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Abstract The equations for layered medium with slippage are obtained using the

asymptotic method of homogenisation. The terms of second order respectively the

small parameter of layer thickness are taken into account. The linear slip condition

defines the dependence between the tangential jumps of displacements at the con-

tact boundary and the shear stresses. The derived equations introduce asymptotically

complete generalization of some models of layered media, which are based on the

engineering approach or approximate hypotheses about the nature of the inter-layer

deformation. Such generalized models are needed in the study of static and dynamic

deformations of layered rock media. The wave properties of the resulting system

of equations and dispersion relations for harmonic waves are described. The prop-

agation of Rayleigh surface waves along the elastic layered half-plane boundary is

investigated.

1 Introduction

The interest to the problem of propagation and transformation of waves in layered

media is initiated by the seismology and engineering geophysics. As a rule the seis-

micity is observed in rock regions. Often these rocks contain regular grid of cracks

which can be considered as layered structures. Classical studies of wave fields in such

media usually are based on assumption of continuity of displacement fields. But for

rather strong seismic actions the possibility of tangential displacement jumps at the

inter-layer boundaries should be taken in to account. For long time actions it needs to
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use the “averaged” models of structured continuum media because of impossibility

to trace deformations of each structural layer.

In our study by using asymptotic method [1, 6] the refined equations of layered

medium with slippage are derived. The second order terms relatively small para-

meter of layer thickness are taken in to account. The linear slip relation between

tangential displacement jumps at inter-layer boundaries and shear stresses is used.

The zero order approximate equations for such media has been derived earlier in [3,

4]. The proposed here new equations represent complete generalization of layered

media models [5, 7], which are based on engineering approaches or on approxi-

mate hypothesizes about layer deformations. Such generalized models are required

for static and dynamic problems of rock media deformations and for dynamic wave

propagation problems in geophysics. It should be noted also that the theory of layered

media is suitable for description of composite materials with soft (rubber) sublayers

between major more rigid (metallic) layers.

The properties of proposed refined system of equations are studied. The propa-

gation of longitudinal, transversal and surface Rayleigh waves in layered media is

investigated in refined settings.

2 Refined Equations

Consider infinite layered medium using Cartesian rectangular coordinate system

(x1, x2, x3). The axis x3 is perpendicular to the planes of parallel flat boundaries

between layers. Let the inter-layer boundaries have coordinates x3 = x (s) = sε

(s = 0,±1,±2, ...), where constant layer thickness ε ≪ 1 is a small parameter.

To say more exactly, the relation ε/ l ≪ 1 should be valid, here l is the size of

distributed load application range, for instance, wave length in the processes under

consideration. In such case all spatial values should be made dimensionless using

this value l.

Assume that layer boundaries are always compressed and the following conditions

are valid

σ33 < 0, [u3] = [σγ 3] = [σ33] = 0

Here σγ 3 = k∗[uγ ] is linear slippage of Winkler type, k∗ε = k = O(1). Square

brackets [ f ] = f |x (s)+0 − f |x (s)−0 designate the jump of a value f at inter-layer

boundary. Such conditions are valid approximately if the soft sublayers of thickness

δ (δ/ε ≪ 1) with small shear modulus µδ are present between layers. In this case

we have

σγ 3 = k[uγ ]/ε =
kδ

ε

[uγ ]
δ

= µδ

[uγ ]
δ
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Here [uγ ]/δ is shear deformation of soft sublayer. In this case µδ = kδ/ε or vise

versa k = µδε/δ. It is possible to say that is inter-layer shear connection coefficient.

The layers themselves are elastic isotropic and subjected to Hooke’s law

x3 �= x (s) : σi j, j − ρui,t t = 0, σi j = Ci jkluk,l

Here the elastic moduli tensor is

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk)

According to the method of asymptotic homogenisation [1] let’s introduce fast

variable ξ = x3/ε. According to [1] assume that uk = uk(xl, ξ, t) is a function,

which is smooth regarding slow variables xl and continuous regarding fast variable ξ ,

excluding points ξ (s) = x (s)/ε, where it may have jumps of first kind. Besides, along

ξ the displacement is 1-periodic [[ui ]] = ui |ξ (s)+1/2 − ui |ξ (s)−1/2 = 0. Accounting

such choice of variables and the differentiation rule for complex functions, the system

of equations for cell of periodicity x (s) − 1/2 ≤ x3 ≤ x (s) + 1/2, −1/2 ≤ ξ ≤ 1/2

may be rewritten as

ε−2Ci3k3uk,ξξ + ε−1(Ci jk3uk, jξ + Ci3kluk,lξ ) + Ci jkluk,l j − ρui,t t = 0

where x3 �= x (s), ξ �= 0. At x3 = x (s), ξ = 0 we use the contact conditions

ε−1C33k3uk,ξ + C33kluk,l < 0

[u3] = 0, [ε−1Ci3k3uk,ξ + Ci3kluk,l ] = 0, ε−1Cγ 3k3uk,ξ + Cγ 3kluk,l = k∗[uγ ]

