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Abstract. Algorithms and results of continuous and discrete markers methods
application to the problem of heavy viscous fluid flows calculations with free
boundaries are described. The three-dimensional non-stationary Navier-Stokes
equations and finite element method are used in variational formulation. An
interface capturing method is implemented using fixed-grid with a continuous
marker-function and (alternatively) discrete Lagrangian markers. The marker-
functions have jumps at the interfaces and the interface boundary is detected as a
level surface with intermediate value of marker-function. In numerical solutions,
such way to detect interface boundary may result in the conservation laws
violation even if conservative numerical methods are used. In order to prevent
such effects in our algorithms the procedures of marker-function antidiffusion
and conservation laws correction are introduced. In addition, in algorithms an
immediate removal of possible monotonicity violations is used. Another
implemented way to capture moving interfaces is based on the use of discrete
Lagrangian markers. In addition to classic variant of the Marker And Cell
(MAC) method, the algorithms of creation of new markers and removal of old
markers at input and output boundaries are used. It allows us to consider the
problems with open boundaries at long times. The improved interpolation at
interface boundaries is described. The methods of continuous and discrete
markers are used to simulate some set of incompressible viscous fluid flows with
moving free boundaries and variable topology of solution region (joining and
separation of parts of solution region). The solutions for following flows are
presented: (1) falling water drop into water basin, (2) the flow of water from
floor to floor through the hole, (3) the collapse of a water column and the
oscillations of a fluid in a closed basin, (4) a fountain and a puddle from a
vertical jet, and (5) fall of horizontal jets into the pool with water.

Keywords: Heavy viscous fluid � Moving interface boundaries
Free boundaries � Continuous markers � Discrete markers � Finite elements

© Springer Nature Switzerland AG 2019
I. B. Petrov et al. (Eds.): GCM50 2018, SIST 133, pp. 185–198, 2019.
https://doi.org/10.1007/978-3-030-06228-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06228-6_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06228-6_16&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06228-6_16&amp;domain=pdf
https://doi.org/10.1007/978-3-030-06228-6_16


1 Introduction

History of research on flows with moving interface boundaries including free, contact,
and phase transfer boundaries is highlighted in review [1]. Remind major facts con-
cerning interface boundaries calculations in hydrodynamics. There are at least four
categories of methods modeling flows with moving interface boundaries.

Methods of the first category for interface capture use two grids: the first grid is a
fixed structured or unstructured grid in the area of possible multiphase fluid motion,
and the second grid is the surface grid at the moving interface boundary. Methods of
the second category capture the interface boundary as a level surface of continuous
marker-function defined on fixed spatial grid covering the possible fluid motion area
and having definite constant value for each phase. Methods of the third category trace
the situation of phases by using Lagrangian (moving with material media) discrete
markers so that each phase has its own set of markers. At last, methods of the fourth
category are meshless. Such methods consider Lagrangian markers as material particles
having mass, impulse, energy, vorticity, electric charge, and possibly other physical
characteristics. Remark that history and implementation of another approach to mod-
eling of processes with movable interfaces is considered in [2], where two movable
Arbitrary Lagrange-Eulerian (ALE) adaptive overlapping meshes are used.

The rest of the chapter is organized as follows. Section 2 briefly reviews four
categories of methods. A problem statement is given in Sect. 3. A numerical method is
reported in Sect. 4. The features of the methods of continuous and discrete markers are
discussed in Sects. 5 and 6, respectively. Section 7 gives the conclusions.

2 Related Work

Consider the main four categories of methods for modeling flows with moving inter-
face boundaries in Sects. 2.1 and 2.4, respectively.

