
Multiaxial Fatigue Criteria and Durability
of Titanium Compressor Disks
in Low- and Very-high-cycle Fatigue Modes

Nikolay Burago and Ilia Nikitin

Abstract Life duration for titanium disks of low temperature part of compressor
aero-engineD30-Ku is investigated. Several criteria andmodels are tested under con-
ditions of low-cycle fatigue (LCF) and very-high-cycle fatigue (VHCF). Parameters
of the criteria andmodels are determined fromuniaxial fatigue tests for titanium alloy
VT3-1. Stress-strain state of disks and blades is calculated taking into account cyclic
centrifugal, aerodynamic, contact loads and blade vibrations. Calculated stresses and
strains are used as input data for multiaxial models of LCF andVHCF regimes. Loca-
tion and scales of fracture as well as time to fracture are calculated. The results of
calculations are in good agreement with observations during engine exploitation and
correspond to data of fractographic investigations of damaged disks.
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1 Introduction

In this paper we consider the problem of determining the duration of safe operation
of structures. In experiments [1] it is shown that under the action of cyclic loads after
several millions or billions of cycles the material may be damaged even if during
this time only small elastic deformations were observed and in the material there
were no signs of macroscopic defects. To date, several phenomenological models of
fatigue failure have been developed [2, 5–9, 11–13], generalizing the experimental
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Fig. 1 Fracture in disks for compressor of aero engines D30-KU-154

data for the case of a multiaxial stress-strain state. To determine the safe operation
life of structures for such models it is sufficient calculate the stress-strain state using
the linear theory of elasticity. Available models of fatigue failure are divided into
three groups, the first of which is based on the criteria of stress state [5, 7, 11], the
second group is based on criteria for strain state [2, 6, 12], and third group is based
on the calculation of the kinetics of damage [8]. The physical nature of damage in
the material structure under the action of cyclic loads, which is investigated in e.g.
[1, 10], is still an active topic of study.

Fatigue fracture of disks of gas turbine engines (GTE) is a well-known phenom-
enon [10]. The gas turbine engines are subjected to various cyclic loads. The cycles
of “take-off-flight-landing” correspond to low cycle fatigue. The presence of small
vibrations with R = σmin/σmax > 0.8 corresponds to very high cycle fatigue.

It is demonstrated that such additional loads can essentially alter the picture of
damage accumulation in service. There were several unpredicted cases of damage to
titanium rotor disks in the low pressure compressor stage in the D30-KU-154 engine
(Fig. 1). The fatigue failures may take place earlier than in accordance with the LCF
criteria, and that is why a new numerical approach is developed here in order to
estimate and to compare life duration predictions not only for the LCF but also for
the VHCF regimes.

The finite elementmodel for the diskwith blades under consideration is developed
in [3] and the 3D stress-strain state is analyzed there taking into account centrifu-
gal and aerodynamic loads, contact and vibration loads. Aero-elastic effects due to
mutual influence of aerodynamic loads and structural shape changes are also taken
into account.

It is assumed that during the flight cycle the maximum values of stresses and
strains correspond to the aircraft flight velocity of 200m/s and the disk rotation
frequency of 3000 rpm. It is assumed that during many years of safe exploitation the
disks are subjected only to elastic deformations and do not contain cracks. Our first
goal is to calculate disk life duration as the limiting number of cycles to failure and
to detect the location of failure using fatigue criteria [2, 4–9, 11–13] for LCF regime
of cyclic loading. The results are compared to available in-flight data.
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Our second goal is to study the VHCF regime of cyclic loading due to additional
action of high frequency axial vibrations of blade shroud ring. The maximum vibra-
tion amplitude is assumed to be at a disk rotation frequency of 3000 rpm. Evaluations
of life duration are presented in terms of the number of vibration cycles according
to various VHCF criteria.

Until now, in the literature there are no experimental data and theoretical multi-
axial models applicable to the considered material (titanium alloy VT3-1) for VHCF
regime. Therefore the known multiaxial LCF criteria are generalized here and are
applied to study the VHCF regime. The generalization is performed using similarity
of the left and right branches of bimodal fatigue curves. The values of parameters for
generalized criteria are determined using the few available experimental data found
for VHCF regime.

There are noother publications on the life duration estimates for three-dimensional
structure in VHCF regime in scientific literature yet. The calculated results for the
low-cycle and very-high-cycle fatigue are compared. It is found that in the life dura-
tion estimates are close to each other. That is why the VHCF mechanism should be
taken into account in the resource estimates of GTE.

