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Abstract—A generalization of well-known criteria for multiaxial fatigue fracture to the case of
titanium alloys with anisotropic fatigue properties is proposed. The problem of determining the
stress-strain state and estimating the fatigue life of a rotating disk of variable thickness under the
action of centrifugal loads in the disk and blades is solved. The proposed criteria for multiaxial fatigue
fracture are used to obtain spatial lifetime distributions over the disk in the isotropic and anisotropic
cases. It was shown that the fatigue life of the titanium disk with the anisotropy of the fatigue
properties taken into account can decrease to the critical values of N , 104 cycles near the outer
rim of the disk in the region of contact with blades, which is inadmissible from the standpoint of safe
operation.
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1. INTRODUCTION

The disk of the aircraft compressor of a gas-turbine engine is a complex technical object of strongly
varying thickness with overflow and balance holes, which are stress concentrators. The stress-strain
states of such a disk can be computed only by modern software complexes on the basis of finite-element
methods. For example, such computations were earlier performed in [1–2].

The main goal in this paper is to estimate how the anisotropy of the fatigue properties of titanium
alloy affects the lifetime of the compressor disk in a gas-turbine engine in the low-cycle loading mode
(takeoff–flight–landing). In the process of cyclic loading, the disk operates within the elasticity margin,
and to apply the fatigue strength criterion, one needs to determine the range of variations in the stress-
strain state due to the action of centrifugal loads as well as contact loads exerted by the blades, which,
in turn, are subjected to centrifugal and aerodynamic loads.

In the present paper, the well-known Sines–Crossland criteria [3–4] for isotropic materials are
generalized to the case of titanium alloys with anisotropic properties. A procedure is developed for
determining the parameters of the generalized criteria from the results of uniaxial fatigue tests in the
direction of axes having various orientation with respect to a distinguished direction of the ally texture.
We choose the Sines–Crossland models as a basis for constructing generalized criteria because these
models are classical nowadays and agree well with the Hill methodology [10] accepted in the theory of
plasticity for its generalization to the anisotropic case. The new approach based on the concept of critical
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LIFETIME OF DISKS OF VARIABLE THICKNESS 547

plane [5–7], for example, the well-known Findley criterion [8], along with the Sines–Crossland criteria,
has already been used by the authors [9] to estimate the fatigue life.

We note that, in the real operation, the structural anisotropy due to the technological processes
of half-finished material manufacture is superimposed on the constructional anisotropy due to the
accumulation of fatigue damage [11–13]. In this paper, we consider only the influence of structural
anisotropy, but the influence of construction anisotropy and, so much the more, the the complex influence
of these two types of anisotropy are beyond the scope of this study and deserve special analysis.

In the considered low-cyclic fatigue mode, the cyclic actions correspond to the flight loading cycles
(takeoff–flight–landing). The actual flight cycle has a multistage character with unsteady processes at
each of the stages. In the present paper, we assume that the cyclic loading process is harmonic.

Simplifying hypotheses about the dependence of the solution on the coordinates across the disk
thickness and in the circular direction were used to derive a system of ordinary differential equations
for computing the radial stress, strain, and displacement distributions in a disk of small but variable
thickness. A numerical scheme for solving the obtained rigid system of ordinary differential equations
is proposed and implemented. Thus, the well-known analytic method for the analysis of axisymmetric
loaded disks [14] is generalized to the case of nonaxisymmetric loading, which can be of interest in itself.

The additional stresses in the rim part of the disk due to the blade bending under the action of
aerodynamic pressures are also taken into account. The aerodynamic pressures are determined on the
basis of the “isolated profile” hypothesis by using the known solutions of the problem on the flow with
separation past a plate. The computed stress-strain state and generalized criteria for multiaxial fatigue
fracture in the isotropic and anisotropic cases are used to obtain the lifetime distribution over the disk,
The dangerous regions and the fatigue lifetimes are determined in the disk.

It is shown that fatigue life of a titanium disk with anisotropy of the fatigue properties taken into
account can decrease to the critical values N ∼ 104 of flight cycles near the inner and outer disk rims,
which is inadmissible from the standpoint of safe operation and requires changes in the disk production
technology to increase the fatigue limit in the near-surface layer.