The conditions of 1-periodicity are

[[ui ]] = ui |ξ+1/2 − ui |ξ−1/2 = 0

Here and farther greek indices (β,γ ) take values 1 and 2, latine indices take values

1, 2, 3. The displacements are represented as asymptotic series regarding small

parameter ε:

ui = u
(0)
i (xk, ξ, t) + εu

(1)
i (xk, ξ, t) + ε2u

(2)
i (xk, ξ, t) + ε3u

(3)
i (xk, ξ, t) + · · ·

Introduce the operation of averaging 〈 f 〉 for the function of fast variable ξ , which

will be often used farther: 〈 f 〉 =
∫ 1/2

−1/2
f dξ . Displacement approximations should

satisfy the additional condition
〈

u
(n)
k

〉

= 0 [1].

Substitute this representation into the theory of elasticity equations. Equating

to zero the term with negative power ε−2 we get that zero approximation u
(0)
i is

independent on the fast variable ξ and u
(0)
i = wi (xk, t). Equating to zero the term
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with negative power ε−1 we get that first approximation u
(1)
i satisfies the equation

Ci3k3u
(1)
k,ξξ = 0. The resulting system of differential equations is:

Ci jklwk, jl + Ci jk3u
(1)
k, jξ + (Ci3klu

(1)
k,l + Ci3k3u

(2)
k,ξ ),ξ

+ ε
[

Ci jklu
(1)
k, jl + Ci jk3u

(2)
k, jξ + (Ci3klu

(2)
k,l + Ci3k3u

(3)
k,ξ ),ξ

]

+ ε2
[

Ci jklu
(2)
k, jl + Ci jk3u

(3)
k, jξ + (Ci3klu

(3)
k,l + Ci3k3u

(4)
k,ξ ),ξ

]

+ · · ·

= ρwi,t t + ερu
(1)
i,t t + ε2ρu

(2)
i,t t + · · ·

A similar representation for stress tensor components is:

σi j = σ
(0)
i j + εσ

(1)
i j + ε2σ

(2)
i j + · · ·

where σ
(n)
i j = Ci jklu

(n)
k,l + Ci jk3u

(n+1)
k,ξ .

All approximations for stresses are 1-periodic functions of ξ . In particular, the

relation σ
(n)
i3 = Ci3klu

(n)
k,l + Ci3k3u

(n+1)
k,ξ and conditions [σ (n)

i3 ] = 0, [[σ (n)
i3 ]] = 0 are

valid. It is easy to see that
〈

σ
(n),ξ

i3

〉

= 0.

Accounting the terms of definite order of ε, applying the averaging operation 〈 f 〉
and excluding the dependence on fast variable ξ , we get the model of a homogenised

layered medium with slippage of Winkler type.

Let’s derive the refined theory of second order. For this in the system of equations

we keep the terms of order ε2. Applying averaging operation 〈〉 for periodicity cell

to the system of equations we get the following:

Ci jklwk, jl + Ci jk3

〈

u
(1)
k,ξ

〉

, j
+ εCi jk3

〈

u
(2)
k,ξ

〉

, j
+ ε2Ci jk3

〈

u
(3)
k,ξ

〉

, j
= ρwi,t t

It is the final refined system of equations for layered medium with slippage. For

complete formulations it needs to find the functions
〈

u
(n)
k,ξ

〉

(n = 1, 2, 3), which par-

ticipate in the system. Every function u
(n)
i (xk, ξ, t) (n = 1, 2, 3) is found from the

appropriate task in periodicity cell (−1/2 ≤ ξ ≤ 1/2) [1], which is formulated by

equating to zero the sum of terms of definite order εn−1 in asymptotic system of

equations. Additional conditions for these functions can be received by reformulat-

ing the contact inter-layer conditions for each function: conditions of 1-periodicity

[[u(n)
i ]] = 0 and conditions

〈

u
(n)
i

〉

= 0. Let’s formulate these three tasks for the cell

(−1/2 ≤ ξ ≤ 1/2).
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2.1 Task in Cell for n = 1

At |ξ | < 1/2: Ci3k3u
(1)
k,ξξ = 0.

At ξ = 0: [Ci3k3u
(1)
k,ξ ] = 0, [u(1)

3 ] = 0, k[u(1)
γ ] = Cγ 3klwk,l + Cγ 3k3u

(1)
k,ξ .

Additional conditions are: [[u(1)
i ]] = 0,

〈

u
(1)
i

〉

= 0.

Dropping details, published in [2], write the solution of task 1 on the periodicity

cell:

u(1)
γ = φγ (ξ−signξ/2), u

(1)
3 = 0, whereφγ = −τγ /(k+µ), τγ = µ(wγ,3+w3,γ ).