2 Computational Model of Contact Structure “Disk and
Blades”

The application of finite element method for contact structure disk and blades is
described in [3]. The three-dimensional stress-strain state of the contact system of
the compressor disk and blades (Fig. 2) is numerically analyzed using finite-element
method. The distributed aerodynamic loads are approximated using analytical meth-
ods based on modification of classical solutions to the problem of flow about a lattice
of plates at arbitrary angle of attack. The solution of aerodynamic problem is obtained
using theory of complex variablemethods and the isolated profile hypothesis with the
blade deformable shape changes taken into account [3]. The combined action of cen-
trifugal, aerodynamic and contact loads is taken into account. First, stress-strain state
is calculated for the full computational model “disk with 22 blades” (Fig. 2a) using
a rough grid with a number of elements of about 105. Then, the solution obtained
from the calculation of the full model is used to move the boundary conditions onto
the sides of the disk sector with a single blade (Fig. 2b), which is calculated using
the refined grid with the same number of finite elements of about 105, which is quite
acceptable for calculations on a personal computer. Calculated stresses and strains
are used in LCF and VHCF models for life duration estimations.

Extended numerical model is used for VHCF analysis taking into account low-
amplitude axial vibrations of shroud ring. The vibrations cause axial displacements
of the shroud ring. The vibrations along the ring take the form of 12–16 half waves.
For the disc-blade sector calculation it was assumed that the displacement of right
side of shroud ring is equal to zero and that the displacement of its left side varies
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Fig. 2 The contact system of the compressor disk and blades: a disk-blades contact structure, b
disk sector with blade and part of shroud ring

Fig. 3 The contact system of the compressor disk and blades: a schematic for vibration analysis,
b the slot of dovetail-type connection

in the range the maximal vibration amplitude of ±1mm (Fig. 3a) for a frequency of
3000 rpm. Vibration stresses are imposed on the basic stresses and then are used in
VHCF models for life duration estimations. The most dangerous area is shown in
Fig. 3b.
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3 Low Cycle Fatigue Models

3.1 LCF Models Based on the Stress State Estimation

The coefficients in criteria of fatigue fracture are determined from the experiments
for uniaxial cyclic loading for different values of stress ratio R = σmin/σmax, where
σmax and σmin are the maximum and minimum stresses during the cycle. These
values are used to define the stress amplitude σa = (σmax − σmin)/2. In the case of
uniaxial deformation, the test data are described using Wohler curves, which can be
analytically written by using the Basquin formula [4]:

σ = σu + σc Nβ (1)

Here σu is the fatigue limit, σc is the fatigue strength factor, β is the fatigue strength
exponent, and N is the number of cycles to fracture. A typical amplitude fatigue
curve is depicted in Fig. 4. The curve consists of two branches corresponding to
two fatigue regimes, the low cycle fatigue regime with fatigue limit σu and very
high cycle fatique regime with fatigue limit σ̃u . The regime of interest is located
in the left branch of the curve for life duration N < 107 cycles. The problem of
fatigue fracture is that the spatial function of the life duration distribution N must
be determined from equations in the form (1) generalized to multi-axis stress state
and containing the calculated stresses for the structure under study. Below the basic
methods of generalizing the results of uniaxial tests to multi-axis stress state are
considered [4].

Fig. 4 Typical fatigue Wohler’s curve for metals. Here σB is the strength limit, σu and σ̃u are
fatigue limits for LCF and VHCF regimes respectively
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3.1.1 Sines Model

According to Sines [11], the uniaxial fatigue curve (1) may be generalized to multi-
axis stress state as

Δτ/2 + αsσmean = S0 + ANβ (2)

where

σmean = (σ1 + σ2 + σ3)mean

Δτ =
√

(Δσ1 − Δσ2)
2 + (Δσ1 − Δσ3)

2 + (Δσ2 − Δσ3)
2/3

Here the parameter σmean is the mean stress over a loading cycle. The parameter Δτ

is the change in the octahedral tangent stress per cycle. The parameter Δτ/2 is the
octahedral tangent stress amplitude. Parameters αs, S0, A and β are experimental.
The model parameters for uniaxial fatigue curves are determined in [4]:

S0 = √
2σu/3, A = 10−3β

√
2(σB − σu)/3

αs = √
2(2k−1 − 1)/3, k−1 = σu/(2σu0)

Here σu and σu0 are the fatigue limits according to fatigue curves for R = −1 and
R = 0, N ≈ 107−108 cycles. It is assumed that the decrease of strength limit σB is
negligible up to the values N ≈ 103 (Fig. 4).