2.1 Methods of the First Category

Methods of the first category are the most accurate for interface boundary motion
detection. In most studies, the first grid is fixed (unmovable) and Cartesian ijk-grid.
Second grid is moving unstructured surface grid at the interface boundary represented
by triangles in 3D geometry and segments in 2D case. The moving grid is defined by
time dependent nodal coordinates and by the script of cell node numbers. This allows
easy detection of normal vector and curvature for use in boundary conditions. Firstly,
the moving grid of surface discrete markers was introduced in [3]. Further development
of surface markers is highlighted in [4]. Significant improvement of the interface
boundary calculation is achieved in [5] due to local grid refinement in fixed grid cells
with surface markers.

During coalescence and separation of domains occupied by some phase the
topology of interface boundary is changed. This makes the script of cell node numbers
dependent on time. In 2D case, the implementation of such topology changes in cal-
culations may be done. However, even in this case the grid algorithms become very
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complex and inconvenient. In 3D case, the implementation of variable in time surface
grid topology strikes with practically unsolvable difficulties. These difficulties exactly
correspond to difficulties in calculations of flows with exact detection of multiple
shocks using Rankine-Hugoniot conditions. More detailed analysis of surface marker
and grid methods is presented in review [6].

2.2 Methods of the Second Category

A continuous Lagrangian marker is a function that takes the given values for each
phase and defines the interface as the surface of an equal level of the marker function.
The marker-function Cðx; tÞ obeys the transport equation:

dCðx; tÞ
dt

¼ 0 or
@Cðx; tÞ

@t
þ uðx; tÞ � rCðx; tÞ ¼ 0;

where uðx; tÞ is a velocity of material medium. Gradient of the marker-function at the
interface boundary points the direction of normal vector. Curvature of interface
boundary is defined by second derivatives of marker function. The evolution of the
marker-function is defined by a through calculation on grids covering the spatial region
of motion of the media in question.

A typical representative of the second category is volume of fluid method [Volume
of Fluid or Volume of Fraction (VOF)] [7]. In this method, the ratio of the fluid-filled
part of the cell volume to its total cell volume plays the role of marker function.
Parameters of the interface geometry are determined using the marker-function and a
special algorithm. In the case of formation of multiple partially-filled cells, the deter-
mination of the interface in this method may become impossible.

In similar concentration or color methods of the marker-function takes given
constant values for each phase and at the interface boundary has a jump. When inte-
grating the equation for the marker function, it is necessary in this case: (1) to minimize
the numerical diffusion of the marker function at the interfaces and (2) to ensure the
monotonicity of the difference scheme (otherwise, the volume of the fluid, for pure
numerical reasons, will fall into drops corresponding to false maxima and minima of
the marker-function).

In the method of level set functions (see the reviews [8, 9]), the marker function
determines the distance from a given point to the interface, which is positive for points
in this phase and negative for points beyond its boundaries. Due to a smooth change in
this function, when passing through the interface, the diffusion effect of the marker-
function on the interface is insignificant but for long duration the values of the marker-
function already lose their meaning as distances to the boundary and, therefore, from
time to time the distances to the boundary are redefined during the calculation.

In all methods of continuous markers, there is a problem associated with violations
of conservativeness due to errors in determining the interface boundaries as surfaces of
an equal level of the marker function. For long duration, these violations lead to a loss
of the physical meaning of the numerical solution, which is especially noticeable when
conservation of mass is violated.
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The boundary conditions at the immersed interfaces (free boundary, surface ten-
sion, phase transition conditions, etc.) are taken into account in the differential for-
mulation by including in the equations integral terms with delta functions [10–12]. In
the numerical implementation, the delta function involved in the equations is
approximated by the ordinary capping function with the finite thickness assigned to the
interface that makes possible to ensure stability and smoothness of the solution in the
neighborhood of the boundary.

More details on history and methods of second category can be found in [1, 13–17].

2.3 Methods of the Third Category

The methods of the third category are similar to those of the first category. The region
of possible medium motion is covered by an Euler fixed grid, and instead of second
Lagrangian surface grid, the position of the phases is determined by the arrangement of
Lagrangian discrete markers covering the region of space occupied by a medium of a
certain phase and moving together with this medium. The first version of the MAC
method was presented in [18, 19] and developed in [20, 21].

