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Numerical methods for simulation of damage processes are discussed and implementation of very simple 

theory and numerical method is described. The results of numerical calculations are presented for damage 

process under extension of elastic-plastic specimen of rectangular section with circular and elliptic pores 

and rigid inclusions. The influence of physical and numerical parameters on results of calculations is 

investigated and definite recommendations on the numerical modeling of such processes are worked out. 

  

1. Introduction 

 

The process of destruction is treated as the phenomenon of accumulation of micro-defects 

such as micro-cracks and micro-pores that is finally causes formation of macro-cracks 

and fragmentation of solids (separation on the parts).  

Consider basic approaches to the problems of destruction modeling. In the simplest 

approach the cracks are not examined, and the calculation of destruction is reduced to the 

estimation of the safety factors or to comparison of maximum design stresses and their 

limiting values predicted by the so-called material strength theories [1]. 

In many cases not only the evaluation of strength and safety factors is of interest, but 

also the prediction of the scenarios of the process of destruction, the determination of the 

time to macro-destruction, the study of the influence of various changes in the design and 

in material properties onto development of internal damages. This interest stimulated the 

development of the fracture mechanics. 

In fracture mechanics it is assumed that the propagation of crack occurs under 

fulfilling of the criterion of destruction, formulated in terms of the coefficients of stress 

intensity. The calculations of the propagation of cracks are performed with the explicit 

account the newly formed crack surfaces with the use of methods of boundary or finite 

elements. The survey of publications on the realization of fracture mechanics approach 

and also the examples to realization are given in [2]. 

At present time preference is often given to the methods of through calculation and 

behavior of destroyed and not-destroyed computational cells (elements) are governed by 

unified algorithm. In this approach there is no need in explicit consideration of macro-

cracks. The macro-cracks are modeled by the chain-lines of destroyed elements. 

Destruction development is realized by means of the stressed state correction in the 

destroyed elements. For the first time the numerical realization of this approach is made 

in [3] and then such approach received wide acceptance because of its simplicity and 

effectiveness. Now many modifications of this approach are known, such as the method 

of the collapse of the destroyed computational cells [4], method of the automated 

introduction of additional nodes with the formation of free surfaces in the destroyed 

elements [5]. The calculations of the stress-strain state in the not-destroyed elements are 

performed by using the usual equations of the theory of elasticity and plasticity. The 

integral effects of the material destruction, or effects of decrease of the material resistance 
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to deformation in the calculations are the result of increase of the quantity of destroyed 

elements. 

Experimental stress-strain history diagrams show the presence of the material 

resistance weakening intervals, which is characterized by the decrease of stresses under 

increase of deformations. However, such diagrams with the intervals of the material 

weakening cannot be considered as the characteristics of material for use in rheological 

(constitutive) equations for material media in calculations of the phenomena of the 

destruction. To this there are two reasons. The first reason consists in the fact that the 

material resistance weakening intervals characterize by no means the behavior of material 

in the infinitely small volume, they just demonstrate the integral diagram of the 

deformation of experimental specimen. In reality here we observe not rheological 

(material) but structural instability. The second reason consists in the fact that the initial-

boundary value problems for the stress-strain diagrams with material weakening intervals 

become incorrect.  

The equations of classical elastic-plasticity can be written as: 

 

: ( )t t t pE∂ = ∂ − ∂σ ε ε  

( )t x s∂ = ∂ε v ,  (|| || ) ( , ) :t p s tH∂ = −σ λ ∂ε σ σ ε ε  

t xρ∂ = ∂v σ  

 

or 

 

( ) ( , ) :t ep p x

t x

∂ = ∂
ρ∂ = ∂

σ E ε ε v

v σ

 

( )t x s∂ = ∂ε v ,  (|| || ) ( , ) :t p s tH∂ = −σ λ ∂ε σ σ ε ε  

 

Here traditional tensor notation is used,  symbol “:” designates the double inner product 

of tensors. Initial boundary value problems become incorrect because the Hadamard 

criterion  

 

( ): ( : ) : 0t t ep x x∂ σ ∂ ε = ∂ ∂ >E v v  

 

is violated in the material resistance weakening intervals on stress-deformation history 

diagrams. The Hadamard inequality is also known in mechanics of solids as Drucker 

stability criterion.  

