
Parallelization Properties of Preconditioners

for the Conjugate Gradient Methods

Oleg Bessonov

Institute for Problems in Mechanics of the Russian Academy of Sciences
101, Vernadsky ave., 119526 Moscow, Russia

bess@ipmnet.ru

Abstract. In this paper we present the analysis of parallelization prop-
erties of several typical preconditioners for the Conjugate Gradient meth-
ods. For implicit preconditioners, geometric and algebraic parallelization
approaches are discussed. Additionally, different optimization techniques
are suggested. Some implementation details are given for each method.
Finally, parallel performance results are presented and discussed.

1 Introduction

Conjugate Gradient methods are widely used for solving large linear systems
arising in discretizations of partial differential equations in many areas (fluid
dynamics, semiconductor devices, quantum problems). They can be applied to
ill-conditioned linear systems, both symmetric (plain CG) and non-symmetric
(BiCGStab, GMRES etc.). In order to accelerate convergence, these methods
require preconditioning. Now, with the proliferation of multicore and manycore
processors, efficient parallelization of preconditioners becomes very important.

There are two main classes of preconditioners: explicit, that apply only a
matrix-vector multiplication, and implicit, that require solution of auxiliary
linear systems based on the incomplete decomposition of the original matrix.
Explicit preconditioners act locally by means of a stencil of limited size and
propagate information through the domain with low speed, while implicit pre-
conditioners operate globally and propagate information instantly. Due to this
implicit preconditioners work much faster and have better than linear depen-
dence of convergence on the geometric size of the problem.

Parallel properties of preconditioners strongly depend on how information
is propagated in the algorithm. For this reason implicit preconditioners can’t
be easily parallelized, and many efforts are needed for finding geometric and
algebraic approached of parallelization. There exists a separate class of implicit
methods, Multigrid, which possesses very good convergence and parallelization
properties. However, Multigrid is extremely difficult for implementation, and in
some cases it can’t be applied at all. Due to this classical (explicit and implicit)
preconditioners are still widely used in many numerical applications.

Thereby, in this paper we will analyze parallelization properties and perfor-
mance of several preconditioners for different discretizations and geometries, and
their implementation details on modern multicore processors.

V. Malyshkin (Ed.): PaCT 2013, LNCS 7979, pp. 26–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallelization Properties of Preconditioners for the CG Methods 27

2 Conjugate Gradient and Preconditioners

The original non-preconditioned Conjugate Gradient method [1] of the solution
of a linear system Ax = b is very simple for implementation and can be easily
parallelized. However, because of the explicit nature, it has low convergence rate.
Because of this, the CG method is usually applied to the preconditioned linear
system (M−1A)x = M−1b whereM is a symmetric positive-definite matrix that
is ”close” to the main matrix A (which is also symmetric and positive-definite).

Preconditioning works well if the condition number of the matrix M−1A is
much less than that of the original matrix A. The simplest way to reduce this
condition number and accelerate the convergence is to apply an ”explicit” pre-
conditioner (B = M−1) than doesn’t require the inversion of M .

A good example of this sort is the polynomial Jacobi preconditioner that is
based on a truncated series of the approximation 1/(1− a) = 1 + a+ a2 + . . .

B = M−1 =

n∑

k=0

(Hk)P−1 where P = diag(A), H = P−1(P −A) = I − P−1A

For n = 0, this expression represents the diagonal preconditioner B = P−1

(not considered as a true preconditioner because of its simplicity). For n = 1, it
looks as B = (I +(I −P−1A))P−1 and improves acceleration rate by two times
(with some increase of computational cost). This corresponds to the expansion
of the computational stencil of one iteration of the algorithm. Therefore, it can
be easily applied and parallelized. Variants for n = 2 or n = 3 are more complex
and not enough efficient, for this reason they are not considered here.

Neither sort of the simple explicit preconditioner can improve the convergence
radically. For this reason, it is desirable to use implicit preconditioners. The most
popular implicit preconditioner is Incomplete LU (ILU) decomposition [2]. To
be efficient, this decomposition must satisfy the following conditions:

– Preconditioner matrix M must be chosen ”close” to the main matrix A in
such a way that (for typical values of vector x) the approximation error is
sufficiently small: ||Mx−Ax|| = ε ||x|| � ||x||, or ε � 1.