The derivatives needed for averaging are:

u
(1)
3,ξ = 0, u

(1)
γ,ξ = φγ ,

〈

u
(1)
3,ξ

〉

= 0,
〈

u
(1)
γ,ξ

〉

= φγ

2.2 Task in Cell for n = 2

At |ξ | < 1/2 have

Ci jklwk, jl + Ci jk3u
(1)
k, jξ + (Ci3klu

(1)
k,l + Ci3k3u

(2)
k,ξ ),ξ = ρwi,t t

Averaging this differential equation and accounting that

〈

(Ci3klu
(1)
k,l + Ci3k3u

(2)
k,ξ ),ξ

〉

= 0

and that the rest terms of this equation do not depend on ξ , we get its simple conse-

quence:

Ci3k3u
(2)
k,ξξ = −Ci3klu

(1)
k,ξ l

At ξ = 0 have

[Ci3k3u
(2)
k,ξ ] = −[Ci3klu

(1)
k,l ], [u(2)

3 ] = 0, k[u(2)
γ ] = Cγ 3klu

(1)
k,l + Cγ 3k3u

(2)
k,ξ

Additional conditions are [[u(2)
i ]] = 0,

〈

u
(2)
i

〉

= 0.

Dropping details (see in [2]), write the solution of task 2 on periodicity cell

u(2)
γ = −ψγ (ξ 2 − ξsignξ + 1/6)/2, u

(2)
3 = −ψ3(ξ

2 − ξsignξ + 1/6)/2

where ψγ = φγ,3, ψ3 = λφβ,β/(λ + 2µ)
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Derivatives needed for averaging are

u
(2)
γ,ξ = −ψγ (ξ − signξ/2), u

(2)
3,ξ = −ψ3(ξ − signξ/2),

〈

u
(2)
3,ξ

〉

= 0,
〈

u
(2)
γ,ξ

〉

= 0

Hence second approximations for displacements are absent in refined system of

equations.

2.3 Task in Cell for n = 3

At |ξ | < 1/2 have

Ci3k3u
(3)
k,ξξ = −Ci jklu

(1)
k, jl − Ci3klu

(2)
k,ξ l − Ci jk3u

(2)
k,ξ j + ρu

(1)
i,t t

At ξ = 0 have

[Ci3k3u
(3)
k,ξ ] = −[Ci3klu

(2)
k,l ], [u(3)

3 ] = 0, k[u(3)
γ ] = Cγ 3klu

(2)
k,l + Cγ 3k3u

(3)
k,ξ .

Additional conditions are [[u(3)
i ]] = 0,

〈

u
(3)
i

〉

= 0

Consider solution for cases i = γ . The elasticity moduli tensor is

Ci jklu
(1)
k, jl = Cγ jβlu

(1)
β, jl

= (λδγ jδβl + µδγβδ jl + µδγ lδ jβ)u
(1)
β, jl = (λ + µ)u

(1)
β,βγ + µu

(1)
γ,ll

(Cγ 3kl + Cγ lk3)u
(2)
k,ξ l =

(

(λ + µ)δγ lδ3k + 2µδγ kδ3l

)

u
(2)
k,ξ l = (λ + µ)u

(2)
3,ξγ + 2µu

(2)
γ,ξ3

Task equation for |ξ | < 1/2 is

u
(3)
γ,ξξ = u

(1)
γ,ll − (λ + µ)u

(1)
β,βγ /µ − 2u

(2)
γ,ξ3 − (λ + µ)u

(2)
3,ξγ /µ + ρu

(1)
i,t t/µ

At ξ = 0 have following conditions

[u(3)
γ,ξ ] = −[u(2)

γ,3 + u
(2)
3,γ ] = 0

k[u(3)
γ ] = µ(u

(2)
γ,3 + u

(2)
3,γ + u

(3)
γ,ξ )

[[u(3)
γ ]] = 0,

〈

u(3)
γ

〉

= 0

The equation may be rewritten as

u
(3)
γ,ξξ = χγ (ξ − signξ/2)
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where χγ = −φγ,ll − (λ + µ)φβ,βγ /µ + 2ψγ,3 + (λ + µ)ψ3,γ /µ + ρφγ,t t/µ.

Integrating and accounting conditions for ξ = 0, we get [2]

u
(3)
γ,ξ = χγ

(

ξ 2 − ξsignξ
)

/2 +
(

kχγ + µψγ,3 + µψ3,γ

)

/(k + µ)/12

Finally the expression for refined derivative is

〈

u
(3)
γ,ξ

〉

= µ
(

φγ,ββ + (3λ + 2µ)φβ,βγ /(λ + 2µ) − ρφγ,t t/µ
)

/(k + µ)/12

Now consider solution for case i = 3. The elasticity moduli tensor is

C3 jklu
(1)
k, jl = C3 jβlu

(1)
β, jl = (λδ3 jδβl + µδ3βδ jl + µδ3lδ jβ)u

(1)
β, jl = (λ + µ)u

(1)
β,β3

(C33kl + C3lk3)u
(2)
k,ξ l = ((λ + 3µ)δ3lδ3k + (λ + µ)δkl) u

(2)
k,ξ l

= 2(λ + 2µ)u
(2)
3,ξ3 + (λ + µ)u

(2)
β,ξβ

Task equation for |ξ | < 1/2 is

u
(3)
3,ξξ = −(λ + µ)u

(1)
β,β3/(λ + 2µ) − 2u

(2)
3,ξ3 − (λ + µ)u

(2)
β,ξβ/(λ + 2µ)

ξ = 0: [u(3)
3,ξ ] = −[u(2)

3,3] − λ[u(2)
β,β]/(λ + 2µ) = 0

u
(2)
3 = 0, [[u(3)

3 ]] = 0,
〈

u
(3)
3

〉

= 0.