Each marker is characterized by coordinate values that indicate its position in space
and the number that determines the type of phase, to which the marker belongs. The
coordinates of the marker xðtÞ are determined by integrating the differential equation of
Lagrangian trajectories dx=dt ¼ uðx; tÞ. In most MAC-method versions, discrete
markers are not combined into meshes, so the implementation of complex boundary
conditions using normals and curvatures is often not envisaged.

There are no fundamental difficulties in the determination of the curvature and the
normals to the interface in the discrete markers methods. To determine the boundaries,
the markers of a given phase on each time layer can be quickly combined into a grid of
Dirichlet cells, then the boundary will be formed by those edges (2D) or faces (3D) that
are not common for two Dirichlet cells. Another way to determine the interface is to
assign a marker phase index to the nearest Eulerian mesh node. Then interface
boundaries can be defined as isosurfaces passing through cells with a variable phase
index function.

2.4 Methods of the Fourth Category

At the turn of the 1980s, a large category of meshless particle methods appeared. In
these methods, the Lagrangian markers were transformed into material particles,
namely, they are supplied with mass, momentum, energy, vorticity, electric charge, and
other attributes of the material medium. The conservation laws (balance equations) in
such methods are formulated using the Galerkin-Petrov method and the expansion of
the solution with respect to finite basis functions that defined without the use of grids.
The history and more detailed description of these methods can be found in reviews [1,
22, 23].

Also, here the category of mixed material particle-cell methods should be men-
tioned (see reviews [24, 25]).

In the presented here study, we use only the simplest versions of the continuous and
discrete Lagrangian markers methods on fixed Eulerian grids. We describe useful and
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very simple ways to realize these methods that ensure the necessary efficiency. Also,
we present the results of these simplified methods application to typical problems of
flows with free boundaries.

3 Problem Statement

Consider the motion of a heavy incompressible viscous fluid. The original equations
have the form:

qð@tuþ u � ruÞ ¼ �rpþr � rv þ qg

r � u ¼ 0

@tqþ u � rq ¼ 0;

where the equation of motion, the incompressibility condition, and the transport
equation for the density are written in traditional notations, the viscous stress tensor is
determined by the Coulomb-Newton law rv ¼ lðruþðruÞTÞ, the coefficient of
dynamic viscosity l assumed to be given.

The variational form of the equations is:

Z

V

qð@tuþu � ru� gÞ � duþð�pIþ rv þ qmuruÞ � rdu½ �dV ¼
Z

S

n � ð�pIþ rvÞ � dudS;

Z

V

ð@tqþ u � rqÞ � dqþ mqrq � rdq
� �

dV ¼ 0;

where the pressure is determined by the incompressibility condition using the penalty
method p ¼ �q0c

2s0r � u. The penalty for violating the incompressibility condition
allows a small compressibility of the fluid, the coefficient q0c

2s0 plays the role of the
penalty coefficient, constant c plays the role of the speed of sound (the speed of
propagation of small perturbations), the constant factor s0 has the dimension of time.
For small Mach numbers M ¼ juj=c � 1, the fluid behaves as incompressible.

Additional diffusion terms with kinematic viscosity coefficients vu and vq in the
equations are introduced, since such terms in the equations inevitably appear in the
form of explicit or implicit artificial viscosity necessary to ensure the stability of
numerical algorithms.

We assume that the fluid in the general case is inhomogeneous (it has different
values of the density in the subdomains) and contains mobile interface boundaries in
the domain V.

At the initial instant of time, the distribution of density and velocity is given by the
initial conditions:

t ¼ 0; x 2 V : q ¼ q0 xð Þ ; u ¼ u0 xð Þ:
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The conditions on the boundaries of the solution region, as well as at the interfaces,
have the form of constraints on the boundary values of the unknown functions or the
corresponding fluxes and are taken into account in the variational equations in well
known manner using penalty or Lagrange multipliers.

