) 
 
Then, in view of the positive definiteness of the elasticity tensor, it remains to note that 
Eq. (5.6) is equivalent to (5.4). 

 
 

 PROPOSITION 5.2. Condition (5.4) is necessary for Lamb wave to be 
composed by two partial waves (1.1) corresponding to the complex-
conjugate eigenvalues. 
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 Proof. Assume that (5.4) does not hold, but a nontrivial solution of Eqs. (5.2) exists 
at some eigenvalues kγ  and kγ . In this case Eqs. (5.3) reduce to two equations. The 
first one can be represented in the form 
 
 0k k× =t t , (5.7) 
 
where [ ]k k k= γ ⋅ ⋅ + ⋅ ⋅ ⋅t C C n mν ν ν . Equation (5.7) means colinearity of vectors 

kt  and kt : 
 
 ,k k= α = αt e t e  (5.8) 
 
where α  is a complex constant ( 0≠α , since (5.4) does not hold by the assumption); 
and 3R∈e . By accounting (5.8), the second equation flowing out from (5.3) takes the 
form 
 

 0det =

⎟
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⎟
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⎞

⎜
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⎝

⎛

αα
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ξγ+ξγ+

kk

kk

ee

ee
 (5.9) 

 
Direct verification shows that for 0)(Im ≠γk  and 0≠α  the left-hand side of (5.9) 
cannot vanish.  

 
 

 REMARK 5.1. а) Condition (5.4) is not sufficient for Lamb wave to be composed by 
a single partial wave, or two partial waves corresponding to the complex-conjugate 
eigenvalues. This is because of possibility for vectors km  and 

[ ] 0≠⋅⋅⋅+⋅⋅γ≡ kkk mnCCt ννν  to be mutually orthogonal. 
 b) Proposition 5.1 remains valid for Rayleigh waves. In this case conditions (5.1), 
(5.2) are formulated on the free surface at 0=′′x . In an indirect proof, based on Stroh’s 
formalism (see [4, 5]), it was shown that subsonic Rayleigh wave cannot be composed 
by a single partial wave. For supersonic Rayleigh wave propagating on a half-space with 
elastic symmetry a condition analogous to (5.4) was derived in [19]. 

 
 
6. Lamb waves in transversely isotropic plates 

 Let unit vectors 3,2,1, =kke  form an orthogonal basis in 3R , and vector 
1e  coincides with the normal vector ν  to the median surface of a plate, while 

vectors 2e  and 3e  lie on the basal plane of a transversely isotropic medium. 
Corresponding elasticity tensor has following components  
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where )( 23222

1
44 ccc −= . Condition of positive definiteness for the regarded 

elasticity tensor yields 
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Substituting the elasticity tensor (6.1) in (3.5) gives 
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where ν×= nw .  
 With the account of (6.3) the following proposition flows out directly from 
the analysis of the spectral properties of matrix 6R : 
 
 
 PROPOSITION 6.1. a) Relation between the elastic constants, density, and 
phase speed  
 

2
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is necessary and sufficient for rise of the Jordan normal form )II(

6J ; 
 b) Different roots kγ  of the Christoffel equation (2.4) corresponding to 
(6.4) are  
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where 1γ  and 2γ  correspond to the Jordan blocks; 
 c) Corresponding amplitudes have the form 
 

 

1/ 4 1/ 42 2
22 11 2

11 55

1/ 4 1/ 42 2 11 122 11 2
55 11

3 4

1 , ,

1 , ,

c c cp ip
c c

c c cip p
c c

⎛ ⎞ ⎛ ⎞− ρ ρ
= + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ρ −ρ
= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= =

m n m m

m n m m

m m w

ν

ν  (6.6) 

 
where p  is the normalization factor: 
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 REMARK 6.1. a) Natural requirement for the right-hand side of (6.4) to be real and 
positive leads to the following restrictions:  
 

 

;044

;02;

2211
2

555512
2

12

2211551255225511
2

125511

>−++

≥−+++≠

cccccc

ccccccccccc
 (6.8) 

 
In (6.4) - (6.8) and hereinafter the case 5511 cc =  is not considered. Of course, 
conditions (6.8) should be completed with (6.2) and (2.5). Direct verification shows that 
all together conditions (6.8), (6.2) and (2.5) define non-empty region 5R⊂Ω , of 
admissible values of elastic parameters. 