The violation of the Hadamard criterion indicates the loss of the continuous 

dependence of the solution on the input information, and it means also the loss of the 

property of hyperbolicity of equations in the dynamic problems and the loss of property 

of ellipticity in the static problems. In the numerical calculation in this case the arithmetic 

overflow occurs or results become senseless demonstrating the absence of convergence. 

In the mentioned above works [3-5] devoted to the calculation of destruction the 

instantaneous correction of stresses and the instant formation of the new surfaces of the 

growing crack are used. The interval of the material resistance weakening is replaced by 

the instant change of stress-strain state so it does not calculated and force no difficulties. 



 N.G.Burago. Modeling of Damage in Elastic Plastic Bodies 7 

For processes of the ductile fracture with gradual material resistance weakening  

usual elastic-plasticity is not applicable. In order to make theory of elasticity and 

plasticity suitable for describing the material resistance weakening intervals, in [6, 7] it 

was proposed to associate the degradation of the properties of elasticity under destruction 

with the growth of special parameter of destruction that has been called damage.  

There is a need in special additional independent parameter of state that is 

responsible for destruction  because  formation and accumulation of micro-defects occur 

not only with reaching of the critical stress-strained state, but also because of reasons or 

actions of non-thermomechanical nature (as example,  laser radiation, chemical reactions 

and similar). Therefore the accumulation of damage (micro-pores and micro-cracks) is 

treated as the thermodynamically independent process. It is assumed that the damage of 

the intact material is equal to zero and grows proportionally to the accumulation of the 

micro-defects. The thermodynamic independence of the process of destruction from the 

processes of heating and deformation does not exclude their reciprocal influence.  

Tensor nature of damage parameter can be various. It may be a scalar (most 

frequently) or (sometimes) the tensor of the second or fourth ranks [8]. 

With growth of damage parameter the elastic characteristics of material, such are the 

modules of elasticity and yield stress, tend to zero, that indicates the complete destruction 

of the structured material. With the damage accumulation the new internal macro-surfaces 

are formed and this leads to appearance and growth of macro-cracks that finally separate 

the solid body into the parts or even onto the separate material particles. The surveys of 

experiments and the detailed consideration of different variations of the theory of 

damaging may be found in the works [8-18] whose major results are examined below. 

The introduction of the independent thermodynamic parameter of damage as the value 

responsible for the decrease of elastic constants removes the problem of the incorrectness 

of initial boundary value problems under the resistance weakening. Actually, the 

equations of the theory of damage take the form of the modified equations of the elastic-

plasticity 

 
1

( )

(0)

: ( ) : ( : ) ( ) ,

( ) ,

( ) ( , , ) ( , ) ( ) ,

t ep x t x x

t x x v x

t x xH x t

−
θ σ

γ γ γ γ

∂ = ∂ + ∂ ∂ γ + ∂ ⋅ ν ∂

ρ∂ = ∂ + ∂ ⋅ ρν ∂

∂ γ = Φ λ γ + λ + ∂ ⋅ ν ∂ γ

σ E v E E σ σ

v σ v

σ ε

 

 

where the symbol « ⋅ » designates the inner product of tensors; γ  is a damage parameter; 

( , , ,..., ,...) 0TθΦ γ ≥σ ε  is a criterion for damage initiation; additional terms with second 

spatial derivatives are commented below. The third of the given equations describes the 

kinetics of damage. In this equation the first term corresponds to the increase of damage 

as a result of heating and deformation, the second term describes the increase of damage 

due to the non-thermo-mechanics actions. 

The Drucker criterion in the theories of damage for weakening processes is violated 

(deformation process becomes unstable): 

 

( ): ( : ) : ( / ) : 0t t ep x x t x∂ ∂ = ∂ ∂ + ∂ ∂γ ∂ γ ∂ ≤σ ε E v v σ v  
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Here first term with elastic-plastic operator ( )epE  is non-negative as in regular theory of 

elastic-plasticity, but second term with increase of damage is negative and even larger in 

the module than first term. So now Hadamard criterion is fulfilled 

 

 ( )( : ) : 0ep x x∂ ∂ >E v v  

 

and initial boundary value problem for velocities and stresses is correct. 

