ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ПЛОСКОСТИ ДЛЯ МНОГООСНОГО ЦИКЛИЧЕСКОГО НАГРУЖЕНИЯ СО СДВИГОМ ФАЗ

Бураго Н.Г.¹,Никитин А.Д.², Никитин И.С.², Стратула Б.А.³ ¹Институт проблем механики им. А.Ю. Ишлинского РАН ² Институт автоматизации проектирования РАН ³ «МАИ» - Национальный Исследовательский Университет

Опыт эксплуатации разнообразных конструкционных элементов показывает, что реальные циклические режимы и условия нагружения часто не могут быть воспроизведены в упрощённых лабораторных усталостных испытаниях, таких как растяжение, изгиб или кручение. Как правило, конструкционные элементы в эксплуатации находятся в условиях сложного (трехмерного) нагружения. Для расчета усталостной прочности в этом случае необходимо использовать многоосные критерии Прогресс в материаловедении привёл к появлению усталостного разрушения. многоосных критериев для разных областей усталостного нагружения, начиная с малоцикловой усталости (МЦУ, N ~ 10³ - 10⁵), многоцикловой усталости (МНЦУ, N ~ 10^{5} – 10^{7}) и заканчивая сверхмногоцикловой усталостью (СВМУ, N ~ 10^{8} – 10^{10}) [1]. При рассмотрении области МНЦУ важную роль играют особенности усталостного разрушения. Амплитуда внешних нагрузок в таком случае будет мала (по сравнению с пределом текучести материала), что приводит к уменьшению количества систем скольжения, активируемых в материале при циклическом нагружении. Поэтому доминирующей становится одна система скольжения, то есть возникает выделенная плоскость, в которой происходит движение дислокаций, которую называют критической плоскостью. Это позволило создать и анализировать современные критерии многоосного усталостного разрушения, учитывающие ориентацию такой критической плоскости [2-5].

Данная работа предлагает процедуру расчёта ориентации критической плоскости при многоосных циклических нагрузках с произвольным сдвигом фаз для классического усталостного диапазона – малоцикловой (МЦУ) и многоцикловой усталости (МНЦУ), основанную на хорошо апробированном критерии Papadopoulos [2]. Приводится сравнение экспериментальных данных и аналитического решения.

Критерий записывается в следующей форме:

 $\max T_a + \alpha_{\infty} \sigma_{H,\max} \leq \gamma_{\infty},$

где слагаемое $\max T_a$ является максимальным разбросом касательного напряжения на всём множестве площадок, проходящих через заданную точку пространства за один

цикл нагружения. Слагаемое $\alpha_{\infty}\sigma_{H,\text{max}}$ является эквивалентной максимальной величиной гидростатического давления в заданной точке за один цикл нагружения. Хотя критерий позволяет анализировать любое возможное напряжённое состояние, в данной работе рассмотрим только один случай: одновременные изгиб и кручение образца с одинаковыми периодами нагрузок, произвольными величинами среднего напряжения, амплитуды и сдвига фазы.

Тензор напряжений будет иметь вид:

$$\sigma(t) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & M_{yz} + A_{yz} \cos(2\pi t + \delta) \\ 0 & M_{yz} + A_{yz} \cos(2\pi t + \delta) & M_{zz} + A_{zz} \cos(2\pi t) \end{pmatrix}$$

где M - постоянная величина напряжения, A - амплитуда периодической нагрузки, δ - сдвиг по фазе между нагрузкой на изгиб и нагрузкой на кручение.

Перейдём к главным напряжениям. Интересующее сдвиговое напряжение на произвольной площадке запишется в виде [3]:

$$\tau = \sqrt{\left(\widetilde{\sigma}_{11}n_1 - \widetilde{\sigma}_m n_1\right)^2 + \left(\widetilde{\sigma}_{22}n_2 - \widetilde{\sigma}_m n_2\right)^2 + \left(\widetilde{\sigma}_{33}n_3 - \widetilde{\sigma}_m n_3\right)^2}, \text{ Fige } \widetilde{\sigma}_m = \widetilde{\sigma}_{11}n_1n_1 + \widetilde{\sigma}_{22}n_2n_2 + \widetilde{\sigma}_{33}n_3n_3.$$

Волнистой линией сверху обозначены главные значения напряжений.