The equation may be rewritten as:

u
(3)
3,ξξ = χ3 (ξ − signξ/2)

Here χ3 = (λ + µ)ψβ,β/(λ + 2µ) + 2ψ3,3 − (λ + µ)φβ,β3/(λ + 2µ).

Integrating and accounting conditions for ξ = 0 we get [2]

u
(3)
3,ξ = χ3(ξ

2 − ξsignξ + 1/6)/2,
〈

u
(3)
3,ξ

〉

= 0.

Finally the expressions for refined derivatives are

〈

u
(3)
γ,ξ

〉

=
1

12

µ

(k + µ)

(

φγ,ββ +
3λ + 2µ

λ + 2µ
φβ,βγ −

ρ

µ
φγ,t t

)

,
〈

u
(3)
3,ξ

〉

= 0.

3 Variants of Averaged System of Equations

Now we can formulate the refined system of equations for layered medium with

slippage (latine indices i, j, k, l = 1, 2, 3; greek indices β, γ = 1, 2):
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Cγ jklwk, jl + Cγ jk3

〈

u
(1)
k,ξ

〉

, j
+ ε2Cγ jk3

〈

u
(3)
k,ξ

〉

, j
= ρwγ,t t

C3 jklwk, jl + C3 jk3

〈

u
(1)
k,ξ

〉

, j
+ ε2C3 jk3

〈

u
(3)
k,ξ

〉

, j
= ρw3,t t

Accounting the elastic moduli tensor the terms of this system of equations are

written as

Cγ jklwk, jl = (λ + µ)wk,kγ + µwγ,kk, C3 jklwk, jl = (λ + µ)wk,k3 + µw3,kk

Cγ jk3

〈

u
(1)
k,ξ

〉

, j
= Cγ jβ3

〈

u
(1)
β,ξ

〉

, j
= µφγ,3

C3 jk3

〈

u
(1)
k,ξ

〉

, j
= C3 jβ3

〈

u
(1)
β,ξ

〉

, j
= µφβ,β

Cγ jk3

〈

u
(3)
k,ξ

〉

, j
= µ

〈

u
(3)
γ,ξ

〉

,3

= µ2
(

φγ,ββ3 + (3λ + 2µ)φβ,βγ 3/(λ + 2µ) − ρφγ,t t3/µ
)

/(k + µ)/12

C3 jk3

〈

u
(3)
k,ξ

〉

, j
=

〈

u
(3)
β,ξ

〉

,β

= µ2
(

4(λ + µ)φβ,βαα/(λ + 2µ) − ρφβ,βt t/µ
)

/(k + µ)/12

Finally refined system of equations is

(λ + µ)wk,kγ + µwγ,kk + µφγ,3

+ ε2µ2
(

φγ,ββ3 + (3λ + 2µ)φβ,βγ 3/(λ + 2µ) − ρφγ,t t3/µ
)

/(k + µ)/12 = ρwγ,t t

(λ + µ)wk,k3 + µw3,kk + µφβ,β

+ ε2µ2
(

4(λ + µ)φβ,βαα/(λ + 2µ) − ρφβ,βt t/µ
)

/(k + µ)/12 = ρw3,t t

Remind that φγ = −µ(wγ,3+w3,γ )/(k+µ). In general equations the expressions

for φγ are not substituted to avoid the unnecessary complexity of formulas. It is seen

that regarding spatial variables this is the system of forth order for the displacements

wk and it contains mixed time derivatives.

The system of equations is simplified for the case of ideal slipping contact between

layers k = 0.

(λ + µ)wk,kγ + µwγ,kk + µφγ,3

+ ε2µ
(

φγ,ββ3 + (3λ + 2µ)φβ,βγ 3/(λ + 2µ) − ρφγ,t t3/µ
)

/12 = ρwγ,t t

(λ + µ)wk,k3 + µw3,kk + µφβ,β

+ ε2µ
(

4(λ + µ)φβ,βαα/(λ + 2µ) − ρφβ,βt t/µ
)

/12 = ρw3,t t

φγ = −(wγ,3 + w3,γ )
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Separately we formulate plane (2D) dynamic system of equations

(λ + 2µ)w1,11 +
(

λ +
kµ

k + µ

)

w3,13 +
kµ

k + µ
w1,33

−
ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)

(

w1,1133 + w3,3111

)

+
ρε2µ2

12(k + µ)2

(

w1,33t t + w3,31t t

)

= ρw1,t t

(λ + 2µ)w3,33 +
(

λ +
kµ

k + µ

)

w1,13 +
kµ

k + µ
w3,11

−
ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)

(

w1,1113 + w3,1111

)