In contrast to integral (experimental) diagrams with resistance weakening sections 

the local diagrams of deformation (or any other form of the law of hardening) for 

infinitesimal material volumes have no sections of the weakening and can be successfully 

used in calculations of elastic and plastic deformations. 

The terms with the second spatial derivatives in the equations of theory of elastic-

plasticity and damage are absent. They are used in gradient and integral theories [18] of 

elastic-plasticity of damaged materials. Multipliers ν  with indexes , ,vσ γ  are the 

coefficients of gradient viscosity. 

The additional terms in gradient theories introduce parabolic properties to the 

equations of the elastic-plastic theory of damage, improve properties of equations, smooth 

out the solutions and are, thus, regularizers (i.e., terms that improve the conditioning of 

equations). The physically substantiated magnitudes of the coefficients of gradient 

viscosity are so low that they cannot serve as a regularizer. Therefore in calculations the 

coefficients of such viscosity are artificially increased to the values, which do not violate 

the usual stability limitations for time step of explicit difference schemes. 

In general case the role of the parameter, which is independent on deformation and is 

simultaneously responsible for the degradation of the elastic properties, may be delegated 

to some other state parameters, such as, for example, temperature or porosity without the 

risk of the loss of the correctness of initial boundary value problems. In models of elastic-

visco-plastic materials increments of the plastic deformation are not proportional to 

increments of total deformation and therefore in such models the degradation of elastic 

properties may depend directly on the plastic deformation. 

The initial boundary value problems using theory of elastic plastic flow with damage  

are solved by using the usual incremental method with the diagrams of deformation 

without the sections of the resistance weakening, but with the variable values of the 

elastic parameters in the dependence on the damage parameter.  

The effect of the resistance weakening is not embedded into the mathematical model 

in the form of the dependence of yield stress from the deformation, but it is obtained in 

the extended space of the variables of state as the result of a growth in additional damage 

parameter and of degradation of the elastic properties of material. Thus, from a 

mathematical point of view introduction of damage parameter is the regularization of the 

initial-boundary-value problems of elastic-plasticity for calculating the unstable regimes 

of deformation. 

In the calculations according to the theories of damage the development of the zones 

of destruction with the lowered elastic strength of materials is observed. In such zones the 

intensity of deformations and damage show splash, and displacements and speed undergo 

abrupt change (jump), that imitates the divergence of the coasts of macrocracks. 

Correctness of boundary-value problems in this case is supported, but their conditionality 

with the development of the zones of destruction deteriorates, which can lead (if we do 
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not take preventive measures) to the pathologic dependence of the numerical solution on 

computational parameters such as grid, particle distribution and value of time step.  

Of course the results of numerical simulation always depend on the parameters of 

discreteness, but with the mesh refinement or with the growth of the number of basis 

functions these solutions must demonstrate the convergence of the solutions to certain,  

not depending on the method, limits. The convergence and authenticity of numerical 

solutions must be established by the purely mathematical means, which include the a 

priori analysis of methods applied to the simplified tasks and the a posteriori testing of 

convergence to the known analytical solutions, which always can be obtained artificially. 

For this the arbitrary solution is substituted into the equations and the boundary 

conditions of task.  Then the obtained discrepancies are used as known right sides of 

equations and conditions. For such new initial boundary value problem our arbitrary 

solution becomes exact and analytical. Solving obtained new initial boundary value 

problem the numerical method must reproduce chosen arbitrary solution with the 

adequate accuracy. 

The strong dependence of the solution on the parameters of the discreteness such as 

size and the form of grid cells (or, in the more overall meaning, the dependence of the 

solution on the choice of basis functions)  is the problem of the majority of numerical 

methods especially under calculation physically unstable regimes.  

For the sake of fairness it is necessary to note that the absence of convergence in 

details or, more clearly to say, the absence of the repeatable picture of phenomenon in  

details is a characteristic feature of physical experiments on the destruction. This is 

explained by the sensitivity of the scenarios of the development of damages to the 

heterogeneity of the properties of real media and by the sensitivity to the small variations 

in the external actions. 