2. CRITERIA OF MULTIAXIAL FATIGUE FRACTURE WITH ANISOTROPY
OF THE FATIGUE PROPERTIES OF TITANIUM ALLOY TAKEN INTO ACCOUNT

Influence of the Anisotropy of the Fatigue Properties of Titanium Alloy on Uniaxial Fatigue Curves
Earlier, in [1, 2, 15], the stress-strain state and the fatigue life of titanium disks of gas-turbine engine

disks was already studied in flight loading cycles. To this end, a method for determining the parameters
of isotropic multilayer criteria for fatigue fracture [16] was proposed on the basis of the results of uniaxial
tests for various coefficients of the cycle asymmetry. In that paper, FEM computations were used to
determine the regions of fatigue microcrack origination near the rim part of the disk. In the exploitation
of this structure element, fracture also occurs in the near-surface region [17] but somewhat closer to
the central part of the disk. To refine the computed location of such region, it was conjectured that such
a displacement can be caused by the anisotropy of of the titanium alloy properties due to the texture
induced in the technological processes of half-finished material manufacturing (mainly, in rolling). In
the present paper, a specific example is used to estimate the influence of structural anisotropy of the
material fatigue properties on the location of the damage origination region and the disk lifetime in the
case of low-cycle fatigue.

The effect of fatigue limit dependence on the loading axis direction in uniaxial fatigue tests of
specimens with texture was noted in various sources [18, 20]. In [20], one can find the results of the
corresponding fatigue tests, which are illustrated in Fig. 1, and data on the dependence of strength and
fatigue characteristics of titanium alloy Ti-6Al-4V on the texture orientation with respect to the loading
direction. (In Fig. 1, black disks correspond to the case where the orientation axis is parallel to the
loading axis; black squares correspond to the case where the orientation axis is perpendicular to loading
axis; the stresses are measured in kgf/mm2.)

A generalization of the multiaxial fatigue criterion on the basis of the equation for Lemaitre–
Chaboche-type damage to the case of alloys with anisotropy of the fatigue properties was proposed
in [21, 22]. This generalization is based on the change of the second invariant of the stress deviator by
the Hill function proposed in [10] to describe the anisotropic plasticity of metals,

ΣHill =
√

H(σ11 − σ22)2 + G(σ11 − σ33)2 + F (σ22 − σ33)2 + 2Nσ2
12 + 2Lσ2

13 + 2Mσ2
23.
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Fig. 1.

In [22], one can also find the Hill function parameters F , G, H , L, M , and N for the titanium alloy
Ti-6Al-4V, which were determined from uniaxial fatigue tests along and across the rolling direction.

In the present paper, the idea of this change underlies the generalization of the classical Sines–
Crossland criteria to the anisotropic case. A procedure for determining the parameters of fatigue fracture
criteria was proposed in [16], and it was applied there to the criteria for isotropic materials. In what
follows, we consider an application of this procedure to the fatigue criteria for anisotropic materials.
To unify the form of isotropic and anisotropic criteria, instead of the Hill function, we introduce the
equivalent Hill stress related to it by the formula

τHill =
1
3

√
(σ11 − σ22)2 + G̃(σ11 − σ33)2 + F̃ (σ22 − σ33)2 + 2Ñσ2

12 + 2L̃σ2
13 + 2M̃σ2

23,

where G̃ = G/H , F̃ = F/H , Ñ = N/H , M̃ = M/H , and L̃ = L/H .

Sines Model. Isotropic Criterion
According to [3], the generalization of the uniaxial fatigue criterion to the case of multiaxial stress

state has the form
Δτ

2
+ αsσmean = S0 + ANβ, σmean = (σ1 + σ2 + σ3)mean,

Δτ =
1
3

√
(Δσ11 − Δσ22)2 + (Δσ11 − Δσ33)2 + (Δσ22 − Δσ33)2 + 6Δσ2

12 + 6Δσ2
13 + 6Δσ2

23,

where σmean is the sum of principal stresses averaged over a loading cycle, Δτ is the variation in the
octahedral tangential stress per cycle, Δτ/2 is its amplitude, and αs, S0, A, and β are parameters
determined from experimental data.