+ ρ
ε2µ2

12(k + µ)2

(

w1,13t t + w3,11t t

)

= ρw3,t t

and quasi-static 2D system of equations

(λ + 2µ)w1,11 +
(

λ +
kµ

k + µ

)

w3,13 +
kµ

k + µ
w1,33

−
ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)

(

w1,1133 + w3,3111

)

= 0

(λ + 2µ)w3,33 +
(

λ +
kµ

k + µ

)

w1,13 +
kµ

k + µ
w3,11

−
ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)

(

w1,1113 + w3,1111

)

= 0

Finally 1D dynamic or quasi-static system of equations for bending of layered

massive (case w1 = 0,w3 = w3(x1, t)) takes the view

ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)
w3,1111 −

kµ

k + µ
w3,11 − ρ

ε2µ2

12(k + µ)2
w3,11t t + ρw3,t t = 0

for dynamics, and

ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)
w3,1111 −

kµ

k + µ
w3,11 = 0

for quasi-statics. Formulas for stress tensor components are

σ
(0)
i j = Ci jklwk,l + Ci jk3u

(1)
k,ξ

σ
(0)
i j = λδi j wk,k + µ(wi, j + w j.i ) + µ(φiδ j3 + φ jδi3)
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σ
(1)
i j = Ci jklu

(1)
k,l + Ci jk3u

(2)
k,ξ

σ
(1)
i j =

(

λδi jφk,k + µ(φi, j + φ j.i ) − λδi jψ3 − µ(ψiδ j3 + ψ jδi3)
)

(ξ − signξ/2)

where φ3 = 0, φγ = −µ(wγ,3 + w3,γ )/(k + µ), ψγ = φγ,3, ψ3 = λφβ,β/(λ + 2µ).

Boundary conditions for loaded surface are

σ
(0)
i j · n j = Pi , σ

(1)
i j · n j = 0

In some problems for definite orientations of boundary normal vector the boundary

condition of first order converts into identity. In such cases the boundary condition

of second order should be used: σ
(2)
i j · n j = 0.

4 Wave Properties of Layered Medium with Slippage at

Inter-layer Boundaries

Below the propagation of plane harmonic and surface Rayleigh waves in layered

media is considered.

4.1 Plane Harmonic Waves

Let’s define the properties of harmonic waves propagating in arbitrary direction

regarding layer orientation at arbitrary inter-layer connection coefficient k. 2D

dynamic system of equations for the medium under consideration is

(λ + 2µ)w1,11 +
(

λ +
kµ

k + µ

)

w3,13 +
kµ

k + µ
w1,33

−
ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)

(

w1,1133 + w3,3111

)

+ ρ
ε2µ2

12(k + µ)2

(

w1,33t t + w3,31t t

)

= ρw1,t t

(λ + 2µ)w3,33 +
(

λ +
kµ

k + µ

)

w1,13 +
kµ

k + µ
w3,11

−
ε2µ3

3(k + µ)2

(λ + µ)

(λ + 2µ)

(

w1,1113 + w3,1111

)

+ ρ
ε2µ2

12(k + µ)2

(

w1,13t t + w3,11t t

)

= ρw3,t t
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These equations may be rewritten as

(λ + 2µ)w1,11 + λw3,13 + µ̃(w1,3 + w3,1),3 − ε2µβ1

(

w1,3 + w3,1

)

,113

+ ρε2β2

(

w1,3 + w3,1

)

,3t t
= ρw1,t t

(λ + 2µ)w3,33 + λw1,13 + µ̃(w1,3 + w3,1),1 − ε2µβ1

(

w1,3 + w3,1

)

,111

+ ρε2β2

(

w1,3 + w3,1

)

,1t t
= ρw3,t t

Introduce the additional variables

U = w1,3 + w3,1

V = µ̃U − ε2µβ1U,11 + ρε2β2U,t t

The system of equations takes the following view

(

(λ + 2µ)w1,11 − ρw1,t t

)

+ λw3,13 + V,3 = 0

λw1,13 +
(

(λ + 2µ)w3,33 − ρw3,t t

)

+ V,1 = 0

w1,3 + w3,1 − U = 0

µ̃u − ε2β2(µ∗u,11 + ρu,t t ) − V = 0

Here the following designations are introduced

µ̃ = µ
k

k + µ
, β =

µ

k + µ
, β1 =

λ + µ

λ + 2µ
β2/3, β2 = β2/12, µ∗ = µβ1/β2

We seek the solution of this system of equations as harmonic waves propagating

in the direction n = (n1, n3) with frequency ω and wave number κ = κn = (κ1, κ3)

w1 = Aei(κ1x1+κ3x3−ωt), w3 = Bei(κ1x1+κ3x3−ωt)

U = Cei(κ1x1+κ3x3−ωt), V = Dei(κ1x1+κ3x3−ωt)

where κ1 = κn1, κ3 = κn3, |κ| = κ , |n| = 1, k = 2π/ l is the wave number, l is

harmonic wave length, εk = 2πε/ l, ε2k2 = 4π2(ε/ l)2. The value ε/ l ≪ 1 is a

small parameter. In result we get the system of homogeneous algebraic equations

(

(λ + 2µ)κ2
1 + µεκ

2
3 − ρω2

)