The repeatable and reproducible characteristics of the processes of destruction can be 

may be represented by their integral characteristics, for example, integral (averaged on 

the calculated object) diagrams of deformation, the energy, spent on the destruction of the 

body being deformed, the time of its life. Results for such integral characteristics in the 

numerical modeling and in the experiments must demonstrate convergence. For this in the 

numerical simulation it is necessary to take all measures for regularization of the tasks 

under conditions of destruction, without distorting, as far as possible, the solution itself. 

Above have been already noted the basic methods of the regularization of the 

boundary-value problems of the elastic-plasticity under conditions of resistance 

weakening.  

To account the degradation of the material elasticity properties the first method uses 

parameter of damage that is independent on the deformation.  

The second method is based on the theory of elasto-visco-plasticity and connects the 

weakening of the material elasticity properties under the destruction with increase in the 

viscoplastic deformation that also is independent on the deformation. 

The third method of regularization is used in the gradient theories of the damaged 

elastic-plastic materials. An improvement of initial-boundary value problem 

conditionality is reached by the physically substantiated averaging of the dependent 

variables (stresses, deformations and of damage) in neighborhood of each point. This is 

equivalent to the smoothing of the unknowns by adding diffusive terms. 

The fourth method is additional to each of three, mentioned above, and consists in 

accounting of the inertial forces in the tasks of destruction independently of the speed of 
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loading. The accounting of inertia in the problems of elliptical type prevents the 

degeneration of boundary-value problems for the fragments, which were separated from 

the initial body under destruction. Actually, under destruction the body being deformed is 

divided by the non-interacting parts. Static boundary-value problems become incorrect for 

the parts deprived of fastenings. Therefore the inertia, that removes this drawback, should 

be provided for in the mathematical models of the calculation of destruction from the very 

beginning.   

For guaranteeing the physical authenticity of the calculations of destruction important 

is the selection of the criterion of destruction and describing the kinetics of the damage 

parameter. This problem is examined into [17]. 

Important question is the choice of numerical method to use for destruction 

modeling. It is considered that the explicit method are effective in the tasks of wave 

propagation dynamics, and implicit methods are preferable in the tasks of quasi-statics. 

Recently, because of the appearance of the high performance computers, this opinion 

changes.  The quasi-static problems of deformation and continuous destruction 

successfully are solved with the use of explicit diagrams [5] and, on the contrary, in the 

dynamic problems effectively are used implicit methods [19]. 

In spite of abundance published studies on the simulation of destruction, until now 

there are no clarity in the selection of mathematical model as well as in the construction 

of the methods of regularization and implementation. There are more questions, than 

answers. In the presented brief survey not all existing  approaches have been considered.  

Here just illuminated the major existing directions in modeling of brittle and ductile 

fracture. 

 

2. Formulation of the problem 

 

The complete system of equations for the simulation of destruction, utilized in the present 

work, is the usual system of equations of the theory of elastic-plastic flow, augmented by 

kinetic equation for the damage and by dependence of the modules of elasticity and yield 

point from the damage. Temperature effects are not examined. For the small deformations 

this system of equations takes the form: 

 
2

tρ∂ = ∇ ⋅U σ ,       ( ) ( )p= γ −σ E : ε ε ,        1/ 2( ( ) )T= ∇ ⊗ + ∇ ⊗ε U U  

( ) ( )
p

t p p p t

F
H F H

∂
∂ = λ ∂

∂
ε σ : ε

σ
,     2( ) 3 / 2( ' ') / 1p pF = σ −σ σ :σ  

( ) ( , , )t d pH F rγ∂ θ = Γ γ +ε ε , ( , , )d d pF F= γε ε  

 

where ρ  is a density; U  is a displacement vector; σ  is a stress tensor; ' ( : ) / 3= −σ σ σ I I  

is a stress deviator; ( )γE  is an elastic module tensor, which depends on scalar damage γ ; 