 
 
 Finally, the main result of this section can be proved: 
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 THEOREM 6.1. No Lamb wave propagates in the transversely isotropic 
plate, if the phase speed satisfies condition (6.4).  

 
 

 Proof. Substituting eigenvalues (6.5) and corresponding amplitudes (6.6) in (5.3) 
gives two independent conditions 
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 (6.9) 

 
and 
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 (6.10) 

 
where 1 1 2 2, , , ,a b a b d  are scalar (nonzero) complex coefficients determined by (6.5), 
(6.6) and (5.3). Finally, direct computation of the determinants in the left-hand sides of 
(6.9) and (6.10) reveals that both these determinants do not vanish at nonzero ξ , this 
completes the proof. 

 
 

 REMARK 6.2. a) A more detailed analysis shows that “forbidden” speed for a 
transversely isotropic plate does not depend upon the wave frequency and thickness of a 
plate. As it follows from (6.4) such a speed is determined only by physical properties of 
a material. 
 b) It can be highly important for practical applications (for example, design of the 
delay lines and filters in electronics) that some transversely isotropic materials which 
only slightly differ from isotropic ones can have “forbidden” speed for Lamb waves. For 
instance, taking in (6.2), (6.8) 
 
 0;;1 232

1
552211 ==== cccc  (6.11) 

 
we arrive to the following restriction imposed on 12c : 
 

 0122
2 >> c  (6.12) 

 
 Let 1

12 10c =  and 1=ρ  (the material with elastic constants (6.11) and 012 =c  is 

isotropic). Computation of “forbidden” speed by (6.4) yields 
 

 6824.050
332212 ≈= −c  (6.13) 
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It remains to check whether condition (2.5) is satisfied. But, for waves propagating in 
the isotropic plane of arbitrary transversely isotropic material 
 
 3

lim
3 cc =  (6.14) 

 
where 3c  denotes the minimal speed of all bulk waves propagating in the isotropic 
plane. For the regarded case computation of 3c  gives 
 

 7071.02
2

3
55 ≈== ρ

cc  (6.15) 

 
Comparison of the right-hand sides of (6.13) and (6.15) shows that condition (2.5) is 
satisfied. 
 c) For the transversely anisotropic material considered in the preceding remark, 
matrix 6R  can be regarded as one parametric with respect to the phase speed c . 
Analysis of the spectral properties of the matrix 6R  in a small vicinity V  of the phase 
speed (6.13) with the account of notations (4.1) - (4.3) reveals that at 6824.0→c  
 

 
).,(),(),,(),(

,,

44223311

4231

mmmmmmmm ′→′′→′

γ→γγ→γ
 (6.16) 

 
It should also be noted that everywhere in V  matrix 6R  has the Jordan normal form 

)I(
6J , except the limiting value 6824.0=c  where the Jordan normal form )II(

6J  
arises.  
 At the same time, boundary conditions (5.2) with the account of (6.16) lead to the 
following relations (at 6824.0→c ) between coefficients kC : 
 
 0,, 654231 ==−→−→ CCCCCC  (6.17) 
 
Combining (6.16), (6.17) with representation (1.2) (which is valid everywhere in V, 
except the limiting value) yields: 
 
 0)( →xu  (6.18) 
 
uniformly with respect to x  at 6824.0→c . In turn, expression (6.18) ensures that both 
strain and kinetic specific energy functions along with the energy fluxes tend to zero at 

6824.0→c . 
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