A + (λ + µε)κ1κ3 B = 0

(λ + µε)κ1κ3 A +
(

(λ + 2µ)κ2
3 + µεκ

2
1 − ρω2

)

B = 0

Here µε = µ̃ + ε2β2(µ∗κ
2
1 − ρω2). Condition of the solvability for this alge-

braic system gives the equation for propagation velocities of harmonic waves in the

medium under consideration:

ζ 4 −
(

1 +
µε

(λ + 2µ)

)

ζ 2 +
µε

(λ + 2µ)
+ 4

(λ + µ)

(λ + 2µ)

(µ − µε)

(λ + 2µ)
n2

1n2
3 = 0
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Here ζ 2 = ρc2/(λ + 2µ) = c2/c2
1, c = ω/κ is the phase velocity of wave

propagation in layered medium, c1 =
√

(λ + 2µ)/ρ and c2 =
√

µ/ρ are velocities

of elastic longitudinal and transverse waves in a homogeneous elastic medium.

Let α (n1 = sin α) is the angle of wave propagation direction. For some values of

α the biquadratic equation has exact solution.

At α = 0 have ζ1 = 1 and ζ2 =
√

µ̃
/

√

(λ + 2µ)(1 + ε2κ2β2) for quasi-

longitudinal wave and for quasi-transversal wave respectively.

At α = π/4 have ζ1 =
√

(λ + µ + µ̃ + ε2κ2β2µ∗/2)
/

√

(λ + 2µ)(1 + ε2κ2β2)

and ζ2 = √
µ

/√
(λ + 2µ) for quasi-longitudinal wave and for quasi-transversal

wave respectively.

At α = π/2 have ζ1 = 1 and ζ2 =
√

(µ̃ + ε2κ2β2µ∗)/
/

√

(λ + 2µ)(1 + ε2κ2β2)

for quasi-longitudinal wave and for quasi-transversal wave respectively.

At arbitrary α the solution of this equation may be sought in assumed approxi-

mation ∼ ε2 as ζ 2 = ζ 2
0 + ζ 2

∗ ε2 + o(ε2).

Zero approximation ζ = ζ 2
0 is found from equation:

ζ 4
0 −

(

1 +
µ̃

(λ + 2µ)

)

ζ 2
0 +

µ̃

(λ + 2µ)

+
(λ + µ)

(λ + 2µ)

(µ − µ̃)

(λ + 2µ)
sin2 2α = 0

Values ζ 2
0 which correspond to quasi-longitudinal and quasi-transversal waves in

layered medium are:

ζ 2
0 = 0.5 (1 + µ̃/(λ + 2µ) ± D0)

where

D0 =

√

(λ + µ)2

(λ + 2µ)2
+ 2

(λ + µ)

(λ + 2µ)

(µ − µ̃)

(λ + 2µ)
cos 4α +

(µ − µ̃)2

(λ + 2µ)2

The correction coefficient ζ 2
∗ is:

ζ 2
∗ = β2κ

2(ζ 2
0 − cos2 2α)

(

µ∗

(λ + 2µ)
sin2 α − ζ 2

0

) (

2ζ 2
0 −

(

1 +
µ̃

(λ + 2µ)

))−1

Approximate values of phase velocities with accuracy ε2 are

ζ ≈ ζ0

(

1 + κ2ε2β2(ζ
2
0 − cos2 2α)

(

ζ 2
0 −

µ∗

(λ + 2µ)
sin2 α

)

/2ζ 2
0 D0

)
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From these formulas it is seen that the velocities of harmonic waves have small

dispersion (∼ κ2ε2) and depend on the wave direction parameter α.

Now investigate the limit cases of these formulas at ε → 0 (µε → µ̃). Firstly it

is the limit case of ideal inter-layer contact (case of homogeneous elastic medium):

k → ∞ (µ̃ → µ), and secondly it is the limit case of ideal inter-layer slipping

k → 0 (µ̃ → 0).

Quasi-longitudinal waves (sign plus in formulas for ζ0 andζ ).

In this case for ε → 0: ζ → ζ0.

For k → ∞: ζ0 → 1 (c → c1), (elastic longitudinal wave in isotropic medium).

For k → 0 : ζ 2
0 → 0.5 (1 + D1)

Here

D1 =

√

(λ + µ)2

(λ + 2µ)2
+

2(λ + µ)µ

(λ + 2µ)2
cos 4α +

µ2

(λ + 2µ)2

For α = 0, π/2: ζ0 → 1,c → c1, (waves along and cross layers).

For α = π/4:ζ0 →
√

(λ + µ)/(λ + 2µ) (waves propagated under an angle to

the layer boundary direction, minimal propagation velocity).

Quasi-transversal waves (sign minus in formulas for ζ0 and ζ ).

In this case for ε → 0: ζ → ζ0.