ε  is a strain tensor; pε  is a plastic strain tensor; symbol «⊗ » designates external tensor 

product; pλ  - coefficient in flow rule, which is defined by plasticity condition ( ) 0pF =σ ; 

pF  - plastic loading function; H  - Heaviside function, which is equal to zero for the 

negative values of argument and to one  otherwise; pσ  - yield limit; I  - the unit tensor; 

dF  - damage condition function, non-negative values of which permit the accumulation 
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of the damage; rγ  - the non-thermomechanical  (for example, chemical) source of the 

damage. System of equations is supplied with main boundary conditions 

 
* ( , )

uV
U t

α
α α∈∂

⋅ =
x

U τ x ,  ( 1, 2α = )  

*( , )
un

nV
U t

∈∂
⋅ =

x
U n x  

 

with natural boundary conditions 

 
*

\
: ( , )

uV V V
p t

τα α
α α∈∂ =∂ ∂

⊗ =
x

σ n τ x   

*

\
: ( , )

n un
nV V V

p t
∈∂ =∂ ∂

σ ⊗ = −
x

n n x  

 

and with initial conditions: 

 

0 0 00
0t pt t tt= = ==

= ∂ = = γ =U U ε  

 

where n  and ατ  ( 1, 2α = ) are the unit normal and tangent vectors to the boundary. The 

predefined functions are marked by asterisks. 

 

 

3. Method of the solution 

 

Tasks are examined in the two-dimensional setting under the plane strain conditions using 

variant of final element method [19]. For all unknown functions is used piecewise-linear 

approximation on the triangular and quadrangular elements. For step-by-step solution in 

time the two layer implicit Euler scheme is used. Time step magnitude is limited to 

accuracy condition in order the solution increment at each step in time be much less than 

the solution itself. 

At each time step the usual linearized boundary-value problem of the theory of 

elastic-plasticity relative to displacement increments is solved: 
1

12
( ) ( ( ))

n
n n n

n nt t

+
+∆ρ − = ∇⋅ + ∆ ∆

∆ ∆
U

v σ σ U     ( V∈x ) 

1 * 1( ) ( , )
u

n n n

V
U t

α

+ +
α α∈∂

+ ∆ ⋅ =
x

U U τ x         ( 1, 2α = )  

1 * 1( ) ( , )
un

n n n n

nV
U t+ +

∈∂
+ ∆ ⋅ =

x
U U n x  

1 * 1

\
( ( )) : ( , )

u

n n n n n

V V V
p t

τα α

+ +
α α∈∂ =∂ ∂

σ + ∆σ ∆ ⊗ =
x

U n τ x       ( 1, 2α = )  

1 * 1

\
( ( )): ( , )

n un

n n n n n

nV V V
p t+ +

∈∂ =∂ ∂
σ + ∆σ ∆ ⊗ = −

x
U n n x  

 

where 1( )n+∆ ∆σ U  is a linear differential operator that converts displacement increments 

into incremental stresses in accordance with elastic-plastic flow theory. This boundary 

value problem after discretization is solved using the matrix-free conjugate gradient 

method  [19]. Then displacement increments are used to calculate deformations, plastic 
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deformations and stresses. Finally the kinetic equation for the damage parameter is 

integrated. 

Some special features of destruction modeling should be noted here. Before the 

destruction starts the deformation process may be slow (quasi-static deformation)/ It 

means that the inertia terms in equations of motion may be neglected.  However, with the 

appearance of  the zones of destruction the process of deformation is capable sharply to 

be accelerated, becoming dynamic. In advance to predict the time and place onset of 

zones of destruction without conducting of calculation is impossible; therefore the inertia 

terms in the algorithm of the solution is necessary from the very beginning. Without 

inertia the correctness of boundary-value problems for destroyed and separated parts is 

violated and calculations of their evolution will be impossible.  

 Used numerical methods are approximate and therefore the calculated sought 

functions may have nonphysical small-scale oscillations in the space and time with the 

lengths of half-waves, equal to the steps of time-spatial grid. Such non-monotonicities are 

revealed by the change of the sign of the second derivatives of the function along definite 

coordinate at the ends of grid rib. The directions of the rib and coordinate may be differ 

from each other. Such nonphysical non-monotonicities must immediately be corrected, 

otherwise under the conditions of the poor conditionality of the tasks they can distort 

numerical solution, causing the appearance of false zones of destruction. 