– Matrix M must be suitable for decomposition into factors (e.g. M = LU)
and these factors must be invertible with low computational cost, i.e. must
allow economical solution of auxiliary linear systems Ly = z and Ux = y.

– Solution of these linear systems must be subject to efficient parallelization.

Straightforward implementation of ILU preconditioner doesn’t approximate the
main matrix A with the required accuracy, i.e. ε = O(1) [3]. As the result, its
convergence properties are not good: O(N) iterations are required as for ex-
plicit preconditioners (N is the dimension of a problem in one spatial direction),
though the total number of iterations may become less. More accurate Modified
ILU (MILU) preconditioner approximates the main matrix A with the accu-

racy ε = O(h) (here h is the grid distance) resulting in O(N
1
2) iterations [4,3].

However, Modified ILU can’t be accurately applied in some situations (e.g. for
solving systems of equations and for the domain decomposition approach [2]).

28 O. Bessonov

On the other hand, both ILU and MILU can’t be massively parallelized be-
cause of recursive nature of forward and backward sweeps (Ly = z, Ux = y).
One idea is to use red-black grid numbering in order to parallelize sweeps. How-
ever, in this case ILU decomposition looses its implicit properties and demon-
strated O(N) behaviour. Other sorts of complicated explicit preconditioners (like
approximate inverse) also propagate information slowly because of the limited
stencil size and also belong to the O(N) class.

For these reasons, simple explicit preconditioners remain attractive in some
cases because of good parallelization properties. They will be considered in the
next section, followed by the analysis of two sorts of implicit preconditioners:
Modified ILU for Cartesian discretization in a regular domain, and plain ILU
for general sparse matrices.

3 Optimization and Parallelization of Explicit
Preconditioners

For the analysis of simple explicit preconditioners, solution of linear systems
arising in the discretization of the Navier-Stokes equation is considered. For the
components of velocity (u, v, w) these are non-symmetric linear systems to be
solved by the BiCGStab, for pressure (p) the plain Conjugate Gradient method
can be used. Sparse matrices of these linear systems are stored in the Compressed
Row Storage (CRS) format. The test problem uses the Cartesian discretization
within a spherical domain, number of grid points is about 320000. The algorithm
is parallelized for shared-memory computer systems using OpenMP [5]. This
method can be extended to the hybrid OpenMP/MPI environment.

The Polynomial Jacobi preconditioner of the 1-st order is used both in
BiCGStab and CG solvers. If the original matrix is diagonally scaled: diag(A)=I,
the preconditioner will look as B = 2 I −A. For the stable work, this precondi-
tioner should be slightly underrelaxed by the following way: B = I + γ (I −A).
In the current implementation γ = 0.985.

The main computational kernel of both Conjugate gradient and precondition-
ing algorithms is the multiplication of a sparse matrix by a vector. Parallelization
of this kernel in OpenMP is straightforward: the matrix is split into parts with
equal number of rows, and each processor core independently computes the cor-
responding part of the resulting vector.

Parallel performance of such kind of computations is limited by the ability of
the memory subsystem to read (write) data with the high speed. Therefore, data
access rate requirements of the algorithm should be reduced. The Polynomial Ja-
cobi preconditioner can be improved in this respect by using the single precision
format (real*4) for storing a copy of the main matrix A for the preconditioning
operator. Convergence properties of this preconditioner remain unchanged.

For the symmetric matrix, the CRS format is not convenient because it is not
necessary to store its upper part. It is more economical and efficient to store
only the strictly lower part LA of the matrix A. If A is diagonally scaled, its
representation will look as A = LA + I + LT

A.

Parallelization Properties of Preconditioners for the CG Methods 29

Multiplication of the symmetrically stored sparse matrix by a vector is more
complex in comparison with the original storage scheme. The lower (LA) and
the upper (LT

A) parts of the matrix are multiplied by a vector in different ways:

– for the lower part, scalar product of the densely packed row by the sparsely
distributed elements of a vector is calculated, and the corresponding element
of the resulted vector is modified;

– for the upper part, elements of the packed column are multiplied by the
corresponding scalar value of a vector, and the sparsely distributed elements
of the resulting vector are modified.

Parallelization of the symmetric sparse matrix multiplication algorithm is not
straightforward. Unlike the original algorithm, the new one will not work cor-
rectly if we simply split all arrays by equal parts. As illustrated on Fig. 1 (left),
parallel execution of the algorithm in different threads leads to the modification
of the same elements of the resulting vector: thread 0 can modify elements in
the data area of the immediately preceding thread 1 and corrupt its results.