3.1.2 Crossland Model

According to Crossland [5], the uniaxial fatigue curve (1) may be generalized to
multi-axis stress state as

Δτ/2 + αc(σmax − Δτ/2) = S0 + ANβ, σmax = (σ1 + σ2 + σ3)max (3)

Here σmax is the maximum sum of principal stresses in a loading cycle, and αc, S0, A
andβ parameters determined fromexperimental data. Thefinal expressions formodel
parameters of the multiaxial model are determined in [4] for R = −1 and R = 0 as

S0 = σu

[√
2/3 + (1 − √

2/3)αc

]

A = 10−3β
[√

2/3 + (1 − √
2/3)αc

]
(σB − σu)

αc = (k−1
√
2/3 − √

2/6)
/[

(1 − √
2/6) − k−1(1 − √

2/3)
]

k−1 = σu/(2σu0)
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3.1.3 Findley Model

The form of this model for the multi-axis stress state is proposed by Findley [7]

(Δτs/2 + αFσn)max = S0 + ANβ (4)

Here τs and σn are the absolute magnitudes of tangent stress and normal stress for
the plane with normal vector ni . For this plane, the combinationΔτs/2+αFσn takes
a maximum value. The model parameters are

S0 = σu

(√
1 + αF

2 + αF

)
/2,

A = 10−3β(
√
1 + αF

2 + αF )(σB − σu)/2

αF =
[√

5k−1
2 − 2k−1/2 − k−1(1 − k−1)

]
[
k−1(2 − k−1)

]−1

Approximate parameter values for the titanium alloy Ti-6Al-4V [4] (which are
used in the computational example considered below) are limit strength ofσB = 1100
MPa, fatigue limits based on σa(N ) amplitude curves for R = −1 and R = 0 of
σu = 450 MPa and σu0 = 350 MPa, exponent in the power-law dependence on the
number of cycles of β = −0.45, Young’s modulus of E = 116 GPa, shear modulus
of G = 44 GPa, and Poisson’s ratio of ν = 0.32.

3.2 LCF Models Based on the Strain State Estimation

Classical Coffin-Manson relation [10] describing uniaxial fatigue fracture on the
basis of deformations is

Δε/2 = (2N )bσc/E + εc(2N )c

Here σc is the (axial) fatigue strength coefficient, εc is the (axial) fatigue plasticity
coefficient, b and c are the fatigue strength and fatigue plasticity exponents. Models
generalizing the Coffin-Manson relation to the case of multi-axis fatigue fracture are
briefly outlined below.

3.2.1 Brown-Miller Model

This model is proposed by Brown and Miller [2]; it takes into account the influence
of tensile strains at the plane of maximum shear strain:

Δγmax

2
+ αbmΔε⊥ = β1

σc − 2σ⊥mean

E
(2N )b + β2εc(2N )c (5)
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Here γi j = 2εi j , εi j are the strain tensor components; Δγmax/2 is the range of the
maximum shear strains attained on the plane;Δε⊥ is the range of the tensile strains on
this plane, and σ⊥mean is the cycle-average tensile stress on this plane. Approximate
values for the coefficients are provided in [? ]:αbm = 0.3,β1 = (1+ ν)+(1− ν)αbm ,
β2 = 1.5 + 0.5αbm .

3.2.2 Fatemi-Socie Model

This model is proposed by Fatemi and Socie [6]; it takes into account the influence
of the normal stresses at the plane of maximum shear strains:

Δγmax

2
(1 + k

σ⊥max

σy
) = τc

G
(2N )b0 + γc(2N )c0 (6)

Here σ⊥max is the cycle-maximum normal stress on the plane where γmax is attained,
σy is the material yield strength, τc is the fatigue (shear) strength coefficient, γc is
the fatigue (shear) plasticity coefficient, b0 and c0 are the fatigue strength and fatigue
plasticity exponents. The coefficient k is approximately equal to k = 0.5 [4].