The procedure for determining the parameters of the multiaxial criteria from the results of uniaxial
experiments with various cycle asymmetry coefficients is described in detail in [16]. In the isotropic case,
the Sines criterion parameters have the form

S0 =
√

2σu

3
, A = 10−3β

√
2(σB − σu)

3
, αs =

√
2(2k−1 − 1)

3
, k−1 =

σu

3σu0
,

where σu and σu0 are the fatigue limits according to the fatigue curves with the cycle asymmetry
coefficients R = −1 and R = 0, respectively, and σB is the ultimate strength.

Anisotropic Sines Criterion
The generalization of the Sines criterion to the anisotropic case with the above-described change has

the form
ΔτHill

2
+ αsσmean = S0 + ANβ ,
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ΔτHill=
1
3

√
(Δσ11−Δσ22)2+G̃(Δσ11−Δσ33)2+F̃ (Δσ22−Δσ33)2+2ÑΔσ2

12+2L̃Δσ2
13+2M̃Δσ2

23,

where G̃ = G/H , F̃ = F/H , Ñ = N/H , M̃ = M/H , and L̃ = L/H .
By computing the parameters of the generalized criterion according to the scheme given in [16], we

obtain

S0 =

√
1 + G̃σu

3
, A =

10−3β
√

1 + G̃(σB − Σu)
3

, αs =

√
1 + G̃(2k−1 − 1)

3
.

Crossland Model. Isotropic Criterion
In this case, according to [4], the generalization of the uniaxial fatigue curve to the case of multiaxial

stress state has the form

Δτ

2
+ αc

(
σ̄max −

Δτ

2

)
= S0 + ANβ, σ̄max = (σ1 + σ2 + σ3)max,

where σ̄max is the maximum sum of principal stresses over the loading cycle and the parameters
αc, S0, A, and β are to be determined. In the isotropic case, the Crossland criterion parameters are
given in [16],

S0 = σu

[ √
2

3
+

(
1 −

√
2

3

)
αc

]
, A = 10−3b

[ √
2

3
−

(
1 −

√
2

3

)
αc

]
(σB − σu),

αc =
k−1

√
2/3 −

√
2/6

(1 −
√

2/6) − k−1(1 −
√

2/3)
.

Anisotropic Crossland Criterion
By replacing the octahedral stress by the equivalent Hill stress, one obtains the generalized Crossland

criterion

ΔτHill

2
+ αc

(
σ̄max −

ΔτHill

2

)
= S0 + ANβ.

By computing the parameters according to the scheme given in [16], we obtain

αc =
k−1

√
1 + G̃/3 −

√
1 + G̃/6

(1 −
√

1 + G̃/6) − k−1(1 −
√

1 + G̃/3)
,

S0 = σu

[ √
1 + G̃

3
+

(
1 −

√
1 + G̃

3

)
αc

]
,

A = 10−3b

[ √
1 + G̃

3
+

(
1 −

√
1 + G̃

3

)
αc

]
(σB − σu).

As a specific example that will be considered below, we present the following approximate values of
the parameters for the titanium alloy Ti-6Al-4V [16, 21, 22]: the ultimate strength is σB =1100 MPa, the
fatigue limits according to the amplitude fatigue curve with the symmetry coefficients R =−1 and R = 0
are σu = 450 MPa and σu0 = 350 MPa, respectively, the exponent in the polynomial dependence on the
number of cycles is β = −0.45, the Young modulus is E = 116 GPa, the shear modulus is G = 44 GPa,
and Poisson’s ratio is ν = 0.32. The values of the Hill parameters for the titanium alloy with anisotropic
fatigue properties are as follows [22]: F = 0.54, G = 0.34, H = 0.65, and N = M = L = 2.34.

3. DETERMINATION OF ADDITIONAL AERODYNAMIC LOAD ON THE DISK BLADES
AND THE INFLUENCE ON THE DISK STRESS-STRAIN STATE

The computation of stress-strain state of rotating disks of a gas-turbine aircraft engine is a necessary
stage of their fatigue strength and life estimation. As their operation experience shows, the region
of possible fracture origination is located near the region of contact between the disk rim and the
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Fig. 2.

blade [16, 17]. The centrifugal forces are the main force factor in the light cycles of the disk-blade
system loading. A vast literature is devoted to calculations of such actions on the disk. This problem
has been solved by analytic and numerical-analytic method of the theory of elasticity and strength of
materials [23–25] and contemporary program tools based on the finite element method [1, 2 15, 16]. But
the aerodynamic loads arising in the flow of compressible gas (air) past the blades can be an additional
factor affecting the disk stress-strain state in the region of its contact with blades. These aerodynamic
loads cause additional strains in the blades, namely, bending and torsion strains. In this section, we
estimate the additional stresses due to these strains at the blade root or, which is the same, on the outer
rim of the disk under the blade, and compare them with the amplitude of the main stress field due to
the centrifugal loads. For the blade, we use the model of clamped plate without initial twist taken into
account.

