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Abstract. A mathematical model for analyzing both Love waves and horizontally polarized 

shear surface waves (SH-waves) propagating in stratified media with monoclinic symmetry is 

worked out. Analytic and numerical solutions for SH and Love waves obtained by applying 

the Modified Transfer Matrix (MTM) method and a special complex formalism, are 

presented. Displacement fields, specific energy, phase, ray, and group velocities, and 

dispersion curves for SH and Love waves are compared and analyzed. Plates with different 

types of boundary conditions imposed on the outer surfaces are considered. Behavior of the 

leakage Love waves and anomalous SH-waves is discussed.  
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1. Introduction 

Horizontally polarized shear surface waves (SH-waves) propagating in 

multilayered plates resemble Love waves [1] in polarization, but differ in absence of a 

contacting half-space (substrate), and, hence excluding necessity to impose 

Sommerfeld’s emission condition: 

 1( , ) ( ),t O x x−′ ′= → ∞u x  (1.1) 

where u  is the displacement field in the substrate; x′ ≡ ⋅xν  is the coordinate along 

depth of the substrate, and ν  is the unit normal to the plane boundary of the substrate; 

see Fig.1.  
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We will show later that absence of condition (1.1) results in a completely 

different behavior of the SH-waves in layered plates comparing to Love waves. For 

example, it is known an existence inequality [2] for a genuine Love wave propagating 

in an isotropic traction-free layer contacting with isotropic substrate: 

 ( ) ( )T T
layer substrate

c c<nm nm , (1.2) 

where Tcnm  denotes speed of the corresponding shear bulk wave propagating in n , and 

polarized in m  direction. Violating inequality (1.2) prevents Love waves to exist. As 

will be shown, the SH-waves in two-layered plates exist at any physically admissible 

properties of homogeneous layers and at traction-free, clamped, or mixed boundary 

conditions (one outer surface is traction free, and another is clamped).  

 The main method used for constructing analytic and numerical solutions for SH 

and Love waves, is based on a combination of a complex formalism [3, 4] and the 

modified transfer matrix (MTM) method [5, 6]. The latter method along with the 

multiprecision computations allowed us to avoid numerical instability of the solution 

arising at layers of large thickness and high frequencies of the waves. This is known as 

the “large hω -problem’, where h  is the layer thickness and ω  is frequency; see [7 - 9]. 

We should also mention that herein we do not consider the exceptional waves 

corresponding to appearing Jordan blocks in the Christoffel equation; see [5]. 

 

 

2. Basic notations 

All the regarded layers and a substrate are assumed to be homogeneous, anisotropic 

and linearly hyperelastic. Equations of motion for homogeneous anisotropic elastic 

medium can be written in the form: 

 ( , ) div 0x t x x∂ ∂ ≡ ⋅ ⋅∇ − ρ =A u C u u  (2.1) 

where ρ  is the material density, and C  is the elasticity tensor assumed to be positive 

definite: 

Figure 1.   Base vectors 
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3 3( ), 0 , , ,

( ) 0ijmn
ij mn

sym R R i j m n
A C A

∈ ⊗ ≠
∀ ⋅ ⋅ ⋅ ⋅ ≡ >∑

A A
A A C A  (2.2) 

 
 REMARK 2.1. a) The other assumption concerns symmetry of the elasticity tensor. It will be 

assumed that all the regarded materials possess planes of elastic symmetry coinciding with the sagittal 

plane 0⋅ =m x , where vector m  is the polarization vector of the SH-wave. This is achieved by the 

elasticity tensor belonging to the monoclinic system, and the latter is equivalent to vanishing all of the 

decomposable components of the tensor C  having odd number of entries of the vector m  in the 

orthogonal basis in 3R  generated by the vector m  and any two orthogonal vectors belonging to the 

sagittal plane.  

 b) It will be shown later that assuming monoclinic symmetry provides a sufficient condition for 

the surface tractions acting on any plane const⋅ =xν  to be collinear with vector m . 

 

 Following [5], we will seek a horizontally polarized shear wave in a layer or 

substrate in the form: 

 ( )( ) ( ) ir ctf irx e ⋅ −′= n xu x m , (2.3) 

where coordinate x′ = ⋅xν  is as defined in (1.1); f  is the unknown scalar complex-

valued function; the exponential multiplier ( )ir ct⋅ −n ν  in (2.3) corresponds to 

propagation of the plane wave front along direction n  with the phase speed c ; r  is the 

wave number.  

 
 REMARK 2.2. The displacement field defined by (2.3) is generally complex. In reality, either real 

or imaginary part of the right-hand side of (2.3) represents physical displacement field that will be 

implicitly assumed in the subsequent analysis. However, retaining complex expressions for the 

displacement field, will allow us to describe situations with the phase shift in a more convenient 

manner.  

 

Substituting representation (2.3) into Eq. (2.1) and taking into account Remark 

2.1.a, yields the following differential equation: 

 2

( ) 2( ( ) )
0

( )
x xf sym f

c f
′ ′′′ ′⊗ ⋅ ⋅ ⋅ ⋅ ⊗ + ⋅ ⋅ ⋅ ⋅ +⎛ ⎞

=⎜ ⎟⎜ ⎟⊗ ⋅⋅ ⋅ ⋅ ⊗ − ρ⎝ ⎠

m C m m C n m

m n C n m

ν ν ν
 (2.4) 

 Characteristic equation for the differential equation (2.4), known also as the 

Christoffel equation, has the form: 
2 2( ) 2( ( ) ) ( ) 0sym c⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ + ⋅ ⋅ ⋅ ⋅ γ + ⊗ ⋅⋅ ⋅ ⋅ ⊗ − ρ =m C m m C n m m n C n mν ν ν  (2.5) 
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Left-hand side of Eq. (2.5) represents a polynomial of degree 2 with respect to the 

Christoffel parameter γ . Thus, for the monoclinic elastic symmetry only two partial 

waves form the regarded SH-wave in a layer, and one partial wave with Im( ) 0γ <  

forms Love wave in the substrate; see [5]. 