4 Numerical Method

The basis of the numerical method is a two-layer central-difference scheme obtained by
applying the simplest piecewise linear spatial finite-element approximation of varia-
tional equations. The convective terms of the equations are approximated by an explicit
scheme and an explicit artificial viscosity is used to ensure the stability of the scheme.
Artificial viscosity is adopted in the form:

mu ¼ uj jh=2;

where h is the characteristic cell size (finite element size).
To improve the simulation of the boundary layers, the physical viscosity is reduced

in accordance with the Samarskii method of exponential fitting in the simplest version:

lu ¼ l2u0=ðlu0 þ qmuÞ;

where the index “0” indicates the initial uncorrected values.
We note that the viscous (diffusion) and penalty terms of the equations are

approximated implicitly. To find the solutions of the implicit scheme, a matrix-free
iterative method of conjugate gradients is used, each iteration exactly reproduces the
calculation of the time step of an explicit two-layer central-difference scheme. To find a
solution, no more than

ffiffiffiffi
N

p
iterations are required (N is the number of unknowns). Due

to a good initial approximation (solution on the previous time layer), the number of
iterations actually falls to two or three, so that implicitness is not associated with
appreciable additional costs of computing work.

The time step is limited by the stability condition (explicit scheme for convection):

Dt� min
k2X

fhk=jukjg;

where X is a set of cell numbers k.
For used numerical method local conservativeness or the balance of fluxes between

the nodal volumes is a consequence of the variational formulation and the fact that the
derivative of the constant is equal to zero.

5 Features of the Method of Continuous Markers

In our case, the role of a continuous marker plays the density of incompressible fluids.
There can be several fluids and each of them has its own density, in particular, the zero
density corresponds to the empty space. The motion of fluids is determined from the
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solution of the transfer equation. The interface is then defined as the surface of an equal
level of the marker function.

Important components of solution algorithm are monotonization and correction of
conservativeness procedures.

If non-monotonic algorithms are used to calculate the velocity and density (marker
function!), the subdomain occupied by the fluid will very quickly become a set of
disjointed droplets with boundaries defined by isolines (isosurfaces) of the continuous
marker q = 0.5. It will happen due to false maxima and minima of the marker-function.

A characteristic sign of the nonmonotonicity of the method is the so-called “saw”
on the graphs of the solution along the given line or on the isolines figure. The “saw” is
present if the sign of the second derivative along some direction is changed at the ends
of grid rib (the grid rib is a line connecting neighboring nodes). The directions of the rib
and coordinate line are not required to coincide.

Second derivatives of function wðxÞ in the case of piecewise linear approximation
are calculated as solutions of the following variational equation:

Z

V

ðwxx � @2w=@x2ÞdwxxdV ¼ 0:

Integrating by parts one gets the following equation:

Z

V

wxxdwxxdV þ
Z

V

@w=@x@wxx=@xdV ¼
Z

S

@w=@xdwxxnxdV ;

where solution domain V has boundary S. We assume that the right part of the equation
is equal to zero. It means that first or second derivative of function in question is zero at
the boundary S. For the first integral in the left part of the equation the Gaussian
quadrature with nodal integration points is used. It leads to explicit algorithm for
second derivatives calculation. Second derivations along y and z coordinates are cal-
culated in the same way.

We use the following very simple formula to correct monotonicity violations:

qnþ 1
i ¼ ðqnþ 1

i� þ ðqnþ 1
i��1 þ qnþ 1

i�þ 1Þ=2Þ=2;

where values in the right part with �1 in lower indices are calculated using interpo-
lation along coordinate direction with violation of monotonicity. Such correction is not
conservative but the conservativeness will be corrected further. Also it should be
mentioned that the number of nodes with monotonicity violation is much less than total
nodal number.
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Thus, let for new time layer we have monotonous marker-function distribution.
Consider three density distributions in the 1D solution domain shown in Fig. 1. The
integral of the density over the solution domain gives the same mass value for all three
distributions ðM1 ¼ M2 ¼ M3Þ. But if, according to the method of the continuous
marker, we take a level line q ¼ 0:5 as interface boundary, then we get for the
incompressible fluid following strange results:

(a) In the state 2 fluid occupies a larger volume than in the state 1.
(b) In the state 3 fluid is disappeared.