 The monotonization of the sought functions is conducted into two stages. During the 

first stage is used “physical” method of smoothing, based on the introduction into the 

evolutionary equations for the plastic deformations and the damage parameter of the 

small viscous terms: 

 

( ) ( : ) ( )
p

t p p p t p p

F
H F H

∂
∂ = λ ∂ + ∇⋅ ν ∇

∂
ε σ ε ε

σ
 

( ) ( , , ) ( )t d pH F rγ γ∂ γ = Γ γ + + ∇ ⋅ ν ∇γε ε  

 

where ,  p γν ν  are the coefficients of viscosity. To a question about the magnitude of the 

viscosity coefficients single-valued answer is not given by neither theory nor experiment. 

It is possible to expect that the experimental physical values of the coefficient of viscosity 

will be too small for guaranteeing the effective monotonization of the solution with the 

actually utilized rough discretization. One way or another, depending on the explicit or 

implicit approximation of diffusion terms in equations, using the spatial one-dimensional 

model problems it is not difficult to find minimum values of the coefficient of the 

viscosities, necessary for decreasing the oscillations of numerical solutions. In our 

calculations this value was taken as: 2 / 2c tν = ∆ .  

It is characteristic that introduced viscosity decreases the oscillations, but does not 

guarantee their absence. Therefore the solution is corrected additionally. In the second 

stage is used “mathematical” method of smoothing, which is consisted in the elimination 

of newly being appeared non-monotonicities by nonlinear smoothing. For this in the end 

of each step on the time for each sought function f  the second derivative xxf  is 

calculated for each coordinate direction x  from the solution of the following auxiliary 

problem: 
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( ) 0xx xx xx

V

f f f f dV∇ ⋅∇δ + δ =∫  

0xx V
f

∂
=  

 

i.e., the second derivatives thus are determined under the conditions of the simplest 

approximation of the solution by piecewise-linear functions. The matrix of system of 

equations for the second derivatives is diagonal due to the use of quadrature formulas 

with the points of integration in the mesh nodes. 

 If on a certain rib of grid the value xxf  the sign reverses, then in the adjacent nodes, 

which determine this edge, is carried out the local smoothing of the solution by the shift 

of the value of the function if  to its average value in the direction x : 

 

: ( ( ( ) ( )) / 2) / 2i i i if f f x h f x h= + − + +  

 

where h  is a small increment of coordinate x ; values ( )if x h−  и ( )if x h+  are 

determined by interpolation. The second method, in contrast to the first, in the zones of 

the monotonous solution does nothing. Without explicit physical reasons in favor of the 

first method, the first stage may be fully eliminated from the procedure of smoothing. 

The elastic properties of material are described by the simplified form of Hooke's 

law, obtained under the assumption of the initial isotropy of the material: 

 

( ) : 2 ( )p pσ = λ ε − ε + µ ε − εI I  

 

where ,λ µ  are Lame elastic constants, pσ  is the yield stress that determines the 

boundaries of the elastic behavior of material. These elastic coefficients depend on 

damage as follows: 
1000

0e
− γλ = λ ,   1000

0e
− γµ = µ ,   1000

0p p e− γσ = σ . 

Index «0» marks values for the undamaged material. By the local criterion the damage 

parameters is growing if the maximal principal deformation exceeds the positive critical 

value dε : 

 

( )1/ 2
2 21

( ) ( ) 4 0
2

d x y x y xy dF M = ε + ε + ε − ε + ε − ε ≥  
 

 

where M is the dimensionless scale factor 

 

max min max min

min( , )

max[( ),( )]

x yh h
M

x x y y
=

− −
 

 

This factor accounts the root rule of the concentration of deformations near the tip of 

crack in the elastic material. This factor provides imitation the using of coefficients of 

concentration of deformations. The numerical experiments show that this factor helps to 

decrease the dependence of damage criterion on the grid cells size. 
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The criterion of destruction with the scale factor ensures the convergence of the 

numerical values of the integral critical loads of destruction under the mesh refinement. 