 The following lemma flows out from solving the Cauchy problem for Eq. (2.4): 

 

 LEMMA 2.1. A necessary and sufficient condition for the real-analytic solution 

of Eq.(2.4), to be a non-zero function, is a simultaneous non-vanishing f  and its first 

derivative at some x′ . 

 
 REMARK 2.3. a) For an orthotropic medium and the SH-wave propagating in a direction of the 

principle elasticity, Eq.(2.5) is simplified: 

 2 2( ) ( ) 0c⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ + ⊗ ⋅⋅ ⋅ ⋅ ⊗ − ρ =m C m m n C n mν ν . (2.6) 

The solution for Eq.(2.6) is: 

 
2

1,2
cρ − ⊗ ⋅⋅ ⋅ ⋅ ⊗

γ = ±
⊗ ⋅ ⋅ ⋅ ⋅ ⊗
m n C n m

m C mν ν
. (2.7) 

For the considered case, the general solution of Eq. (2.4) can be represented in the form: 

 1 2( ) sinh( ) cosh( )f irx C ir x C ir x′ ′ ′= γ + γ , (2.8) 

where γ  is the positive root in (2.7) . For a Love wave in a substrate with attenuation condition (1.1) 

the considered solution becomes 

 1( ) exp( )f irx C ir x′ ′= γ  (2.9) 

in representation (2.9) we chose the positive root for γ . 

 b) Supposing roots of the Christoffel equation (2.5) are multiple, we arrive at necessity to modify 

the solution of Eq. (2.4) by placing a logarithmic term (this corresponds to appearing one Jordan block 

in Eq. (2.4) that is reduced to a system of the first order). However, in the following analysis the case of 

multiple roots will not be studied; see [5, 6] for the solutions related to multiple roots.  

 c) Representation (2.3) allows us to express surface tractions acting on any plane x const′ =  in 

the form: 

 ( ) ( )( ) ( ) ( ) ir ctir f irx f irx e ⋅ −′ ′ ′= ⋅ ⋅ + ⋅ ⋅ n xt x C C n mν ν ν . (2.10) 

Assumption of monoclinic symmetry ensures surface tractions (2.10) to be collinear with vector m . 

For an orthotropic material with axes of elastic symmetry coinciding with vectors , ,m n  and ν  

expression (2.10) reduces to 

 ( )( ) ( ) ir ctir f irx e ⋅ −′ ′= ⋅ ⋅ ⋅ ⊗ n xt x C mν ν ν . (2.11) 
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As before, vector ( )t xν  is necessary collinear with vector m .  Expression (2.11) shows that on a 

boundary plane 0x′  of a traction-free orthotropic plate the following condition must be satisfied: 

0( ) 0f irx′ ′ = . 

 d) There is a major difference between bulk and surface SH-waves. While both have the same 

polarization defined by vector m , the corresponding stress components are different; see Fig. 2. This 

concerns all kinds of surface SH-waves including the genuine Love waves satisfying attenuation 

condition (1.1) and the so-called leakage Love waves propagating with speed ( )T
substrate

cnm . The 

latter wave has the same speed and polarization as the corresponding bulk wave, does not attenuate in a 

substrate, but it is not a bulk wave in a substrate due to different stress components it generates. Indeed, 

for a surface SH-wave propagating in an orthotropic medium the stress vector is defined by Eq. (2.11), 

while for a bulk SH-wave, the stress vector is: 

 ( )ir ctir e ⋅ −= ⋅ ⋅ ⋅ ⊗ n x
nt n C n m  (2.12) 

 

 

 

3. Energy of SH and Love waves 

3.1. Specific kinetic and elastic (potential) energy 

Herein, we derive expressions for specific kinetic and elastic (potential) energy 

of the SH-waves. Taking into account representation (2.3), the specific kinetic energy 

can be defined by:  

 221 1
2 2kinE f≡ ρ ⋅ = ρωu u , (3.1) 

where the following relation between the phase speed and frequency is used: 

 rcω = . (3.2) 

Equations (2.4), (3.1), and (3.2) allow us to represent the specific kinetic energy in the 

form: 

 
( ) ( )

( )
21

2

2 ( )
kin

f sym f
E r f

f

′′ ′⎡ ⊗ ⋅ ⋅ ⋅ ⋅ ⊗ + ⋅ ⋅ ⋅ ⋅ +⎤
≡ ⎢ ⎥

⊗ ⋅ ⋅ ⋅ ⋅ ⊗⎢ ⎥⎣ ⎦

m C m m C n m

m n C n m

ν ν ν
. (3.3) 

Another useful expression flows out from (3.1) and (3.2): 

Figure 2.   Stresses for bulk and surface SH-waves 
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 2
2

2 kinE

f
ω =

ρ
. (3.4) 

Similarly, the specific elastic energy can be defined by:  

 ( ) ( )
2

1
2 22elastE f f f f

c
ω ′ ′≡ ∇ ⋅ ⋅ ⋅ ⋅∇ = ⊗ + ⋅ ⋅ ⋅ ⋅ + ⊗u C u m n C n mν ν . (3.5) 

 
 REMARK 3.1. a) In view of Remark 2.2, expressions (3.1) and (3.5) coincide with the 

corresponding expressions for kinetic and elastic specific energy, obtained without using complex 

displacement fields.  

 b) Analysis of expressions (2.1), (2.3), (2.6), and (2.8) reveals that for the regarded waves 

kin elastE E≠ , due to presence of the generally non-constant function f . At the same time, for bulk 

waves f const= , and hence from (2.1) and (2.3) we arrive at kin elastE E= ; see also [2, 3] for 

discussions. 