Точки экстремума по шкале времени имеют следующее выражение для вычисления, полученное путём дифференцирования τ по *t* и решением полученного уравнения:

$$t = \arctan\left(\frac{4A_{yz}\sin(\delta)\left[2A_{yz}R^{2}\cos(\delta) - A_{yz}\cos(\delta)\right]}{RA_{zz}^{2} - 4RA_{yz}^{2} + 8RA_{yz}^{2}\cos(\delta)}, R\right) / (2\pi)$$

где *R* принимает значения: $\frac{\sqrt{N_4} + \sqrt{N_6}}{2}; \frac{\sqrt{N_4} - \sqrt{N_6}}{2}; -\frac{\sqrt{N_4} - \sqrt{N_6}}{2}; -\frac{\sqrt{N_4} + \sqrt{N_6}}{2}$

$$N_{2} = 288ea^{2} - 8a^{3}; \qquad N_{3} = \frac{2(12ea + a^{2})}{3a\sqrt[3]{N_{2}}}; \qquad N_{4} = \frac{\sqrt[3]{N_{2}}}{6a} + \frac{2}{3} + N_{3}; \qquad N_{6} = \frac{4}{3} - \frac{\sqrt[3]{N_{2}}}{6a} - N_{3};$$

$$a = 16A_{yz}^2 A_{zz}^2 \cos^2(\delta) + 16A_{yz}^4 - 8A_{yz}^2 A_{zz}^2 + A_{zz}^4; \ e = 16A_{yz}^4 - 16_{yz}^4 \sin^4(\delta) - 16A_{yz}^4 \cos^2(\delta)$$

Перебор 4 точек экстремума приводит к значению времени в момент максимального сдвигового напряжения.

В завершение остаётся совершить переход от системы координат, связанной с осями главных напряжений, обратно к исходной. Вектор, нормальный к площадке, напряжения на которой инициируют максимальное сдвиговое напряжение, будет иметь следующие компоненты в исходной системе координат: Материалы XII Международной конференции по прикладной математике и механике в аэрокосмической отрасли (NPNJ'2018), 24-31 мая 2018, г. Алушта. - М.: Изд-во МАИ, 2018. С.352-354. ISBN 978-5-4316-0491-1

$$\tilde{n}_x = 0, \quad \tilde{n}_y = -\sqrt{\left(\sigma_{33}\sqrt{4\sigma_{23}^2 + \sigma_{33}^2} + 2\sigma_{23}^2 + \sigma_{33}^2\right)/K}, \quad \tilde{n}_z = -2\sigma_{23}\tilde{n}_y/(\sigma_{33} + \sqrt{4\sigma_{23}^2 + \sigma_{33}^2})$$

Площадка с максимальным сдвиговым напряжением будет повёрнута на 45° в плоскости уг.

Сравнение экспериментальных результатов [4], расчётов [5] и расчётов по критерию [2] с использованием приведённой в данной работе методики поиска ориентации критической плоскости приведено в Табл. 1.

σ(МПа)	τ(МПа)	δ	α(*π) эскп.	α(*π) Carp.	α(*π) Расчет
0	201,11	0	0,249	0,25	0,25
162,85	195,69	0	0,194	0,193	0,193
274,68	137,34	0	0,128	0,125	0,125
141,95	171,18	π/6	0,177	0,197	0,193
255,06	127,53	π/6	0,09	0,119	0,125
147,15	177,56	π/3	0,12	0,206	0,213
255,06	127,53	π/3	0,045	0,094	0,125
152,45	184,23	π/2	0,158	0,207	0,0
264,87	132,44	π/2	0	0,076	0,0
308,03	63,86	π/2	0	0,055	0,0

Из Табл. 1 видно, что расчеты угла ориентации критической плоскости по разработанной методике дают хорошее совпадение с экспериментальными результатами и позволяют сделать оценку долговечности (числа циклов нагружения до разрушения) для многоосного разрушения.

Литература

1. Bathias C., Paris P.C. Gigacycle Fatigue in Mechanical Practice. New York. Dekker. 2005.

2. Papadopoulos I. V. Long life fatigue under multiaxial loading// International Journal of Fatigue. 2001. Vol. 23. Pp. 839-849.

3. Никитин И.С., Бураго Н.Г., Никитин А.Д., Якушев В.Л. Определение критической плоскости и оценка усталостной долговечности при различных режимах циклического нагружения // Вестник ПНИПУ. Механика. 2017. № 4. С.238-252.

4. Nishihara T., Kawamoto M. The strength of metals under combined alternation bending and torsion with phase difference// Memories of the College of Engineering, Kyoto Imperial University. 1945. V. 11. Pp. 85-112.

5. Carpinteri A., Karolczuk A., Macha E. and Vantadori S. Expected position of the fatigue plane by using the weighted mean principal Euler angles// International Journal of Fatigue. 2002. Vol. 115. Pp. 87-99.