Description of the Picture of Flow Past a Plate without and with the Flow Separation

The picture of flow past the cross-section of the compressor blade is shown in Fig. 2. We accept
the “isolated profile” [27] hypothesis and use the following notation: r is the radial coordinate of the
compressor blade cross-section, r1 is the distance from the disk center to the blade root, r2 is the distance
from the disk center to the blade vertex, d is the width of the blade cross-section, V0 is the velocity of the
incoming flow, ω is the angular velocity of the blade rotation, and c is the speed of sound.

The presence of the “lattice” of blades is not taken into account, because in this case there is no
foreseeable analytic solution of the problem on the flow with separation past the blades.

Figure 2 shows that the variable angle of incidence on the blade cross-section and the local speed are
equal to α = arctan(ωr/V0) and V∞ =

√
V 2

0 + ω2r2.
For the flow without separation, the pressure difference on the cross-section and the displacement

of the point of pressure application (focus) from the blade center [28] are determined by the formulas
Δpb = πρV 2

∞d sin α cos α and x̄b = d/4.
For the separated flow, the pressure difference on the cross-section and the focus with respect to the

blade center are determined by the formulas

Δps = ρV 2
∞πd

sin α

4 + π sin α
, x̄s =

3d
4

cos α

4 + π sinα
.

Computation of Force Factors Acting on the Blade in the Case of Separated Flow

To compute the distributed force factors, i.e., the shearing forces and bending and torsion torques, it
is necessary to integrate over the radial coordinate r with integration limits r1 and r2.

We introduce the new dimensionless coordinate r̃ = ωr/V0. The new limits of integration are
r̃1 = ωr1/V0 and r̃2 = ωr2/V0. In the new variable, the expressions for the trigonometric functions
contained in the formulas for the distributed pressures become

sinα =
ωr√

V 2
0 + ω2r2

=
r̃√

1 + r̃2
, sin α =

V0√
V 2

0 + ω2r2
=

1√
1 + r̃2

.

The gas compressibility in the formulas for the pressure is taken into account by the well-known
Prandtl–Glauert corrections [29] Δpc

b = Δpb/
√

1 − M2 and Δpc
s = Δps/

√
1 − M2, where M = V0/c is

the Mach number of the incoming flow.
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The flow past rotating blades with the characteristic values of the flow velocity and the rotation
angular velocity taken into account occurs with large angle of incidence of the order of 30◦–45◦, and
therefore, we take the flow past blades with separation as the basic scheme. The pressure distribution
over the radial coordinate, which follows from the formula for the pressure difference on the plate, has
the form

qs(r̃) = (1 + r̃2)r̃/(πr̃ + 4
√

1 + r̃2)/
√

1 − M2.

We should integrate this function over r̃. This can readily be done in the case of flow without
separation, but similar formulas for the separated flow and the torque distribution are more complicated
and cumbersome, and their integration leads to expressions which can hardly be presented here; see [30].

The distribution of the shear force over the radial coordinate and the total shear force in the root
cross-section of the blade become

Qs =

r̃2∫

r̃

qs(r̃) dr̃, QΣ = πρV 2
0 d

V0

ω
Qs(r̃1).

The distribution of the bending torque over the radial coordinate and the total bending torque in the
blade root cross-section have the form

Ms(r̃) =

r̃2∫

r̃

Qs(r̃) dr̃, MΣ = πρV 2
0 d

V0

ω
[Ms(r̃2) − Ms(r̃1)].

The distribution of the torque over the radial coordinate is equal to mk(r̃) = (1 + r̃2)r̃/(πr̃

+4
√

1 + r̃2)2/
√

1 − M2.
The integral of the distribution over the radial coordinate and the total bending torque are given by

the formulas

Mk =

r̃2∫

r̃1

mk(r̃) dr̃, MΣk = πρV 2
0 d

V0

ω
Mk

3d
4

.