 

 PROPOSITION 3.1. a) If at some finite value of the phase speed the corresponding 

frequency ω  vanishes, then both specific kinetic and elastic energies vanish also. 

 b) The specific kinetic energy vanishes at any ω , on a plane x const′ ≡ ⋅ =xν , if 

function f  vanishes at this x′ . 

 c) The specific elastic energy does not vanish at any finite value of the phase 

speed and any non-vanishing frequency ω . 

 

 Proofs of conditions a) and b) are obvious. Proof of condition c) follows from 

the positive definite condition for the elasticity tensor, Lemma 2.1, and expressions 

(3.2), (3.5).□ 

 

3.2. Group speed 

 The vector-valued group speed groupv  is defined by [2, 3]: 

 ( )group r= ∇ ωnv , (3.6) 

where ( )r∇ n  denotes gradient with respect to the independent spatial variable ( )rn . For 

the subsequent analysis the scalar group speed groupc  will also be needed: 
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 ( ) ( )group group r rc ≡ = ∇ ω⋅∇ ωn nv . (3.7) 

Now, combining (3.3), (3.4), and (3.7) yields: 

 
( )2( ) ( )

group
f f f f

c
c f

′ ′+ ⋅ ⋅ ⋅ ⋅ +
=

ρ

n m C m nν ν
, (3.8) 

where as before, c  stands for the phase speed.  

 

 PROPOSITION 3.2. a) At any physically admissible properties of a medium and 

any SH-wave propagating with the finite phase speed 0c ≠ , the corresponding group 

speed groupc  is delimited from zero. 

b) If 0f →  at 0x x′ ′→ , where 0x′  takes some finite value, then groupc →∞ . 

 Proof a) flows out from observation that the radicand in (3.8) is strictly positive 

due to (2.2) and Lemma 2.1. Proof b) is obvious.□ 

 

3.3. Ray speed 

 The vector-valued ray speed can be defined by (see [3]): 

 elast
ray

kin elastE E
=

+
Jv , (3.9) 

 

where elastJ  is the flux of elastic energy: 

 elast ≡ ⋅ ⋅ ⋅∇J u C u  (3.10) 

The corresponding scalar ray speed is: 

 elast elast
ray ray

kin elast
c

E E
⋅

≡ =
+

J J
v  (3.11) 

Substituting (2.3) into (3.11) and exploiting (3.3), (3.5), yields: 

 
( )
( )

2

22

2 ( ) ( )

( ) ( )
ray

c f f f f f
c

c f f f f f

′ ′+ ⋅ ⋅ ⋅ ⋅ +
=

′ ′ρ + + ⋅ ⋅ ⋅ ⋅ +

n m C m n

n m C m n

ν ν

ν ν
. (3.12) 
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 PROPOSITION 3.3. a) At any physically admissible properties of a medium and 

any SH-wave propagating with the finite phase speed 0c ≠ , the corresponding ray 

speed rayc  is delimited from zero. 

b) If 0f →  at 0x x′ ′→ , where 0x′  is finite, then rayc →∞ . 

c) A necessary and sufficient condition for group rayc c= , is as follows: 

 kin elastE E= . (3.13) 

 Proofs a) and b) are analogous to the proof of Proposition 3.2. Proof c) follows 

directly from (3.8), (3.12), with account of (3.1), (3.5).□ 

 

4. SH-waves in a single-layered orthotropic plate 

 Hence it will be assumed that vectors , mν , and n  coincide with the axes of 

elastic symmetry of an orthotropic medium. 

 
 REMARK 4.1. It can be shown (see [6]) that regardless of boundary conditions and at imaginary 

roots of Eq. (2.6), no SH-wave can propagate in directions of elastic symmetry of an orthotropic single-

layered plate. Thus, the following inequality  

 c ⊗ ⋅⋅ ⋅ ⋅ ⊗
>

ρ
m n C n m

,  (4.1) 

naturally arising from (2.7), delivers a necessary condition for existing surface SH-wave. Thus, for the 

regarded plate all surface SH-waves are necessary supersonic, since the radicand in the right-hand side 

of (4.1) defines speed of the corresponding shear bulk wave Tcnm . In this section we assume condition 

(4.1) to hold. 

 

4.1. Traction-free plate 

 Herein we consider a single-layered plate with the traction-free boundary 

conditions: 

 
( / 2) 0
( / 2) 0
h

h
=⎧

⎨ − =⎩

t
t
ν

ν
, (4.2) 

where h  is the thickness of the plate (we choose origin of coordinates at the median 

plane).  
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 For such a plate, finding function f  from (2.6), (4.2), yields: 

 
( )

( ) ( )

2cos , at
( ) 1, 2,...

2 1
sin , at

nr x r
h

f irx n
n

r x r
h

π⎧ ′γ =⎪ γ⎪′ = =⎨ − π⎪ ′γ =
⎪ γ⎩

 , (4.3) 

where γ  is defined by (2.7).  

 

 PROPOSITION 4.1. a) On planes x const′ = , where 

 
( )

1
2 2, at ,
2 ,

2 1
, at ,

2 1

k nh r n k n
n hx n k

nk h r n k n
n h

⎧ + π
= − ≤ <⎪

γ⎪′ = ∈⎨
− π⎪ = − ≤ <⎪ − γ⎩

, (4.4) 

both the displacement field and specific kinetic energy vanish. That is equivalent to 

existence of the internal immovable layers under propagating SH-wave on a traction-

free plate. 

 b) At any finite phase speed satisfying inequality (4.1), there are no waves 

propagating at vanishing frequency (both phase speed and frequency are delimited 

from zero). 