3.2.3 Smith-Watson-Topper Model

This model is described in [12] and accounts for the influence of the normal stress
at the plane of maximum tensile strain:

Δε1

2
σ⊥1max = σc

2

E
(2N )2b + σcεc(2N )b+c (7)

Here Δε1 is the change in the maximum principal strain per cycle and σ⊥1max is the
maximum normal stress at the plane of maximum tensile strain. The fatigue parame-
ters for titanium alloys for this class of models are selected based on experimental
data [4]: σc = 1445 MPa, εc = 0.35, b = −0.095, c = −0.69, τc = 835 MPa,
γc = 0.20, b0 = −0.095, c0 = −0.69, σy = 910 MPa.

3.3 LCF Models Based on Damage Estimation

3.3.1 Lemaitre-Chaboche Model

The differential equation for damage D accumulated under multi-axis cyclic loading
is proposed in [8] and after integration may be written as

N = 1

(1 + β)aM

[
(1 − 3b2σ)

AI I a

]β 〈
(σu − σV M )

(AI I a − A∗)

〉
(8)
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Here the notation from [8] is used

AI I a = 0.5
√
1.5

(
Si j,max − Si j,min

) (
Si j,max − Si j,min

)

σV M = √
0.5Si j,maxSi j,max

σ = (σ1 + σ2 + σ3)mean/3
A∗ = σ10 (1 − 3b1σ)

aM = a/Mβ
0

The parameters Si j,max and Si j,min are maximum and minimum values of stress
deviator during loading cycle; the angle brackets are defined as: 〈X〉 = 0 for X < 0
and 〈X〉 = X for X ≥ 0. The model parameters for a titanium alloy are given in
[8]: β = 7.689, b1 = 0.0012, b2 = 0.00085 1/MPa, aM = 4.1 × 10−28, σ10 = 395
MPa, and σu = 1085 MPa.

3.3.2 The Liege University (LU) Model

This model is proposed and validated in [6]. In this case, the integrated differential
equation for the damage is

N = γ + 1

C

〈
σu − θ · σV M

AI I a − A∗

〉
f −(γ+1)
cr (9)

Here the notation from [8] is used

fcr = 1
b (AI I a + aσH − b) , fcr > 0

A∗ = σ−1 (1 − 3sσH )

σH = (σ1 + σ2 + σ3)max/3

The model parameters are taken from [8]: a = 0.467, b = 220 MPa, γ = 0.572,
C = 7.12 × 10−5, θ = 0.75, s = 0.00105 1/MPa, σ−1 = 350 MPa, σu = 1199
MPa.

3.4 Results of LCF Calculations

As an example, we consider the problem of fatigue fracture of GTE compressor disks
under low-cycle-fatigue (LCF) conditions. For each FLC (flight loading cycle) it is
assumed thatmaximal loads and rotation correspond to cruising speed of aircraft. The
problem is to calculate the life duration of the disk (N—the number of FLCs before
fracture) from relations (2)–(9). To this end, it is necessary to calculate the stress
state of the contact system of the compressor disk and blades under the combined
action of centrifugal, aerodynamic and contact loads.
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The input parameters include the angular velocity of rotationω = 314 rad/s (3000
rpm), the dynamic pressure at infinity ρv2∞/2 =26000 N/m2, corresponding to a
flow velocity of 200m/s and the air density of 1.3kg/m3. The total number of finite
elements does not exceed 1,00,000 making it possible to solve the problem using
usual personal computer. The material properties are E = 116 GPa, ν = 0.32, and
ρ = 4370 kg/m3 for the disk (titanium alloy), E = 69 GPa, ν = 0.33 and ρ = 2700
kg/m3 for the blades and blade shroud ring (aluminum alloy), and E = 207 GPa,
ν = 0.27 and ρ = 7860 kg/m3 for the fixing pins (steel).

The computations [3] indicate that the most dangerous areas are situated in the
contact area of dovetail-type between the disk and the blades. The computations
[3] also indicate that the best correspondence of computational and experimental
data for stress concentration is provided when the detachment and slip of contact-
ing elements (disk and blades) are taken into account. At the fixing pins boundary
(Fig. 2b) the conditions of complete adhesion are used according to technological
considerations. The zone of maximum tensile stress concentration is situated in the
left (rounded) corner of the contact area of dovetail-type (Fig. 3b). The stress con-
centration is increased from the front to the rear portion of the groove according to
observable nucleation of fatigue failure in the rear portion of the disk [10].