All these total force factors will be used to calculate the additional stresses at the blade root [14, 31].

Computation of Stresses in the Root Cross-Section of the Blade in the Case of Separated Flow
The tangential stresses due to the blade bending and their maximum values, as well as the tangential

stresses due to torsion, are determined in the root cross-section by the formulas τs(y)=QΣSf (y)/(dJx),
τsmax = 3QΣ/(2dh), and τsk = MΣk/(ksdh2). The normal stresses due to the blade bending and their
maximum values in the root cross-section are σs(y) = yMΣ/Jx and σsmax = 6MΣ/(dh2).

The computations were performed for the following values of the parameters: h=0.015 m, d=0.07 m,
r1 = 0.40 m, r2 = 0.70 m, V0 = 220 m/s, ω = 600 s−1, and ρ = 0.41 kg/m3.

For these parameters, the additional stresses at the blade root in the case of separated flow are equal
to τsmax = 1.3 MPa, σs max = 169 MPa, and τsk = 0.5 MPa. The finite-element computations [1, 2]
determine the main stress level due to the centrifugal actions as ∼ 600–700 MPa for the normal (radial
and tangential) stresses and as ∼ 50–70 MPa for the circumferential stresses.

In the case of flow without separation, the normal stresses at the blade root take nonrealistic values of
the order of 530 MPa, which means that such a scheme of flow past the blades cannot be implemented.
More realistic values of aerodynamic loads and related additional stresses on the disk rim are given by
the formulas for the flow past blades with separation.

In the scheme of separated flow, the addition tangential stresses, which are of the order of 1/50, i.e.,
∼ 2% of the value of the tangential stresses due to the centrifugal loads, can be neglected. The additional
normal stresses equal to 170/650, i.e., ∼ 25% of the value of the normal stresses due to the centrifugal
loads, should be retained. The influence of the incoming flow is taken into account either additionally, or
by using an approximate scheme for taking the aerodynamic loads into account, or directly by solving
the coupled gasdynamic–strength problem.
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4. COMPUTATION OF THE STRESS-STRAIN STATE OF A ROTATING DISK
OF VARIABLE THICKNESS WITH ADDITIONAL AERODYNAMIC LOADS

ON THE BLADES TAKEN INTO ACCOUNT
In this section, we solve the problem of determining the stress-strain state of a disk of variable

thickness under the action of a periodic system of radial loads produced by the blades on the outer
contour.

Derivation of a Simplified System of Differential Equations
In the cylindrical coordinates r, ϑ, z, a ring-shaped disk 0 ≤ r ≤ b has a variable thickness

−h(r) ≤ z ≤ h(r). The complete three-dimensional system of elasticity equations in cylindrical coordi-
nates has the form [32]

∂σrr

∂r
+

1
r

∂σrϑ

∂ϑ
+

∂σrz

∂z
+

∂σrz

∂z
+

σrr − σϑϑ

r
+ ρω2r = 0,

∂σrϑ

∂R
+

1
r

∂σϑϑ

∂ϑ
+

∂σϑz

∂z
+

σrϑ

r
= 0,

∂σrz

∂r
+

1
r

∂σϑz

∂ϑ
+

∂σzz

∂z
+

σrz

r
.

The stresses are related to Hooke’s strain laws as
σrr = (λ + 2μ)εrr + λεϑϑ + λεzz, σϑϑ = λεrr + (λ + 2μ)εϑϑ + λεzz, σrϑ = 2μεrϑ

σzz = λεrr + λεϑϑ + (λ + 2μ)εzz, σrz = 2μεrz , σϑz = 2μεϑz.

The strains and displacements are related as

εrr =
∂ur

∂r
, εϑϑ =

1
r

∂uϑ

∂ϑ
+

ur

r
, εrϑ =

1
2

(
1
r

∂ur

∂ϑ
+

∂uϑ

∂r
− uϑ

r

)
,

εzz =
∂uz

∂z
, εrz =

1
2

(
∂ur

∂z
+

∂uz

∂z

)
, εϑz =

1
2

(
1
r

∂uz

∂ϑ
+

∂uϑ

∂z

)
.