 Proof a) follows from considering zeroes of the function, defined by (4.3). 

Proof b) follows from analyzing expressions (4.3), (3.2). It reveals that no non-trivial 

solutions exist at 0ω = .□ 

 

4.2. Clamped plate 

 For a single-layered plate with clamped outer surfaces, boundary conditions are: 

 
( / 2) 0
( / 2) 0
h

h
=⎧

⎨ − =⎩

u
u

. (4.5) 

 Finding function f  from Eq. (2.4) and satisfying boundary conditions (4.5), 

yields: 

 
( )

( ) ( )

2sin , at
( ) 1,2,...

2 1
cos , at

nr x r
h

f irx n
n

r x r
h

π⎧ ′γ =⎪ γ⎪′ = =⎨ − π⎪ ′γ =
⎪ γ⎩

 (4.6) 
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Similarly to Proposition 4.1, we have 

 

 PROPOSITION 4.2. a) On planes x const′ = , where 

 
( )1

2

2, at ,
2

,
2 1

, at , 1 1
2 1

k nh r n k n
n h

x n k
k n

h r n k n
n h

π⎧ = − ≤ ≤⎪ γ⎪′ = ∈⎨ + − π⎪ = − − ≤ ≤ −⎪ − γ⎩

 (4.7) 

 

both the displacement field and specific kinetic energy vanish. That is equivalent to 

existence of the internal immovable layers under propagating surface SH-wave on a 

clamped plate. 

 b) At any finite phase speed satisfying inequality (4.1), there are no waves 

propagating at vanishing frequency (both phase speed and frequency are delimited 

from zero). 

 

4.3. Plate with mixed boundary conditions 

 Below we consider a plate with traction-free upper and clamped bottom surface: 

 
( / 2) 0

( / 2) 0
h
h

=⎧
⎨ − =⎩

t
u
ν . (4.8) 

Direct analysis reveals that function f  satisfying homogeneous boundary conditions 

(4.8) takes the form: 

 

1
4

1
4

2( )
sin , at , 1,2,...

4
( )

2( )
sin , at , 0,1,...

4

n
r x r n

h
f irx

n
r x r n

h

⎧ − ππ⎛ ⎞′γ − = =⎪ ⎜ ⎟ γ⎝ ⎠⎪′ = ⎨
+ ππ⎪ ⎛ ⎞′γ + = =⎜ ⎟⎪ γ⎝ ⎠⎩

 (4.9) 

 

 PROPOSITION 4.3. a) On planes x const′ = , where 

 

1 1
4 4
1
4

1 1
4 4
1
4

( ) 2( )
, at ,

2( )
,

( ) 2( )
, at ,

2( )

k n
h r n k n

hn
x n k

k n
h r n k n

hn

⎧ + − π
= − ≤ <⎪

γ−⎪
′ = ∈⎨

− + π⎪
= − ≤ ≤⎪ γ+⎩

 (4.10) 
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both the displacement field and specific kinetic energy vanish. That is equivalent to 

existence of immovable layers under propagating surface SH-wave on a clamped plate. 

 b) At any finite phase speed satisfying inequality (4.1), there are no waves 

propagating at vanishing frequency (both phase speed and frequency are delimited 

from zero). 

 

4.4. Concluding remarks 

For monoclinic single-layered plates and all the considered boundary conditions 

(i) the admissible speed interval is transonic: 

 ( ; )Tc c∈ ∞mn ; (4.11) 

 (ii) at any phase speed satisfying (4.11) there are immovable longitudinal layers, and 

(iii) there are no SH-waves propagating with vanishing frequency. 

 Below, the dispersion relations will be plotted in terms of the phase speed c  and 

frequency ω , or the phase speed and wave number r , the latter is connected with c  

and ω  by (3.2). The typical dispersion curves for a homogeneous traction-free plate 

are presented in Fig. 3.  

 

 

These curves relate to a plate with 1, 1Th c= =nm . The lower mode dispersion curves 

for this plate but with different boundary conditions are plotted in Fig. 4.  

 

 

It should also be noted that a lower mode wave is usually the easiest to launch, and it 

appears to be the most informative due to its dispersion. The presented data reveal also 

Figure 3. Dispersion curves for SH-waves propagating in a single-layered traction-free 

orthotropic plate with ( ) 1Tc =nm . 

Figure 4. Lower branches of dispersion curves for SH-waves propagating in a single layered 

orthotropic plate ( ) 1Tc =nm  with different boundary conditions 
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that for a given plate its boundary conditions can be distinguished easily by analyzing 

lower mode dispersion curves. 

 

5. Love waves 

 In this section we assume inequality (1.2) to hold ensuring existence of Love 

wave. Different reference coordinate systems for the layer (with the origin at the 

median plane) and for the substrate (with the origin at the interface) will be chosen. 

 

5.1. Analytical solutions 

 For Love wave we consider the following boundary conditions: (i) the traction-

free boundary conditions at the outer surface of a layer, (ii) contact type conditions at 

the interface, and (iii) the attenuation condition (1.1) at x′ → −∞ : 

 
1 1

1 1 1 21 2

2

( / 2) 0;

( / 2) (0) ; ( / 2) (0)

( ) 0 at

h

h h

x x

⎧ =
⎪⎪ − = − − =⎨
⎪ ′ ′→ → −∞⎪⎩

t

t t u u

u

ν

ν −ν  (5.1) 

In Eqs. (5.1) and further index 1 is referred to the layer, and 2 to the substrate.  