Otherwise it turns out that the smaller the grid cells, the earlier begins the destruction, 

since the concentration of deformations is described much better on the grid of smaller 

cells and the critical levels of deformation are reached at the smaller values of the applied 

load. Certainly critical loads depend on grid permission, but this dependence must 

demonstrate the convergence of calculated critical loads to a certain limiting value, that 

also ensures scale factor. The introduction of coefficient is not the final solution of the 

problem of the convergence of the calculated critical loads of destruction, but it is 

possible that this is step to the side of the possible solution of this problem. It can be, 

someone will devise the best regularization of the criterion of destruction. 

 

An important feature of the accepted criterion of destruction is that it distinguishes 

between extension and compression, reacts to a shear, since it is formulated in the main 

axes. So  the criterion is not as trivial as it may seem. This criterion has been used to 

calculate origination and propagation of cracks in samples under shear and compression 

in [10]. As follows from the calculations, it works better than the criteria that are based on 

a limit values of invariants of strain tensors or stresses. Another feature of the criterion is 

that thanks to factor M  it is formulated using approximation of  the  deformation 

concentration coefficients. This is the best choice, since total deformation, unlike stresses, 

elastic and plastic deformations, is not corrected when integrating the evolutionary 

constitutive relationships, but is uniquely determined by the kinematics of the 

deformation process. 

In the absence of specific information on the kinetics of damage, the kinetic equation 

for the damaging parameter is adopted in the simplest form: 

 

1000 ( )t dH F∂ γ =  

 

where H is Heaviside function. The large coefficient on the right-hand side is introduced 

in order to provide a fast, but finite rate of growth of damage and  consequently fast 

degradation of an ability of resistance to deformation during destruction (in a few time 

steps). This allows us to consider the mathematical model of fracture used here as a 

regularized and, at the same time, simplified version of the well-known model of the 

destruction [3], where at destruction the stress-strain state is corrected instantly.  

 

4. Results 
 

Consider the development of damage in specimens of rectangular section with pores 

or rigid inclusions of circular and elliptic shape under tensile loading. 

The two-dimensional solution domain is the rectangle on the plane ( ,x y ), having the 

circular or elliptic holes, which are treated either as macro-pores or as rigid inclusions. 

The grid of triangular finite elements is a usual almost uniform grid, generated 

automatically.  

At the left and right boundaries the rectangle horizontal displacements are equal to 

zero. Lower boundary has zero vertical displacement, upper boundary slowly moves up 

with a speed much less than speed of sound in the material. This provides the quasi-static 

tension of the body in question. Boundary shear stresses are zero. Boundaries of macro-
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pores are free. The rigid inclusions had grid cells with "infinite" magnitudes of elastic 

constants and "infinite" yield stress. That imitates rigid material. Displacements at 

boundaries between rigid inclusions and elastic-plastic body were continuous. 

In all cases calculated diagrams of deformation depict the dependence of the stress 

averaged over the upper horizontal section  on the monotonically increasing averaged 

total deformation (ratio of vertical displacement of upper boundary to the height of 

sample).  

 In dimensionless form the solution domain is defined by inequalities 6.0 6.0x− ≤ ≤  

and 6.0 6.0y− ≤ ≤ , the diameter of circular pore and circular rigid inclusion is equal to 

1.0. The ratio of the semi-axes of elliptic pores is equal to 0.5, angle of rotation is equal to 

30° . Young's modulus is equal to 1000, Poisson ratio is equal to 0.2, the sound velocity is 

equal to 1.0, the velocity of upper boundary yv  grows with constant acceleration from 

zero at t=0 to the value 0.001 at 510t = . So the deformation process is quasi-static. In the 

calculations according to the model of ideally-plastic material the yield stress is equal to 

1. The deformation of destruction is equal to 0.02. 

 

 
   a)            b) 

Figure 1.  Circular rigid inclusion in the elastic material:  

a) zones of damage and maximal principal deformation; b) average stress-strain history 

 

 
     a)           b) 

Figure 2. Damage of elastic material near the circular pore:  

a) zones of damage and distribution of stress 
y

σ ;  b) average stress-strain history  
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The results for the elastic body with the circular rigid inclusion are shown in figure 1. 