For k → ∞: ζ → c2/c1 (c → c2), (elastic transversal wave in isotropic medium).

For k → 0: ζ 2
0 → 0.5 (1 − D1).

For α = 0, π/2: ζ0 → 0, c → 0, (waves along and cross layers).

For α = π/4 : ζ0 → c2/c1, c → c2, (waves propagated under an angle to the

layer boundary direction, maximal propagation velocity).

The dependence of propagation velocities for quasi-longitudinal and quasi-trans-

versal waves on coefficients of inter-layer connection k are shown in Fig. 1. Upper

graphs correspond to quasi-longitudinal waves, lower graphs correspond to quasi-

transversal waves at various values of small parameter ε/ l = 0.5, 0.3, 0.1. Dimen-

sionless elastic moduli are defined as λ/(λ + 2µ) = µ/(λ + 2µ) = 1/3.

Above each graph the value of wave direction angle = 0, 30◦, 60◦, 90◦ is shown.

For = 0, 90◦ the solutions are described by exact formulas given above and shown

in Fig. 1a, d. For other values of the solution of biquadratic equation for ζ = c/c1 is

calculated numerically and shown in Fig. 1b, c.

From these graphs the level of plane wave dispersion can be seen (for small

values of the coefficient of inter-layer connection) for various wave directions. The

dependence of dispersion on the layer thickness parameter ε/ l can also be seen

there. It is possible to conclude that the dispersion plays role only for dimensionless

coefficients of inter-layer connection k/(λ + 2µ) < 0.7. It is mostly significant

for directions = 90◦ (along layers) of quasi-transversal waves (see Fig. 1d, lower

graphs).
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Fig. 1 The dependence of dimensionless velocities for quasi-longitudinal and quasi-transversal

waves on coefficients of inter-layer connection k

4.2 Surface Rayleigh Waves

Consider surface waves on the boundary of layered half-plane − ∞ < x3 ≤ 0,

−∞ < x1 < ∞ (plane task). The system of equations for displacements of layered

medium with slippage at inter-layer boundaries is written earlier

(

(λ + 2µ)w1,11 − ρw1,t t

)

+ λw3,13 + V,3 = 0

λw1,13 +
(

(λ + 2µ)w3,33 − ρw3,t t

)

+ V,1 = 0

w1,3 + w3,1 − U = 0, µ̃U − ε2β2(µ∗U,11 + ρU,t t ) − V = 0

Boundary conditions at x3 = 0

σ33 = (λ + 2µ)w3,3 + λw1,1 = 0, σ13 = µ(w1,3 + w3,1) = 0
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At x3 → −∞ have w1 → 0, w3 → 0.

Represent the solutions of this task as surface wave (γ > 0)

w1 = Aeγ x3 ei(κ1x1−ωt), w3 = Beγ x3 ei(κ1x1−ωt)

Substituting this representation in to the system of differential equations we get

the algebraic homogeneous system of equations

(

µεγ
2 − κ2

1 ∆1

)

A + (λ + µε)γ iκ1 B = 0

− κ2
1 (λ + µε)γ A +

(

(λ + 2µ)γ 2 − κ2
1 �2ε

)

iκ1 B = 0

Here the following designations are used: µε = µ̃ + ε2β2κ
2
1 ∆∗, ∆∗ = µ∗ − ρc2,

∆1 = λ + 2µ − ρc2, ∆2ε = ∆2 + ε2β2κ
2
1 ∆∗, ∆2 = µ̃ − ρc2.

Phase velocity of surface wave is c = ω/κ1. The solvability condition gives the

biquadratic equation for γ

(λ + 2µ)µεγ
4 − κ2

1 γ 2 D2 + κ4
1 ∆1∆2ε = 0

where D2 = µε∆2ε + (λ + 2µ)∆1 − (λ + µε)
2.

From this equation we find two positive solutionsγ1,2 > 0

γ 2
1,2 =

κ2
1

{

D2 ±
√

D2
2 − 4(λ + 2µ)µε∆1∆2ε

}

2(λ + 2µ)µε

Then the solutions of task are

w1 = A1eγ1x3 ei(κ1x1−ωt) + A2eγ2x3 ei(κ1x1−ωt)

w3 = B1eγ1x3 ei(κ1x1−ωt) + B2eγ2x3 ei(κ1x1−ωt)

where iκ1 B1,2 = κ2
1 (λ + µε)γ1,2 A1,2

(

(λ + 2µ)γ 2
1,2 − κ2

1 �2ε

)−1

Substituting these solutions into boundary conditions at x3 = 0 get the system of

equations

γ1 A1 + γ2 A2 + iκ1 B1 + iκ1 B2 = 0

− λκ2
1 A1 − λκ2

1 A2 + (λ + 2µ)γ1iκ1 B1 + (λ + 2µ)γ2iκ1 B2 = 0

From this system of equations the amplitudes B1 and B2 may be excluded. Then we

have two homogeneous equations regarding amplitudes A1 and A2. For simplification

of expressions instead of γ1,2 > 0 introduce values η1,2 from relations η1,2 = γ1,2/κ1.