3.5 Estimate of Service Life for Structure Elements According
to LCF Criteria

In Fig. 5a–h, the computed number of flight cycles before fracture N for the chosen
criteria and multi-axis models of fatigue fracture are displayed for the left corner of
disk-blade contact joint of dovetail-type (in the zones of maximum stress concentra-
tion). The boundary of contact zone near the left corner of the groove is depicted by
solid line (Fig. 6).

In Fig. 5a–h, the horizontal axis represents the dimensionless coordinate of the
rounding of the groove’s left corner; the vertical axis represents the dimensionless
coordinate across the groove depth. The Sines, Lemaitre-Chaboche, Brown-Miller,
and Smith-Watson-Topper criteria provide estimates for the service life of gas turbine
engine disks of approximately 20,000–50,000 cycles. The Crossland and LU criteria
predict the possibility of fatigue fracture after fewer than 20,000 flight cycles. On
the whole, all of the criteria predict similar locations for the fatigue fracture regions.
The Fatemi-Socie criterion gives a service life prediction of approximately 1,00,000
cycles. The deviation of the Fatemi-Socie estimate from the results based on the other
criteria suggests that the shear mechanism of multi-axis fatigue fracture, which is
reflected in this criterion, is not purely realized in flight loading. Remark that 25,000
flight cycles correspond to an in-service lifetime of 50,000 h for two hour flights.
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Fig. 5 Life duration estimates in the area of failure initiation for LCFmodels: a Sines, b Crossland,
c Findley, d Brown-Miller, e Fatemi-Socie, f Smith-Watson-Topper, g Lemaitre-Chaboche, h Liege
University

Fig. 6 The area of failure
initiation; it is indicated by
solid lines and situated in the
slot of dovetail-type
connection

4 Very High Cycle Fatigue Models

An alternative fatigue mechanism may also be examined for high frequency axial
vibrations of the shroud ring. The amplitude of vibrations and stress state disturbances
near stress concentrators are relatively small, but the number of high frequency
vibrations can be as high as 109−1010, and evaluation of the very-high-cycle fatigue
(VHCF) regime is necessary because fatigue may take place even if stress levels
are below classical fatigue limits [7]. At present there is no experimentally verified
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multi-axis VHCF theory for titanium alloy. In order to obtain life duration estimates
the known multi-axis LCF models (2), (4), and (6) are used, taking into account
general assumptions about VHCF curves. A typical fatigue curve is presented in
Fig. 4, and in case of VHCF the right portion of the curve for N > 108 is of interest.

4.1 Generalization of Sines Model

The VHCF parameters are determined using one-dimensional fatigue curves in a
manner similar to the LCF case. The similarity between the left and right halves of
the fatigue curve is taken into account through the substitution σB → σu , σu → σ̃u

and σu0 → σ̃u0, where σ̃u and σ̃u0 are new fatigue limits for right half of the fatigue
curve for asymmetry factors R = −1 and R = 0, N > 1011 cycles (Fig. 4). The
VHCF parameter values for the generalized Sines model (2) are

S0 = √
2σ̃u/3, A = 10−8β

√
2(σu − σ̃u)/3,

αs = √
2(2k−1 − 1)/3, k−1 = σ̃u/σ̃u0/2

4.2 Generalization of Crossland Model

By analogy the VHCF parameters for the generalized Crossland model (4) are

S0 = σ̃u

[√
2/3 + (1 − √

2/3)αc

]
, A = 10−8β(σu − σ̃u)

[√
2/3 + (1 − √

2/3)αc

]

4.3 Generalization of Findley Model

The VHCF parameters for the generalized Findley model (6) are

S0 = σ̃u

(√
1 + αF

2 + αF

)
/2, A = 10−8β(σu − σ̃u)(

√
1 + αF

2 + αF )/2

For titanium alloy the following parameter values are used σu = 450 MPa, σ̃u =
250 MPa, σ̃u0 = 200 MPa. β = −0.3

4.4 Results of VHCF Calculations

The maximum stress concentration occurs near the rounding of the groove’s left
corner. The calculated limits of N (number of safe vibration cycles) for a selected
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Fig. 7 Life duration estimates in the area of failure initiation for VHCF models: a Sines, b Cross-
land, c Findley

area of the left corner are depicted in Fig. 7. The results were obtained using the
VHCF generalized criteria of Sines, Crossland, and Findley. Despite the rather low
additional vibration stress amplitude level in this case, zones of fatigue failure are also
appeared. The fatigue failure zones are situated near the rear portion of the groove’s
left corner (in the same location as in the LCF case). The safe vibration loading cycle
number is approximately equal to 109−1010, corresponding to an in-service lifetime
of 50,000 h.
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5 Conclusions