In order to avoid this problem, the multicolored (or red-black) partitioning of
data arrays can be applied. If we first split all arrays by equal parts in accordance
with the number of threads, and then additionally split each part by two subparts
of different color (marked as 0 and 1 on Fig. 1, left), we will be able to perform
computations simultaneously in all subparts of the same color. After finishing
processing for the particular color, we will do the same for another color. This
approach is conceptually similar to the multicolored grid partitioning for some
iterative methods (such as Gauss-Seidel and SOR).

The above variant of the multicolored partitioning has the obvious limitation:
the maximal half-width of the matrix must be less than the size of the subpart
otherwise a particular thread would modify the resulting vector of the preceding
thread of the same color. In fact, this is a limitation on the number of threads
for a given matrix. For the current example, this limitation is equal to 28, that
is more than the number of processor cores in most available multiprocessor
servers (usually 12 to 16). With increasing the problem size, this limit also will be

0

1

0

1

 1

 2

 4

 8

 1 2 4 8 16

Fig. 1. Parallelization for the symmetric storage scheme (left). Parallelization results:
dashed line – one processor, solid line – two processors (right)

30 O. Bessonov

increased. For long domains, it is recommended that grid nodes are enumerated
in the direction of the short dimensions. In this case, the matrix bandwidth will
be lower, and the thread limit will increase. Also, reducing the matrix width is
useful from the performance point of view. However, if massive parallelization
becomes necessary, it will be possible to develop more complex multicoloring
approach similar to the multicolored grid partitioning.

Parallelization efficiency results for the above problem are shown on Fig. 1
(right). These results were obtained on the system with two 6-core Intel Xeon
X5650 processors. Each processor has its own integrated 3-channel memory con-
troller, therefore the peak memory access rate of the system is doubled. Paral-
lelization tests were performed with 1 to 6 threads on one processor, and with 2
to 12 threads on two processors.

The one-processor results on Fig. 1 (right) demonstrate that the memory sub-
system of a processor is almost saturated with 4 threads (additional performance
increase with 6 threads is only about 6%). Similar saturation can be seen on the
two-processor results. On the other hand, the two-processor results demonstrate
almost linear performance increase in comparison to the single-processor runs
with the same number of threads per processor (by about 1.95 times).

Thus, this test program is strongly memory-bound. The principal factor that
limits parallel performance of such jobs is the memory throughput rate, while the
CPU frequency is less important. The new generation Intel Xeon servers based on
Sandy Bridge EP processors with 4 memory channels have much higher memory
speed (51.2 GB/s vs 32 GB/s). As a result, parallel performance of similar jobs
is proportionally increased. In the near future, after the switch from DDR3 to
DDR4, processors with even faster memory subsystems will appear.

The above results demonstrate that explicit preconditioners have high paral-
lelization potential and good scalability. The main factor that limits performance
of explicit preconditioners is the peak memory access rate. For multiprocessor
and multinode (cluster) computer systems, this limitation is scaled with the
number of processors, thus increasing the total performance potential.

4 Implicit Preconditioners for Regular Domains

In this section we consider parallelization of the efficient Modified ILU (MILU)
preconditioner for solving Poisson equation in rectangular parallelepipedic do-
mains. As mentioned above, forward and backward sweeps of incomplete decom-
position algorithms are recursive in their nature and can’t be straightforwardly
parallelized. Therefore, it is necessary to find such geometric properties of the
algorithm that parallelization would become possible and efficient.

The original idea is taken from the twisted factorization of a tridiagonal linear
system, when Gauss elimination is performed from both sides (for a subdiagonal
and a superdiagonal, respectively). This idea can be naturally generalized to 2
and 3 dimensions. This method is called ”nested twisted” [6,3]. An example of
the nested twisted factorization is shown on Fig. 2 for two-dimensional case.

The nested twisted factorization method can be used for direct parallelization
of the solution for up to 8 threads (in a Cartesian domain). The computational

Parallelization Properties of Preconditioners for the CG Methods 31

Fig. 2. Nested twisted factorization L · LT → M suitable for parallelization

scheme of this method is as following. A rectangular parallelepipedic domain is
split into 8 octants by separator planes (Fig. 3). In each octant, Gauss elimination
is performed from the corner in the direction inwards (in all 3 dimensions),
independently in different threads (Fig. 3, left).