Black narrow zones correspond to the developing macro-fissures, darkening answers the 

amount of maximal principal deformation. Right graph depicts the calculated stress-strain 

diagram. The case with one circular is demonstrated by time in figure 2.  

 
a)                b) 

Figure 3. Maximal principal deformations in the elastic material  

a) the pore and b) the rigid inclusion  

 

         
    a)           b)

 

     
 

       c)           d) 

 

Figure 4. Destruction of ideal elastic-plastic material with one large elliptic pore:  

a) zones of damage; b) average strain-stress history; c) plastic work; d) vertical displacement 
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 A difference in the pictures of destruction is explained by the different nature of the 

concentration of deformations near the time and near the rigid inclusion (figure 3). In the 

case of the pore the destruction begins from the points in the horizontal direction 

x outermost from the center of the pore, and for the rigid inclusion destruction earlier 

begins at the points in the vertical direction  y  outermost from the center of inclusion. 

 Solution for the elliptical pore, oriented at the angle 30° , in the elastic-plastic 

material it is shown in figure 4, where are depicted the zone of destruction (a), the 

calculated diagram of deformation (b), the distribution of plastic work and vertical 

displacement. The splash of the values of plastic work in the zone of destruction and an 

abrupt change of the displacement is distinctly visible. 

 In figures 5-7 the results for damage of ideal elastic-plastic specimens with multiple 

elliptical pores and rigid inclusions, turned to the angle 30° are presented. The zone of 

damage  can be seen in figure 5. The distribution of mean stress for the specimen with the 

pores and with the rigid inclusions can be seen in figure 6. Calculated stress-strain 

diagrams are depicted in figure 7. Figure 6 shows the unloading zones near the coasts of 

“cracks” and stress concentration near the tips of cracks. 

 

           
a)          b)  

Figure 5. Zones of damaged material for specimen: a) with the pores and b) the rigid inclusions 

 

     
a)         b)  

Figure 6. The distribution of mean stress for specimen a) with pores and b) with rigid inclusions  

(dark color corresponds to higher level of stresses) 
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a       b 

Figure 7. History of stress-strain state in average for specimen: a) with pores; b) with rigid inclusions 

    
a)            b) 

Figure 8. Deformation of elastic-ideal-plastic specimen with the group of turned elliptic pores  

in the absence the horizontal displacements of the lateral boundaries:  

a) zones of damaged material; b) calculated average strain-stress state diagram 

 

         
a        b 

Figure 9. Damage of ideal-elastic-plastic material with the group of the small oval pores, oriented at the 

angle o30 , in the absence the horizontal displacements of the lateral boundaries: a) the zone of damage;  

b) the calculated average strain-stress diagram 

 

 The zones of damage and graphs of strain-stress state have been compared for cases of ideal-

elastic-plastic material with big and small elliptical pores. The result is obvious: the sample with 

small pores is more resistant. 

 In  parametric calculations investigated the effect of the characteristics of the sampling. 

As it turned out, depending on the size of the steps in space and time and depending on the 

shape of the mesh cells local picture of destruction varies in detail, while the history of strain-

stress state of the sample in average is changed insignificantly  
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5. Conclusions 

 

Numerical experiments with the simplest  theory of damage show that:  

• the convergence of numerical solutions is demonstrated for integral characteristics, 

such as diagram “averaged stress - averaged deformation”, while the local details of 

damage process strongly depend on mesh parameters; 

• local damage criterion should be formulated in terms of strain intensity factors taking 

into account scale factor in order to ensure the convergence of limit loads; 

• for the localization of strains in the form of narrow bands of contact discontinuities 

(“macrocracks”) the rapid loss of elastic resistance with the accumulation of damage 

is required, otherwise the zones of damage cover the substantial part of the solution 

region and strain localization is absent or very weak; 

• it is necessary to support the monotony of the solution for eliminating the short wave 

oscillations of numerical solutions, otherwise such nonphysical oscillations can 

generate the false zones of damage; 

• the retention of destroyed material resistance to volumetric compression is necessary 

in order to avoid degenerated grid cells appearance in the zones of damage;  

• the accounting of the inertia forces regardless of the loading rate is necessary for 

retaining the correctness of initial boundary value problems during fragmentation; 

• the control of accuracy by limiting the time step value is necessary for guaranteeing 

the convergence of the solutions “in the large” even with the use of unconditionally 

stable implicit schemes. 
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