Here λ and μ are the Lamé moduli and ρ is the disk density. In what follows, we use dimensionless
stresses referred to λ + 2μ and dimensionless spatial variables referred to the disk radius a.

The boundary conditions on the free surface for z = ±h(r) have the form σrz − h′σrr = 0,
σϑz − h′σrϑ = 0, and σzz − h′σrz = 0. The inner contour (r = a) is assumed to be stress-free, σrr = 0,
σrϑ = 0, and σrz = 0. The the outer contour (r = b) is subjected to the loads σrr_b periodic in the
circular coordinate ϑ due to centrifugal forces and possibly due to the blade bending under the action of
aerodynamic pressures, σrr = σrr_b, σrθ = 0, and σrz = 0.

Since all desired functions of the stress-strain state are periodic in the circular coordinate ϑ, we seek
the displacements of the ring-shaped disk of variable thickness in the flight loading cycles as the Fourier
series

ur =
∞∑

n=0

(un + u2nz2 + u4nz4) cos(nϑ),

uϑ =
∞∑

n=0

(vn + v2nz2 + v4nz4) cos(nϑ),

uz =
∞∑

n=0

(w1nz + w3nz3) cos(nϑ).

The corresponding representation of stresses has the form

σrr =
∞∑

n=0

(σn + σ2nz2) cos(nϑ), σϑϑ =
∞∑

n=0

(sn + s2nz2) cos(nϑ),

σzz =
∞∑

n=0

(Σn + Σ2nz2 + Σ4nz4) cos(nϑ), σrϑ =
∞∑

n=0

(τn + τ2nz2) sin(nϑ),
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σrz =
∞∑

n=0

(p1nz + p3nz3) cos(nϑ), σϑz =
∞∑

n=0

(T1nz + T3nz3) sin(nϑ).

The Fourier coefficients σn, τn, un, vn are new (auxiliary) desired functions of the radial variable r.
We substitute the expressions for the displacements and stresses into the original system of equilib-

rium equations and Hooke’s law and match the terms with like powers of z up to z3. As a result, we
obtain systems of ordinary differential equations for the auxiliary variables for different n = 0, 1, 2, . . .,

dσn

dr
= − σn

r
+

sn

r
− n

τn

r
− p1n,

dτn

dr
= −2

τn

r
+ n

sn

r
− T1n,

dun

dr
= σn − λ

Un

r
− λw1n,

dvn

dr
=

1
μ

τn +
Vn

r
,

(4.1)

where Un = nvn + un, Vn = nun + vn, U2n = nv2n + u2n, and V2n = nu2n + v2n.
This system of equations is solved separately for each harmonic n. The other desired Fourier

coefficients u2n, u4n, v2n, v4n, w1n, w3n, σ2n, sn, s2n, Σn, Σ2n, Σ4n, τ2n, p1n, p3n, T1n, and T3n are
determined from the auxiliary functions σn, τn, un, vn by solving the system of ordinary differential
equations

sn = λu′
n +

Un

r
+ λw1n, Σn = λu′

n +
λUn

r
+ w1n, w′

1n =
p1n

μ
− 2u2n,

T1n = μ

(
2v2n − nw1n

r

)
, σ′

2n = − σ2n

r
+

s2n

r
− nτ2n

r
− 3p3n, p′1n = − p1n

r
− nT1n

r
− 2Σ2n,

τ ′
2n = − 2τ2n

r
+

ns2n

r
− 3T3n, u′

2n = σ2n − λU2n

r
− 3λw3n, v′2n =

τ2n

μ
+

V2n

r
,

s2n = λu′
2n +

U2n

r
+ 3λw3n, Σ2n =

h′2σn + h′2h2σ2n − Σn − Σ4nh4

h2
,

p3n =
h′σn + h′h2σ2n − p1nh

h3
, T3n =

h′τn + h′h2τ2n − T1nh

h3
,

w3n =
1
3

(
Σ2n − λu′

2n − λU2n

r

)
, Σ4n = − 1

4

(
p′3n +

p3n

r
+

nT3n

r

)
,

u4n =
1
4

(
p3n

μ
− w′

3n

)
, v4n =

1
4

(
T3n

μ
+

nw3n

r

)
.