This defect in the continuous marker method is a consequence of the diffusion of a
continuous marker function, which undergoes a jump at the interfaces (in particular, at
free boundaries).

To correct the defect, anti-diffusion of the marker function jumps of the marker
function at the interfaces is used (its graphic representation is shown in Fig. 2).

Consider the algorithm of antidiffusion on a simple example of a free boundary. Let
the density of the fluid be q = 1.0, while the value q ¼ 0:0 corresponds to the empty
space. Denote qnþ 1ð0Þ the density value on the new time layer obtained by the
monotonic conservative scheme described in Sect. 4. Let one of the possible antidif-
fusion algorithms has the form:

If qnþ 1ð0Þ [ 0:5 and qnþ 1ð0Þ [ qn, then qnþ 1ð1Þ ¼ 1� 2ð1� qnþ 1ð0ÞÞ2,
If qnþ 1ð0Þ � 0:5 and qnþ 1ð0Þ\qn, then qnþ 1ð1Þ ¼ 2ðqnþ 1ð0ÞÞ2.
The expected value of the mass in the domain of the solution by the algorithm from

Sect. 4 is:

Fig. 1. Continuous marker method errors when determining the area filled with a fluid.

Fig. 2. Anti-diffusion of the continuous marker function at the interface.
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Mnþ 1 ¼ Mn �
Z

S

qnun � ndS;

where Mn ¼ R
V q

ndV . The value of mass obtained after application of anti-diffusion is
equal to

Mnþ 1ð1Þ ¼
Z

V

qnþ 1ð1ÞdV :

If Mnþ 1ð1Þ 6¼ Mnþ 1 then the law of conservation of mass due to the application of
antidiffusion is violated. To eliminate the error, the density is corrected by the formula:

qnþ 1 ¼ cqnþ 1ð1Þ; c ¼ Mnþ 1=Mnþ 1ð1Þ:

Thus, anti-diffusion prevents erosion of boundaries and does not violate mass
conservatism. Of course, this is not the only possible way to prevent the diffusion of a
continuous marker on the borders but it is quite workable and simple.

Below we present solutions of typical problems of the class considered obtained by
the describedmethod. Figure 3 shows the results of calculating the water drop falling into
a water pool. Figure 4 shows the solution of the problem of heavy water flow from floor
to floor through a hole. Figure 5 shows the collapse of a water column in a closed basin.

Note that in calculations without using the above described conservative antidif-
fusion algorithms for marker functions on the boundaries, the results are unsatisfactory
because of the defects in mass conservation law mentioned above. In the problem of the
collapsing of the water column to accelerate the attainment of the static state after
several oscillations, the viscosity of the fluid was significantly increased; otherwise, the
wave process lasted too long and required a large amount of computation.

Fig. 3. Falling of drop into the pool. Heavy viscous incompressible fluid (Continuous marker
function).

Fig. 4. Water flow from floor to floor through a hole. Heavy viscous incompressible fluid
(Continuous marker function).
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6 Features of the Discrete Marker Method

Instead of continuous marker functions used to trace moving areas occupied by a fluid,
it is possible to use the discrete markers [19]. A discrete marker is a Lagrangian point
(moving together with a continuous medium), the only property of which is the
coordinates that indicate its position at each instant of time. The coordinates of the
discrete marker with the number “i” are determined by integrating the equation of
Lagrangian trajectories:

dxi=dt ¼ ui:

Figure 6 shows fixed Cartesian grid and Lagrangian discrete markers that mark the
area occupied by the fluid. It is assumed that nodal volume is filled by the fluid if in it at
least one marker presents (left picture in Fig. 6). At the initial instant of time, the region
of possible motion of the fluid is covered by a fringing Eulerian (fixed) grid consisting
of nodes united in cells. In cells filled with fluid, discrete markers are introduced. It was
experimentally established that to obtain satisfactory results in two-dimensional and
three-dimensional cells, 3 	 3 and 3 	 3 	 3 uniformly distributed discrete markers
per cell should be used, respectively. Of course, more markers provides a better result
but the markers require considerable computational effort, so here we give the advice
on the minimum necessary number of them (M = 3, along the coordinate (rib) direction
in the cell).