 Applying the Modified Transfer Matrix (MTM) method [5], 

functions , 1, 2kf k = , which define the corresponding displacement fields, can be 

represented in the form: 

 
( )
( )

1 1

2

sin ( / 2) , 1
( )

exp , 2k
r x h k

f irx
ir x k

′⎧ γ − =⎪′ = ⎨
′γ =⎪⎩

 (5.2) 

The implicit secular equation for the wave number can be written in the form [5]: 

 ( ) ( )( )1 1 1 1 2 2 1 1sinh( ) cosh( ) 0ir h ir h⊗ ⋅⋅ ⋅ ⋅ ⊗ γ γ − ⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ γ =m C m m C mν ν ν ν (5.3) 

 

 PROPOSITION 5.1. a) Suppose that 

 1 2( ) ( )T Tc c c< <nm nm , (5.4) 

then on planes x const′ =  (in a layer), where 

 1

1
,

2
hnx n

r
π′ = + ∈
γ

, (5.5) 
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 1 1 0r hEnt nγ⎛ ⎞− ≤ ≤⎜ ⎟π⎝ ⎠
 (5.6) 

 

and r  satisfies Eq. (5.3), both the displacement field and specific kinetic energy 

vanish. 

 b) No Love waves propagate, when 

 1 2( ) or ( )T Tc c c c< >nm nm  (5.7) 

 c) At the phase speed 2( ) 0Tc c→ −nm , there is a lower mode leakage Love wave 

propagating with vanishing wave number. 

 Proof a) flows out from analyzing expression (5.2) for function 1f . Values for 

x′  defined by (5.5) and (5.6), are zeroes of this function.  

 Proof b) follows from an observation that at the phase speed satisfying the first 

inequality in (5.7), both 1γ  and 2γ  are imaginary due to (2.7) and (1.2). But, Eq. (5.3) 

at imaginary , 1, 2k kγ =  reduces to 

 ( )
( )

2 2
1 1

1 1

tanh( )r h
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

γ = −
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

m C m
m C m

ν ν
ν ν

. (5.8) 

The latter equation has no positive solutions with respect to the wave number r . Now, 

at the phase speed satisfying the second inequality in (5.7), we see that the exponent 

term in (5.2)2 does not satisfy the attenuating condition at x′ → ∞ . 

 To prove c) we need to consider Eq. (5.3) at small r : 

 ( ) ( )( )2 2
2 2 1 1 1 ( ) 0i h r O r⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ + − ⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ + =m C m m C mν ν ν ν . (5.9) 

Supposing that 2( ) 0Tc c→ −nm , which implys 2 2Im( ) 0, Re( ) 0γ → γ = , and letting 

0r → , which gives a wave corresponding to the lower branch, we arrive at the 

following condition:  

 2f const→  (5.10) 

uniformly on any compact in ( ], 0−∞ . The latter proves condition c).□ 

 
 REMARK 5.1. a) However, leakage Love wave introduced in Proposition 5.1.c, does not coincide 

with the horizonally polarized bulk wave in the substrate. That is because leakage Love wave travelling 

with the same speed 2( )Tcnm  as the shear bulk wave in the substrate (or better speaking, travelling with 
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the phase speed 2( ) 0Tc c→ −nm ), leads to different stress components; see Fig. 2. Moreover, 

expresion (2.11) reveals that the leakage wave is a stress-free wave. 

 b) Another interesting observation concerns amplitude distribiution along depth of a layer and 

substrate. According to representations (2.3) and (5.2), the distribution in both layer and substrate 

tends to a constant m  as 2( ) 0Tc c→ −nm . 

 

5.2. Numerical example 

 Herein we consider an orthotropic layer lying on an orthotropic substrate. The 

outer plane (Fig. 1) of the layer is traction-free. The layer and substrate are 

characterized by the following parameters: 

 ( ) ( )11 2
1, 1, 2T Tc h c= = =nm nm . (5.11) 

The corresponding dispersion curves are presented in Fig.5.  

 

 

These data demonstrate presence of a lower mode leakage wave [5] propagating with 

the phase speed 2( ) 0Tc c→ −nm  and having vanishing frequency.  

 

6. Two-layered orthotropic plates 

 It is assumed that (i) both layers are orthotropic with axes of elastic symmetry 

coincident with vectors ,n ν , and m ; and (ii) the corresponding shear bulk waves 

differ:  

 1 2( ) ( )T Tc c≠nm nm . (6.1) 

 
 REMARK 6.1. a) If inequality (6.1) violates, then the two-layered plate appears as a single-layered, 

with respect to the considered SH-wave. 

Figure 5. Dispersion curves for Love waves propagating in an orthotropic medium with 

( ) 1T
layer

c =nm ; ( ) 2T
substrate

c =nm  
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 b) In this section and further we assume that each layer has its own reference coordinate system 

with the origin lying in the median plane of a layer. 

 

6.1. Traction-free plate 

 Boundary conditions for a traction-free plate are: 

 
1

2

( / 2) 0

( / 2) 0

t h

t h

=⎧
⎪
⎨
⎪ − =⎩

ν

ν

, (6.2) 

where lower indicies are referred to the corresponding layers. 

 Applying the MTM method [5, 6], functions , 1, 2kf k =  which define the 

displacement field in the corresponding layeres, can be represented in the form: 

 ( )( ) cos ( ( 1) / 2) , 1, 2k
k k kf irx r x h k′ ′= γ + − =  (6.3) 

at the wave number r  satisfying the following equation [6]: 

 ( )
( ) ( ) ( ) ( ) ( )1 1

1 1 2 2 1 1 2 2
2 2

sin cos cos sin 0r h r h r h r h
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

γ γ + γ γ =
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

m C m
m C m

ν ν
ν ν

. (6.4) 

 