After finishing eliminations in the internal points of octants, they are per-
formed in quadrants of separator planes by the same way (Fig. 3, center). Then,
intersection lines of separator planes are processed, and finally a solution at the
central point is computed. The following backsubstitution is performed in the
reverse order, from the central point in the direction outwards.

Parallelization for 16 threads needs another approach. For recursive algo-
rithms, the staircase (or pipeline) method can be employed [7,3]. This method is
illustrated on Fig. 3 (right). Each subdomain is split into 2 parts in the direction
of j (see the bottom-left octant divided between threads 0 and 1). Computations
in a plane (i,j) for a particular k can’t be performed by thread 1 until they are
finished by thread 0. However they can be fulfilled in a pipelined fashion: thread
1 computes a layer for some k at the same time when thread 0 computes the
next layer for k+1. This method needs the synchronization between threads in
a pair: before starting computations for some k, thread 1 must wait for thread
0 to finish computations in the same layer. At the backsubstitution stage of the
algorithm, computations are performed in the reverse order.

Implementation of this method leads to some algorithmic overhead because
at the beginning (for the first k) thread 1 is idle waiting for the results from
thread 0, and at the end (for the last k) thread 0 is idle after finishing its work.

0 1
4 5 1 3

5 7

4 5
6 7

j

k

i
j

k

i

0 1 3 2
8 9 11 10 2 6

10
14

8 9 11 10
12 13 15 14

j

k

i

Fig. 3. Parallelization of the nested twisted factorization: illustration of the method
(left); separator planes (center). Parallelization for 16 threads, staircase method (right)

32 O. Bessonov

The above method of parallelization can be used for more than two threads.
In this case the algorithmic scheme will have more stairs and more points of
synchronizations. However, because of performance overheads, the reasonable
number of stairs can’t be large. Therefore, parallelization potential of the above
method can be estimated to be at most 32 or 64.

For computational domains of different shape, this potential depends on the
number of corners. For example, a cylindrical domain has only 4 independent
corners, and its parallelization potential will be at most 16 or 32. As a conse-
quence, massive and efficient parallelization of MILU-class preconditioners for
irregular domains and general sparse matrices is not possible at all.

The above parallelization method is ”direct” with respect to the algebraic
properties of the preconditioner matrix in such sense that the order of its approx-
imation error remains the same as for the original (sequential) decomposition.
For this reason, Modified ILU decomposition retains its convergence properties.
This is not true, however, for the class of domain decomposition methods [2],
when preconditioning accuracy is lost and convergence is sacrificed.

Parallelization efficiency results for the above method can be found in [3].
They are very similar to those in the previous section: the method demonstrates
good efficiency if the memory subsystem is scaled with the number of threads,
otherwise saturation is observed. Thus, this method is strongly memory-bound,
and its performance depends firstly on the achievable memory throughput rate.

5 Implicit Preconditioners for Unstructured Grids

In this section we analyze parallelization approaches for Incomplete LU decom-
position of general non-symmetric sparse matrices. These matrices are produced
from the discretization of coupled systems of equations in irregular domains for
the solution of stiff problems arising in different multiphysics applications (CFD,
semiconductor transport, kinetic and quantum problems) [8,9].

Numerical solution of such ill-conditioned problems needs efficient CG-class
solvers with ILU preconditioning. Here, parallelization of the preconditioned non-
symmetric IDR solver will be considered [9]. The same ideas can be applied to any
other CG-class solver for non-symmetric matrices (CGS, BiCGStab, GMRES).

Most computations in this solver are performed in two kernels – multiplication
of the non-symmetric sparse matrix by a vector (y = Ax), and solution of the
decomposed linear system (Ly = z, Ux = y).

Parallelization of the first kernel is simple: if matrix A is stored in the CRS for-
mat, each thread can independently compute a part of the resulting vector. This
is similar to the procedure described in the previous sections. This procedure
has no strict limitations on the number of parallel threads.

On the other hand, procedure of Gauss elimination for a general sparse matrix
can’t be easily parallelized because such matrix does not possess any geometric
parallelization properties. Thus it is necessary to look for algebraic approaches.
The first idea is to use twisted factorization. An example of this factorization
for a general banded sparse matrix is shown on Fig. 4.