These equations and relations were used in [30] when studying low-cyclic fatigue regimes to solve
the problem of determining the stress-strain state and estimating the fatigue life of a rotating disk of
variable thickness under the action of centrifugal loads in the disk and blades and under the action of
aerodynamic pressures on the blades from the incoming flow.

For n = 0, this system coincides with the known equations of axisymmetric deformation of a disk of
variable thickness [14] up to the terms containing the factor h′2.

Boundary Conditions on the Outer Rim of the Disk

To calculate the disk stress-strain state due to the centrifugal loads acting on the blades, the boundary
conditions for the auxiliary variables (Fourier coefficients) on the real boundaries r = a and r = b are
posed in the form

r = a : σn = 0, τn = 0,
r = b : σn = σbn, τn = 0,

(4.2)

MECHANICS OF SOLIDS Vol. 50 No. 5 2015



554 BURAGO et al.

where the σbn are the prescribed values of the Fourier coefficients taking into account the radial stresses
on the outer rim of the disk (the stresses in the root cross-sections of the blades under the action of
centrifugal loads). To determine σbn, we assume that the each blade is a plate with rectangular cross-
section of width d. The number of blades on the disk is N0.

The outer contour of the disk is subjected to angle-periodic stresses σrr_b, which model the
centrifugal forces from the blades and are consistent with them in the amplitude, with periodicity sector
−π/N0 < ϑ < π/N0,

σrr_b = S0, |ϑ| ≤ δ.

Here S0 = ρω2(b2
1 − b2)/2 is the amplitude of radial stresses determined by the centrifugal action of

blades [14], δ = d/(2b) � 1, and b and b1 are the inner and outer radii of blades on the ring-shaped disk.
We expand the periodic radial stress distribution σrr_b on the outer contour (for r = b) in the Fourier

series (one period is −π/N0 < ϑ < π/N0)

σrr_b =
∑
n

σbn cos(nϑ), (4.3)

where σb0 = S0N0δ/(2π) and σbn = 2S0 sin(kN0δ/2)/(kπ), n = 0, N0, 2N0, 3N0, . . .
Thus, for various n, one has to solve two-point boundary value problems for a system of ordinary

differential equations (4.1) with boundary conditions (4.2) with regard to the expressions (4.3) for the
coefficients of the load expansions in the Fourier series in the angular coordinate. These boundary value
problems were solved numerically by a finite-element method according to an implicit scheme. After this,
the Fourier series were summed to determine the stress components. To obtain practical convergence,
it suffices to sum at most 20 terms of the Fourier series.

Taking into Account the Additional Stresses due to the Blade Bending
under the Action of Aerodynamic Loads

By analogy with the scheme proposed above, one can compute the additional stresses in the disk
due to radial loads on the outer contour caused by the blade bending under the action of aerodynamic
pressures. In this case, we assume that the periodic distribution of radial loads on the outer contour
for r = b has the form σb(ϑ) = σsmaxYδ(ϑ) (one period is −π/N0 < ϑ < π/N0).

Here σsmax =6MΣ/(dh2) is the amplitude of radial stresses due to the blade bending under the action
of aerodynamics pressures, Yδ(ϑ) = 2ϑ/δ for ϑ ∈ [−δ/2, δ/2], and Y δ(ϑ) = 0 for ϑ /∈ [−δ/2, δ/2]. In this
case, the Fourier series expansion of the radial load has the form

σb(ϑ) =
∑
k=1

σn sin(nϑ), n = kN0, σm =
2
kπ

σsmax

[
sin(kN0δ/2)

kN0δ/2
− cos

kN0δ

2

]
.

For such a loading (antisymmetric with respect to the angular coordinate on the period −π/N0 <
ϑ < π/N0), system (4.1) preserves its form after the change n →−n. The solution representation for the
stresses differs by the changes cos(kN0ϑ) ↔ sin(kN0ϑ). In these computations, the rate of convergence
of the Fourier series was improved from 1/k to 1/k2 by “spreading” the discontinuous function Yδ(ϑ) at
the points of discontinuity.