 PROPOSITION 6.1. a) Suppose that 

 ( ) ( )1 2 1 2min ( ) ;( ) max ( ) ;( )T T T Tc c c c c< <nm nm nm nm , (6.5) 

where ( )T
kcnm  is the bulk wave speed in the corresponding layer, then on planes 

x const′ =  where 

 (1 2 ) ( 1) ,
2 2

k k

k

hnx n
r

π +′ = − − ∈
γ

, (6.6) 

and 

 ( ) ( )1 11 ( 1) 1 ( 1)
2 2 2 2

k kk k k kr h r hEnt n Entγ γ⎛ ⎞ ⎛ ⎞− − − + ≤ ≤ + − −⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠
 (6.7) 

 

and r  satisfies Eq. (6.4)), both the displacement field and specific kinetic energy 

vanish in a layer with the minimal bulk wave speed Tcnm . 

b) Suppose that  
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 ( )1 2max ( ) ; ( )T Tc c c> nm nm , (6.8) 

(the phase speed is transonic in both layers), then on planes x const′ =  where x′  

satisfies Eq. (6.6) and n  satisfies Eq. (6.7), the displacement field and specific kinetic 

energy vanish in both layers.  

 c) At the phase speed 0sc c→ − , where  

 ( ) ( )1 1 2 2

1 1 2 2
s

h h
c

h h
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ + ⊗ ⋅ ⋅ ⋅ ⋅ ⊗

=
ρ + ρ

m n C n m m n C n m
, (6.9) 

there is a lower mode SH-wave propagating with vanishing wave number 0r → . 

 Proofs a) and b) flow out from expression (6.3) for functions kf . Values for x′  

defined by (6.6) and (6.7), are zeroes of these functions. 

 To prove c) we need to consider Eq. (6.4) at small r : 

 ( ) ( )( )2 2 3
1 1 1 2 2 2 ( ) 0h h r O r⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ + ⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ + =m C m m C mν ν ν ν .(6.10) 

Equating to zero the coefficient at r  in the left-hand side of Eq. (6.10), we arrive at the 

solution for the phase speed given by (6.9).□  

 

 DEFINITION 6.1. A lower mode surface SH-wave propagating with the phase 

speed sc  and with vanishing wave number will be called the anomalous surface wave. 

 

 Proposition 6.1 along with expressions (3.1), (3.2), (3.5) ensure: 

 

 COROLLARY 6.1. a) Both kinetic and potential energy vanish at the anomalous 

surface wave. 

 b) At sufficiently small r  and real kγ  in both planes there can be no planes with 

vanishing displacement field (all SH-waves in the vicinity of the anomalous SH-wave 

do not have planes at which the displacement field vanishes). 

 
 REMARK 6.2. a) Proposition 6.1 shows that planes with vanishing kinetic energy arise only if the 

phase speed becomes transonic for the corresponding layer. 

b) Direct analysis reveals that the wave speed sc  satisfies the inequalities: 

 ( ) ( )1 2 1 2min ( ) ; ( ) max ( ) ; ( )T T T T
sc c c c c≤ ≤nm nm nm nm  (6.11) 
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 c) The considered SH-waves in the vicinty of the anomalous SH-wave resemble solitones, since 

their wave number tends to zero, as 0sc c→ − .  

 d) Taking into account Eqs. (3.1), (3.5), we have for the lower branch of the SH-waves at 

0sc c→ − :   

 0, 0kin elastE E→ → .  (6.12) 

In obtaining (6.12), restriction of 
1
2f  at 0sc c→ −  is accounted (herein 

1
2⋅  denotes the 

corresponding Hörmander’s norm). Thus, conditions (6.12) ensure minimum energy required to initiate 

lower branch of the SH-wave at 0sc c→ − . Moreover, similarly to the leakage Love wave discussed in 

Remark 5.1, the lower branch of the SH-waves at 0sc c→ −  is a stress-free wave, and the amplitude 

distribution in both layers tends to a constant m  at . 0sc c→ − . 

 

6.2. Clamped plate  

 Boundary conditions for a clamped plate are: 

 
1

2

( / 2) 0

( / 2) 0

h

h

=⎧
⎪
⎨
⎪ − =⎩

u

u
 (6.13) 

Application of the Modified Transfer Matrix (MTM) method gives functions 

, 1, 2kf k =  in the form: 

 ( )( ) sin ( ( 1) / 2) , 1, 2k
k k kf irx r x h k′ ′= γ + − =  (6.14) 

The wave number in representation (6.14) satisfies the following equation [6]: 

 ( )
( ) ( ) ( ) ( ) ( )2 2

1 1 2 2 1 1 2 2
1 1

sin cos cos sin 0r h r h r h r h
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

γ γ + γ γ =
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

m C m
m C m

ν ν
ν ν

(6.15) 

Similarly to the preceding case, we have 

 

 PROPOSITION 6.2. a) Suppose that 

 ( ) ( )1 2 1 2min ( ) ;( ) max ( ) ;( )T T T Tc c c c c< <nm nm nm nm , (6.16) 

then on planes x const′ =  where 

 ( 1) ,
2

k k

k

hnx n
r
π′ = − − ∈
γ

, (6.17) 

and 
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1 1
1 2

2 2
1 2

0, if ( ) ( )

or

0 , if ( ) ( )

T T

T T

r hEnt n c c

r hn Ent c c

⎧ γ⎛ ⎞− ≤ ≤ <⎜ ⎟⎪ π⎝ ⎠⎪⎪
⎨
⎪ γ⎛ ⎞⎪ ≤ ≤ >⎜ ⎟π⎪ ⎝ ⎠⎩

nm nm

nm nm

 (6.18) 

 

and r  satisfies Eq. (6.4)), both the displacement field and specific kinetic energy 

vanish in a layer with the minimal bulk wave speed Tcnm . 

b) Suppose that  

 ( )1 2max ( ) ; ( )T Tc c c> nm nm , (6.19) 

(the phase speed is transonic for both layers), then on planes x const′ =  where 

 

1 1

2 2

0, at 1

( 1) , and and
2

0 , at 2

k k

k

r hEnt n k
hnx n

r
r hn Ent k

⎧ γ⎛ ⎞− ≤ ≤ =⎜ ⎟⎪ π⎝ ⎠⎪π ⎪′ = − − ∈ ⎨γ ⎪ γ⎛ ⎞⎪ ≤ ≤ =⎜ ⎟π⎪ ⎝ ⎠⎩

,(6.20) 

the displacement field and specific kinetic energy vanish.  

 c) At the phase speed 0sc c→ − , where sc  satisfies Eq. (6.9), there is a lower 

mode SH-wave propagating with vanishing wave number 0r → . 