Parallelization Properties of Preconditioners for the CG Methods 33

Fig. 4. Twisted factorization of the sparse matrix (left, center); illustration of the
parallel Gauss elimination (right)

It can be seen that matrix factors have mutually symmetric portraits. These
factors will be traditionally named as L and U . It is convenient to represent
the decomposition as M = (L + D)D−1(D + U + R). Here R is the reverse
diagonal that separates two part of each factor. The role of this reverse diagonal
is seen on Fig. 4 (right) where the preconditioning matrixM is represented as the
product of these factors. We can distinguish three areas on the matrix portrait:
the central part (a square area with adjacent subareas on the left and on the
right), the first part located above, and the last part located below.

Elimination of non-zero elements in the first and in the last parts is straightfor-
ward (as in the standard twisted-Gauss process) because these parts are formed
by the simple multiplication of corresponding parts of factors L and U . Elimina-
tion of non-zero elements in the central part is much more complicated, because
it is formed by the multiplication of complex central parts of L and U . Process-
ing of the central part can’t be parallelized and is performed serially. Parallel
Gauss elimination is shown schematically on Fig. 4 (right).

This approach allows to parallelize the second kernel of the algorithm by 2
threads. It can be combined, for example, with 4-thread parallelization of the first
kernel (multiplication of the main matrix by a vector) in order to achieve rea-
sonable overall parallel efficiency on a multicore processor. This algorithm is also
memory-bound (as those in the previous sections), and therefore its performance
strongly depends on the throughput limitations of the memory subsystem.

Another parallelization approach for Gauss elimination is similar to the stair-
case (pipelined) method [7,3]. The idea of the approach is to split each matrix
half-band (L and U) into pairs of adjacent trapezoidal blocks that have no mu-
tual data dependences and therefore can be processed in parallel. As a result,
parallelization of Gauss elimination for 4 threads will be implemented.

This new block-pipelined parallelization method is illustrated on Fig. 5. An
example of the splitting of a matrix half-band is shown on Fig. 5 (center): the
sub-diagonal part of L is split into adjacent pairs of blocks marked ”0” and ”1”
(all other half-bands of matrices L and U are split into blocks similarly).

Let’s consider the highlighted pair of blocks ”0” (layer k+1) and ”1” (layer k).
It is seen that block ”0” can be processed before finishing processing of block
”1”, provided the maximal column index of elements in ”0” is less that the index

34 O. Bessonov

0
0

1
1

no

k-1

k

k+1

1

0 1

0 1

0

0 1 1 0

2 3 3 2

0
2

no

Fig. 5. Original twisted factorization method (left). Block-pipelined method: splitting
of matrix L (center); combination of twisted and block-pipelined methods (right)

of the last (diagonal) element in the first row in ”1”. Due to this, each sweep
of the Gauss procedure can be executed in two parallel threads – one for blocks
”0”, another for blocks ”1”, with the synchronization at the and of each step.

In order to implement the above scheme, it was necessary to construct the
new storage scheme for all three parts of the matrix (first, last and central)
and to implement proper synchronization technique for lightweight processes.
Also, accurate splitting of matrices into blocks is needed in order to achieve
good load balance. As a result, parallel 4-thread Gauss elimination method for a
general non-symmetric sparse matrix can be developed. This combined method
is illustrated on Fig. 5 (right).

This method is also ”direct” with respect to the algebraic properties of the pre-
conditioner matrix (as one described in the previous section). This is important
for the solution of extremely ill-conditioned linear systems. It can be combined,
for example, with 8-thread parallelization of the matrix-vector multiplication
kernel in order to achieve good parallel efficiency on a two-processor system. In
this case, the system’s memory throughput rate will be doubled compared to a
single processor, appropriately increasing performance of the solver.

Another way to increase performance is to use the single precision format
(real*4) for the preconditioning matrix and, if possible, for the main matrix
also. In this case memory access rate requirements of the algorithm will be
reduced.

The considered block-pipelined method can be extended for more than two
threads (for each Gauss elimination sweep). However, in this case, more accurate
splitting of matrices is required that may be possible only for some sparsity
patterns. When applied, this splitting will increase the parallelization potential
of the kernel to 8 threads.

Parallelization efficiency results of the new method are presented in Table 1.
These results were obtained for a CFD problem which matrix has 302500 un-
knowns and 44 non-zero elements in a half-band’s row (average). Maximal half-
width of the matrix is 2600. Measurements were performed on the 4-core Intel
Core i7-920 processor with three DDR3-1333 memory channels.