Fig. 5. Collapse of water column in closed basin. Heavy viscous incompressible fluid
(Continuous marker function).

194 N. G. Burago et al.



In addition to the classical discrete marker method (see for instance [20]), here the
algorithm provides the creation of new discrete markers at the input boundaries and the
removal of discrete markers at the output boundaries. The main features of discrete
marker method considered here are formulated below:

• 3D cell contains M 	 M 	 M markers.
• 2D boundary cell contains M 	 M markers.
• Into cell at input boundary the M 	 M new markers are introduced if no markers

present in boundary cell part of depth h/M (h is the size of cell in normal direction to
the boundary).

• Markers leaving the solution area are removed from computer memory.
• Usual number of markers along coordinate (rib) is M ¼ 3
 4.

In addition it should be mentioned that there are still the following computational
problems present:

• Leakage of markers in the zones of strong topology changes (separation of drops in
gravity field).

• Huge amount of calculations when increasing the number of markers.

Consider in detail the problem of flow parameters interpolation at interfaces. Let
N be the number of nodes in the cell, and N� is the number of nodes in the cell with
markers in the nodal volumes. If 0\N�\N, then the volume cell contains the interface
(free boundary, for example). Then, in such cell (number k) we should use the inter-
polation procedure of the form:

½f �k ¼
1
N�

X
i2X�

k

fi

instead of the usual:

½f �k ¼
1
N

X
i2Xk

fi;

Fig. 6. Nodal volume in fixed Cartesian grid and Lagrangian discrete markers: a nodal volume
(dashed line) with marker (cross), b initial distribution of markers in 2D cell with fluid (M 	 M,
M = 3).
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where X�
k is a set of node numbers in the cell k with markers in nodal volumes. This

prevents the unnatural effect of “shaggy head” in jets (see Fig. 7).

Figures 8 and 9 give examples of calculating the fall of a horizontal jet into a pool
with a fluid: without applying the interpolation procedure for the flow parameters at the
interfaces (the “shaggy head” effect, Fig. 8) and using this procedure to eliminate an
impermissible defect (Fig. 9).

Figure 10 shows the results of calculating the problem of a fountain and a puddle
from a vertical jet using the discrete marker method with the creation of new discrete
markers at input boundaries and the removal of discrete markers at output boundaries
(left and right boundaries are opened).

Fig. 7. The unnatural effect of “shaggy head” in jets (right picture).

Fig. 8. The unnatural effect of “shaggy head” when the jet falls into the pool.

Fig. 9. The jet falls into the pool. Effect of “shaggy head” is eliminated.

Fig. 10. A fountain and a puddle from a vertical jet.
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Note that when the vertical jet reaches maximum height H ¼ u2z0=ð2gÞ (here uz0 is a
vertical velocity of jet at the input boundary, g is a gravity acceleration), it becomes
unstable, looses symmetry and oscillates like a stream behind a bluff body at high
Reynolds numbers.

7 Conclusions

The experience of using the methods of continuous and discrete markers for calculating
the flows of a heavy viscous fluid with interface boundaries is presented. In the con-
tinuous marker method, complementary algorithms for monotonization and conser-
vative boundary antidiffusion are proposed, algorithms for creating and destroying
markers at input and output boundaries are introduced into the discrete marker method,
interpolation of the solution near moving boundaries is improved. Solutions of a
number of typical three-dimensional non-stationary problems on flows of a heavy
viscous fluid with free boundaries are presented.
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