 

6.3. Plate with mixed boundary conditions 

 Boundary conditions for the considered plate are: 

 
1

2

( / 2) 0

( / 2) 0

h

h

=⎧
⎪
⎨
⎪ − =⎩

t

u

ν

. (6.21) 

Application of the Modified Transfer Matrix (MTM) method gives functions 

, 1, 2kf k =  in the form: 

 
( )
( )

1 1

2 2

cos ( / 2) , 1
( )

sin ( / 2) , 2k
r x h k

f irx
r x h k

′⎧ γ − =⎪′ = ⎨
′γ + =⎪⎩

. (6.22) 

For the considered case, the wave number satisfies the following equation [6]: 
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 ( )
( ) ( ) ( ) ( ) ( )2 2

1 1 2 2 1 1 2 2
1 1

cos cos sin sin 0r h r h r h r h
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

γ γ − γ γ =
⊗ ⋅ ⋅ ⋅ ⋅ ⊗ γ

m C m
m C m

ν ν
ν ν

 (6.23) 

Similarly to the preceding cases, we have 

 

 PROPOSITION 6.3. a) Suppose that 

 ( ) ( )1 2 1 2min ( ) ;( ) max ( ) ;( )T T T Tc c c c c< <nm nm nm nm , (6.24) 

then on planes x const′ =  where x′  satisfies Eqs. (6.17), (6.18), both the displacement 

field and specific kinetic energy vanish in a layer with the minimal bulk wave speed 
Tcnm . 

b) Suppose that  

 ( )1 2max ( ) ; ( )T Tc c c> nm nm , (6.25) 

(the phase speed is transonic for both layers), then on planes x const′ =  where x′  

satisfies Eqs (6.20), the displacement field and specific kinetic energy vanish in both 

layers. 

 c) At the phase speed 0sc c→ − , where sc  satisfies Eq. (6.9), there is a lower 

mode SH-wave propagating with vanishing wave number 0r → . 

 

6.4. Numerical examples 

Thus, for a two-layered monoclinic plate with all the considered boundary 

conditions (i) the admissible speed interval is partly transonic  

 ( ) ( )( )1 2
(min , ; )T Tc c c∈ ∞mn mn ; (6.26) 

(ii) at any phase speed satisfying (6.26) there are immovable longitudinal planes, and 

(iii) there are anomalous lower-mode SH-waves at 0sc c→ − .  

 Typical dispersion curves (in terms of the frequencyω  and phase speed c ) for a 

two-layered traction-free plate with  

 ( ) ( )1 2 1 2
1, 1, 2T Th h c c= = = =nm nm , (6.27) 

are presented in Fig. 6.  
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Existence of the anomalous SH-wave at 0sc c→ −  ( 1.59sc ≈ ) propagating in a two-

layered plate, resembles a lower mode leakage Love wave propagating with vanishing 

frequency at the speed 

 ( ) 0T
substrate

c c→ −mn ; (6.28) 

see Remark 5.1 and Fig. 5.  

We also analyzed influence of the depth increase of a bottom layer in a two-

layered plate on behavior of the lower branch of dispersion curves; see Fig. 7.  

 

 

The presented data reveal that while ratio 2 1/h h  increases from 1 to 25, the lower 

mode dispersion curves of the SH-wave are getting closer to the corresponding curve 

for Love wave; compare with Fig. 5. However, even at the highest computed ratio 

2 1/ 25h h =  there is a principle possibility to differentiate a SH-wave from Love wave, 

since there limiting speeds remain distinguishable.  

 

7. Multilayered orthotropic plate 

 Below we consider multilayered traction-free plates consisting of alternating 

layers (up to 31) of the unit thickness: 1, 1,2,...,31nh n= = . It is assumed that (i) all 

the layers are orthotropic with the axes of elastic symmetry coincident with vectors 

,n ν , and m ; and (ii) the corresponding shear bulk waves of the contacting layers 

differ. Mechanical properties of the layers needed for the subsequent analysis are as 

follows:  

Figure 6. Dispersion curves for SH-waves propagating in a two-layered traction-free 

orthotropic plate with ( )1 1Tc =nm ; ( )2 2Tc =nm , and 1 2 1h h= =  

Figure 7. Lower branches of dispersion curves for SH-waves propagating in two-layered 

orthotropic plates with ( )min
1Tc =nm , ( )max

2Tc =nm , and different 2 1/h h  ratio 
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( )
( )

2 1

2

1

2

T
k

T
k

c

c
−

⎧ =
⎪
⎨

=⎪
⎩

nm

nm

. (7.1) 

Since for a plate with more than 2 orthotropic layers no explicit analytical solution for 

the dispersion relations is known, a numerical algorithm exploiting the modified 

transfer matrix method will be adopted.  