Numerical Results
The computations were performed for the disk shape whose cross-section for z > 0 is shown in

Fig. 3 and for the following parameter values: N0 = 32, 600 s−1, λ = 78 MPa, μ = 44 MPa, and
ρ = 4370 kg/m3 (titanium alloy). Figure 4 shows the stress component distributions over the radial
coordinate for ϑ = ϑ01.0740 (the right edge of the blade) and for z = 0 without (Figs. 4 a, c) and with
(Figs. 4 b, d) taking into account the aerodynamic loads on the blades. In Figs. 4 a, b, the solid line
corresponds to the component σrr, and the dotted line presents the component σrϑ. In Figs. 4 c, d, the
solid line corresponds to the component σϑϑ, and the dotted line presents the component σzz.

These graphs show that if the blade bending due to the aerodynamic pressures is taken into account,
then the normal and tangential stresses on the outer rim of the disk increase significantly.
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Fig. 3.

Fig. 4.

Thus, the obtained system (4.1) of ordinary differential equations permitted approximately solving
the elasticity problem, which is in fact three-dimensional, and determining the multiaxial stress state
of a deformable body with all six nonzero components of the stress tensor with regard to the additional
stresses occurring in the rim part of the disk owing to the deformation (bending) of blades under the
action of aerodynamic pressures.

Influence of the Anisotropy of the Fatigue Properties on the Disk Lifetime
The criteria for multiaxial fatigue fracture [16] were used to obtain the distributions of the logarithm

log N(r) of the lifetime (the number of loading cycles until fracture) in the radial coordinate for titanium
alloy with isotropic fatigue properties and fatigue limit∼350 MPa [30]. The Sines criterion was used, and
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Fig. 5.

the modified Sines criterion was used to compute the fatigue life of a titanium alloy disk with anisotropic
fatigue properties. Depending on the blade orientation angle ϕ with respect to the chosen direction x,
the stress component contained in the Hill combination can be computed by the formulas

σ11 =
σrr + σϑϑ

2
+

σrr − σϑϑ

2
cos(2ϕ) + σrϑ sin(2ϕ),

σ22 =
σrr + σϑϑ

2
+

σϑϑ − σrr

2
cos(2ϕ) − σrϑ sin(2ϕ),

σ12 =
σϑϑ − σrr

2
sin(2ϕ) + σrϑ cos(2ϕ).

Lifetime Isoline on Dangerous Cross-Sections for Isotropic and Anisotropic Fatigue
Consider the picture of lifetime distributions in more detail using the isoline graphs in the coordinates

z, ϑ in the above-determined dangerous cross-sections under the blade on the outer part of the disk rim
for r = 8 and in the inner part of the disk for r = 7.4. We consider the results obtained for an alloy with
isotropic (Fig. 5) and with anisotropic (Fig. 6) fatigue properties for a certain orientation angle ϕ. The
cross-sections under the blades oriented at the angle ϕ = 90◦ with the anisotropic fatigue axis direction
(the rolling direction if we speak about the technological process of the disk manufacturing) are least
endurable (Fig. 6: (a), inner part of the rim; (b), outer part of the rim). The cross-section on the outer
rim of the blade for r = 8 seems to be most sensitive to the anisotropy of the fatigue properties (Fig. 5 b
and Fig. 6 b).

In these cases, the results are close to each other and take the critical values of the titanium disk
fatigue life at the chosen frequencies of rotation of N ∼ 104 cycles, which is inadmissible from the
standpoint of safe operation. To avoid this situation, it is required to keep the angular velocities of rotation
below the critical values and avoid the technologically induced alloy texture which implies anisotropic
fatigue properties.
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Fig. 6.

5. CONCLUSION
In this paper, we propose a new simplified technique for computing the stress-strain state and lifetime

of disks of variable thickness. The technique permits estimating the time constraints ensuring safe
operation without large computational costs. The influence of the anisotropy of the fatigue properties
due to the technological processes of disk manufacturing is also taken into account and investigated.
To this end, the known criteria for multiaxial fracture of isotropic materials are generalized to the case
of anisotropic materials. The typical results of lifetime computations are presented for disks of thickness
varying along the radius under the conditions of flight cycles of loadings of simplified structure. The
regions and time constraints of fatigue fracture origination in the disk are determined. It is shown that
the fatigue life of titanium alloys with the anisotropy of the fatigue properties taken into account can
decrease to the critical values of N ∼ 104 cycles in the near-surface layers of the disk rims, which is
inadmissible from the standpoint of safe operation.
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