These values are defined by formulas

η2
1,2 =

D2 ±
√

D2
2 − 4(λ + 2µ)µε�1�2ε

2(λ + 2µ)µε
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Homogeneous system of equations for amplitudes A1 and A2 is

η1

(

1 +
(λ + µε)

(

(λ + 2µ)η2
1 − �2ε

)

)

A1 + η2

(

1 +
(λ + µε)

(

(λ + 2µ)η2
2 − �2ε

)

)

A2 = 0

(

(λ + 2µ)(λ + µε)η
2
1

(

(λ + 2µ)η2
1 − �2ε

) − λ

)

A1 +
(

(λ + 2µ)(λ + µε)η
2
2

(

(λ + 2µ)η2
2 − �2ε

) − λ

)

A2 = 0

For solvability the determinant of this system should be equal to zero. It gives the

equation for unknown phase velocity of surface wave c = ω/κ1

4(λ + µ)η1η
2
2 − η2(1 + η2

2)
(

(λ + 2µ)η2
1 + λη2

2

)

−
�µε

µ

{

η1

(

(λ + 2µ)η2
2 + λ

)

+ η2(1 + η2
2)

(

(λ + 2µ)η2
1 + λ

)}

= 0

Here we denote �µε = µ − µε. Again investigate the limit cases of this formula

at ε → 0 (µε → µ̃). In these cases

η2
1,2 =

D̃3 ±
√

D̃2
3 − 4(λ + 2µ)µ̃�1�2

2(λ + 2µ)µ̃

where D̃3 = µ̃�2 + (λ + 2µ)�1 − (λ + µ̃)2.

The equation for surface wave propagation velocity is

4(λ + µ)η1η
2
2 − η2(1 + η2

2)
(

(λ + 2µ)η2
1 + λη2

2

)

−
µ

(k + µ)

{

η1

(

(λ + 2µ)η2
2 + λ

)

+ η2(1 + η2
2)

(

(λ + 2µ)η2
1 + λ

)}

= 0

Case of ideal contact (ideal elastic medium)

In this case at k → ∞ (µ̃ → µ):

η2
1 = 1−c2/c2

1, η
2
2 = 1−c2/c2

2, 4(λ+µ)η1η2 − (1+η2
2)

(

(λ + 2µ)η2
1 + λη2

2

)

= 0

After short transformation we come to classic Rayleigh wave:

4

√

1 − c2/c2
1

√

1 − c2/c2
2 − (2 − c2/c2

2)
2 = 0

Case of ideal inter-layer slipping

In this case at k → 0 (µ̃ → 0) treating µε as small parameter we get:

η2
1 ∼

4µ(λ + µ) − (λ + 2µ)ρc2

(λ + 2µ)µε

, η2
2 ∼

(λ + 2µ − ρc2)(µε − ρc2)

4µ(λ + µ) − (λ + 2µ)ρc2

(3λ + 2µ)η1η
2
2 − 2(λ + 2µ)η2

1η2(1 + η2
2) − λη2(1 + η2

2)
2 − λη1 = 0
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The graphs for dependence of dimensionless surface wave velocity c/c1 on inter-

layer connection coefficient k is shown in Fig. 2 for various values of layer thickness

parameter ε/ l = 0.5, 0.3, 0.1. As in previous case the wave number is κ1 = 2π/ l,

where l is the length of harmonic surface wave. The asymptotic of classic Rayleigh

root takes place for k/(λ+2µ) > 1.5÷2. These graphs are very similar to the lower

graphs in Fig. 1d (quasi-transversal waves) for waves propagating along layers (=
90◦) and very close to them. For classic Rayleigh waves, as it is known, cR/c2 ≈ 0.9,

the same relation is valid and in the case under consideration for ratio of velocity of

surface waves to the velocity of quasi-transversal waves.

Remark that the applicability boundary of proposed asymptotic theory is not

defined exactly. The upper boundary for small parameter ε/ l = 0.5 is assumed quite

approximately. Nevertheless, for inter-layer connection coefficients starting from

values k/(λ + 2µ) > 0.7, the calculations give very close meanings for propagation

velocity of quasi-longitudinal, quasi-transversal and surface waves for the whole

range of wave lengths ε/ l < 0.5.

It should be noted that proposed refined theory may be used for investigation

of transformation seismic waves exiting to the day surface in rock massifs with

regular parallel crack grids accounting slippage at contact boundaries. Also this

theory may be useful for description of composite materials with additional soft

sublayers between more rigid layers.

Fig. 2 The dependence of dimensionless surface wave velocity on inter-layer connection

coefficient k
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5 Conclusion

Using the asymptotic method of homogenisation the continuum theory of layered

medium is built taking into account terms of second order accuracy regarding the

small parameter of layer thickness. The linear slip contact condition is used to

describe the relation between tangential displacement jumps and shear stresses. The

wave properties of the proposed refined equations are studied, the dispersion relations

are derived and the propagation of harmonic waves is investigated. The problem of

surface Rayleigh like waves is solved.
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