7.1. MTM method 

 Applying the MTM method to a more general case of the n -layered plate with 

orthotropic layers of arbityrary thickness, we arrive at the implicit secular equation in 

the form [6]: 

( )
1( ) (1)1 1

1 1 1
2

( / 2) ( / 2) ( / 2) ( / 2) ( / 2) ( / 2) 0
nn

n n n k k k k
k

T h h h h h T h
−

− −
⊥

=

⎛ ⎞⎛ ⎞
− ⋅ ⋅ − ⋅ ⋅ − ⋅ =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∏M M M M . (7.2) 

In Eq. (7.2) vectors (1)
1( / 2)T h⊥  and ( )

( / 2)
n

nT h−  represent the traction-free boundary 

conditions at outer planes, and , 1,...,k k n=M  are the transfer matrices: 

 

( )(1)
1 1 1 1 1 1 1

( )

sinh( ) cosh( )

cosh( ) sinh( )

( / 2) sinh( / 2); cosh( / 2)

( / 2) (cosh( / 2); sinh( / 2))

( )
k k

k k k k k k

n
n n n n n n n

k

ir x ir x

ira ir x ira ir x

T h ira ir h ir h

T h ira ir h ir h

x

⊥

′ ′γ γ

′ ′γ γ γ γ

= γ − γ γ

− = γ γ − γ

⎛ ⎞
⎜ ⎟′ = ⎜ ⎟⎜ ⎟
⎝ ⎠

M

, (7.3) 

where , 1,...,k ka k n= ⊗ ⋅ ⋅ ⋅ ⋅ ⊗ =m C mν ν .  

Equation (7.2) is the transcendental equation with respect to the phase speed c  

and wave number r . Applying relation (3.2), allows us to reformulate Eq. (7.2) in 

terms of the phase speed and frequency ω . Direct evaluation of the determinant of the 

transfer matrix kM  reveals that det k k kira= − γM . Thus, the determinants do not vanish 

at 0kγ ≠ , and the transfer matrices in (7.2) are correctly defined at any (real and 

positive) phase speed satisfying the condition 

 ( ) ( )1
,...,T T

n
c c c≠ mn mn . (7.4) 

Condition (7.4) is assumed to hold below. 
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 REMARK 7.1. Expressions (7.3) correspond to orthotropic layers. When layers with monoclinic 

symmetry need to be considered, a more general expression accounting possible appearing of multiple 

roots in the Christoffel equation should be used; see [5, 6].  

 

7.2. Numerical results 

 Analysis of dispersion curves for SH-waves propagating in n -layered plates 

with different number of alternating layers (7.1) revealed that all the considered plates 

have similar lower branches ending at some finite phase speeds sc , and the latter 

depend on number of layers; see Fig. 8.  

 

 

All these curves resemble one obtained for a two-layered plate; see Fig. 6.  

 The following plot in Fig. 9 demonstrates the first 50 dispersion curves in a 31-

layered traction-free plate.  

 

 

The most interesting observable features in Fig 9 are: (i) existence of the 

anomalous wave speed sc ; (ii) fusion of the dispersion curves at their origin; and (iii) 

bundled structure of these curves.  

 
 REMARK 7.2. It should be noted that while properties (i) and (ii) are common for all the considered 

plates (7.1) at any 2n ≥ , property (iii) is becoming stably observable at a relatively large number of 

layers ( 7n ≥ ).  

 

Another plot in Fig. 10 represents variation of the lower branch of the 

dispersion curves in a 31-layered traction-free plate due to the thickness variation of 

the 15-th layer (that is the middle layer).  

 

Figure 8. Lower mode dispersdion curves for the SH-waves propagating in n -layered 

plates 

Figure 9. Dispersion curves for SH-waves in a traction-free 31-layered plate 
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These data shows that even relatively small 10% variation of the thickness of 

the middle layer is detectable by analyzing behavior of the lower branch in the vicinity 

of sc . Similar results were obtained at variation of the shear bulk wave speed ( )15
Tcnm  

of the middle layer. Thus, analyzing lower branches of dispersion curves provides a 

robust and nondestructive method for evaluating physical and geometrical properties 

of the internal layers. 

 
 REMARK 7.3. To achieve the desired computational precision and avoid possible numerical 

instability, the main computations were implemented with mantissas having over 500 decimal digits. That 

was achieved by applying Bailey’s numerical package for multiprecision computations.  

 

Acknowledgements. Author thanks Dr. D.H. Bailey for the Multiprecision 

Package, the Russian Foundation for Basic Research (Grant 04-01-00781) and the 

Russian Academy of Sciences Program OEMMPU No.12 for partial financial support. 

 

 

Figure 10. Variation of the lower branch in the vicinity of the speed sc  due to 10% 

thickness variation of the middle layer in a traction-free 31-layered plate 
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Figure 1.   Base vectors 
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Figure 2.   Stresses for bulk and surface SH-waves 
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Figure 3. Dispersion curves for SH-waves propagating in a single-layered traction-free orthotropic 

plate with ( ) 1Tc =nm . 
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Figure 4. Lower branches of dispersion curves for SH-waves propagating in a single layered 

orthotropic plate ( ) 1Tc =nm  with different boundary conditions 

Submitted for publication in the QAM
_________________________________



29 

 

 

 

 

 

 

 

Figure 5. Dispersion curves for Love waves propagating in an orthotropic medium  

with ( ) 1T
layer

c =nm ; ( ) 2T
substrate

c =nm  
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Figure 6. Dispersion curves for SH-waves propagating in a two-layered traction-free orthotropic 

plate  

with ( )1 1Tc =nm ; ( )2 2Tc =nm , and 1 2 1h h= =  
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Figure 7. Lower branches of dispersion curves for SH-waves propagating in two-layered 

orthotropic plates with ( )min
1Tc =nm , ( )max

2Tc =nm , and different 2 1/h h  ratio 
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Figure 8. Lower mode dispersdion curves for the SH-waves propagating in n -layered plates   
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Figure 9. Dispersion curves for SH-waves in a traction-free 31-layered plate 
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Figure 10. Variation of the lower branch in the vicinity of the speed sc  due to 10% thickness 

variation of the middle layer in a traction-free 31-layered plate 
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