A numerical model is developed to estimate the service life of structural elements for
both LCF (flight cycles) and VHCF (vibrations) regimes. Comparative estimates of
life duration for GTE compressor disk-blade contact structures were obtained using
Sines, Crossland, and Findley fatigue models. The life duration estimates obtained
for LCF and VHCF mechanisms coincided closely with the observed service life of
titanium compressor disks in the D30-KU-154 GTE. So, original and generalized
fatigue failure criteria may be used for estimating in-service life duration of titanium
disks.

Although presented life duration estimates are rather approximate, they highlight
the possibility of fatigue fracture development in structural elements for both LCF
(flight cycles) and VHCF (high frequency low amplitude vibrations) regimes. The
most serious hazardmayhappendue tomutual actionof the bothmechanismsbecause
they may cause the fatigue failure developed almost simultaneously and in the same
location.

Acknowledgments The research was supported by the Russian Foundation for Basic Research
under projects 15-08-02392-a.

References

1. C. Bathias, P.C. Paris, Gigacycle fatigue in mechanical practice (Marcel Dekker Verlag, 2004)
2. M.W. Brown, K.J. Miller, A theory for fatigue failure under multiaxial stress-strain conditions.

Proc. Inst. Mech. Eng. 187(1), 745–755 (1973)
3. N.G. Burago, A.B. Zhuravlev, I.S. Nikitin, Analysis of stress state of the contact system “disc-

blad”. Comput. Contin. Mech. 4(2), 5–16 (2011)
4. N.G. Burago, A.B. Zhuravlev, I.S. Nikitin, Models of multiaxial fatigue fracture and service

life estimation of structural elements. Mech. Solids 46(6) (2011)
5. B. Crossland, Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy

steel. In Proceedings of the International Conference on Fatigue of Metals (Institution of
Mechanical Engineers, London, 1956), pp. 138–149

6. A. Fatemi, D.F. Socie, A critical plane approach to multiaxial fatigue damage including out-
of-phase loading. Fatigue Fract. Eng. Mater. Struct. 11(3), 149–165 (1988)

7. W.N. Findley, A theory for the effect of mean stress on fatigue of metals under combined
torsion and axial load or bending. J. Eng. Ind. 81(4), 301–306 (1959)

8. A.K.Marmi, A.M. Habraken, L. Duchene,Multiaxial fatigue damagemodelling at macro scale
of Ti-6Al-4V alloy. Int. J. Fatigue 31(11–12), 2031–2040 (2009)

9. I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini, A. Bernasconi, A comparative study of
multiaxial high-cycle fatigue criteria for metals. Int. J. Fatigue 19(3), 219–235 (1997)

10. A.A. Shanyavskiy, Modeling of Metal Fatigue Fracture (Monografiya, Ufa, 2007) (in Russian)
11. G. Sines, Behavior of metals under complex static and alternating stresses, in Metal Fatigue,

ed. by G. Sines, J.L. Waisman (McGraw-Hill, New York, 1959), pp. 145–169
12. R.N. Smith, P. Watson, T.H. Topper, A stress-strain parameter for the fatigue of metals. J.

Mater. 5(4), 767–778 (1970)
13. Y.-Y. Wang, W.-X. Yao, Evaluation and comparison of several multiaxial fatigue criteria. Int.

J. Fatigue 26(1), 17–25 (2004)


	Multiaxial Fatigue Criteria and Durability  of Titanium Compressor Disks  in Low- and Very-high-cycle Fatigue Modes
	1 Introduction
	2 Computational Model of Contact Structure ``Disk and Blades''
	3 Low Cycle Fatigue Models
	3.1 LCF Models Based on the Stress State Estimation
	3.2 LCF Models Based on the Strain State Estimation
	3.3 LCF Models Based on Damage Estimation
	3.4 Results of LCF Calculations
	3.5 Estimate of Service Life for Structure Elements According to LCF Criteria

	4 Very High Cycle Fatigue Models
	4.1 Generalization of Sines Model
	4.2 Generalization of Crossland Model
	4.3 Generalization of Findley Model
	4.4 Results of VHCF Calculations

	5 Conclusions
	References