These results demonstrate the reasonable parallelization efficiency of bothmeth-
ods – the twisted factorization alone, and its combination with the block-pipelined

Parallelization Properties of Preconditioners for the CG Methods 35

Table 1. Parallelization results for a CFD problem

method serial twisted twisted block
pipelined

threads 1 2 4 4
r
e
a
l
*
8

time 89.1 ms 55.6 ms 48.1 ms 41.0 ms

speedup 1.00 1.60 1.85 2.17

r
e
a
l
*
4

time 89.1 ms 51.3 ms 41.6 ms 32.0 ms

speedup 1.00 1.74 2.14 2.78

method. Another test matrix (MOSFET electronic device modeling, 77500 un-
knowns, 8 non-zero elements average,maximal half-width 4650) ismuchmore sparse
and less convenient for parallelization. Nevertheless, results measured for this ma-
trix are very close (within 1-2%) to those presented in the table (with the exception
of the real*4 regime that wasn’t tested).

From the table it can be seen that performance gain of using the real*4 data
format is 1.28. All these results illustrate the memory-bound property of the
methods. Computational speed of the test problem on the more advanced Intel
Sandy Bridge EP processor can be increased by about 1.5 times in accordance
with the increase of its memory access rate. Additional speed increase can be
achieved on a two-processor system with independent memory controllers.

More details on the above methods can be found in [9].

6 Conclusion

In this work we have analyzed parallelization properties and limitations of several
most typical preconditioners for the Conjugate Gradient methods. This analysis
confirmed that explicit preconditioners have good parallel potential and therefore
remain attractive for massive parallelization. On the other hand, very efficient
Modified ILU preconditioners can be moderately parallelized only for computa-
tional domains with regular geometry. In case of irregular geometry and general
non-symmetric sparse matrix, only the plain ILU method can be limitedly par-
allelized without loosing its convergence properties. For the future development,
the most promising and efficient approach is Multigrid. However, in many cases
it is very difficult to implement this method. For coupled systems of equations
and some other cases Multigrid can’t be implemented yet due to lack of theory.
For this reason, development of parallel ILU-class methods, as well as economical
explicit preconditioners remains important.

Acknowledgements. This work was supported by the Russian Foundation
for Basic Research (project RFBR-12-08-00034) and partly by the Institute of
mathematics (IMATH) of the University of Toulon, France.

36 O. Bessonov

References

1. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method without the
Agonizing Pain. School of Computer Science, Carnegie Mellon University, Pitts-
burgh (1994)

2. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston
(2000)

3. Accary, G., Bessonov, O., Fougère, D., Gavrilov, K., Meradji, S., Morvan, D.:
Efficient Parallelization of the Preconditioned Conjugate Gradient Method. In:
Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 60–72. Springer, Heidelberg
(2009)

4. Gustafsson, I.: A Class of First Order Factorization Methods. BIT 18, 142–156
(1978)

5. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

6. van der Vorst, H.A.: Large Tridiagonal and Block Tridiagonal Linear Systems on
Vector and Parallel Computers. Par. Comp. 5, 45–54 (1987)

7. Bastian, P., Horton, G.: Parallelization of Robust Multi-Grid Methods: ILU-
Factorization and Frequency Decomposition Method. SIAM J. Stat. Comput. 12,
1457–1470 (1991)

8. Fedoseyev, A., Turowski, M., Alles, M., Weller, R.: Accurate Numerical Models for
Simulation of Radiation Events in Nano-Scale Semiconductor Devices. Math. and
Computers in Simulation 79, 1086–1095 (2008)

9. Bessonov, O., Fedoseyev, A.: Parallelization of the Preconditioned IDR Solver for
Modern Multicore Computer Systems. In: Application of Mathematics in Technical
and Natural Sciences: 4th International Conference. AIP Conf. Proc., vol. 1487, pp.
314–321 (2012)

	Parallelization Properties of Preconditioners
for the Conjugate Gradient Methods
	1 Introduction
	2 Conjugate Gradient and Preconditioners
	3 Optimization and Parallelization of Explicit Preconditioners
	4 Implicit Preconditioners for Regular Domains
	5 Implicit Preconditioners for Unstructured Grids
	6 Conclusion
	References

