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Abstract. A multi-mode kinetic model of damage development under cyclic 

loading is proposed to describe the process of fatigue failure. To determine the 

coefficients of the kinetic equation of damage, the well-known criterion of mul-

tiaxial fatigue failure is used. A procedure is proposed for calculating the kinet-

ic equation coefficients for various fatigue failure modes of the LCF-HCF and 

VHCF. A numerical method for calculating crack-like zones up to macrofrac-

ture is developed. The model parameters are determined from the condition of 

matching the experimental and calculated fatigue curve for a specimen of a cer-

tain geometry at a given load amplitude and cycle asymmetry coefficient. Using 

the obtained values, the results of experiments on specimens of a different ge-

ometry and asymmetry coefficients were reproduced and the model and calcula-

tion algorithm performance was confirmed. 

Keywords: Fatigue, Damage Development, Multi-mode Model, High Cycle 

Fatigue, Very High Cycle Fatigue 

12.1 Introduction 

Entire classes of criteria have been constructed that relate the number of cycles before 

the initiation of fatigue damage (microcracks) with the amplitudes and maximum 

values in the cycle (or average) that characterize the uniform stress-strain state of the 

working part of the specimen in a fatigue test. 

A large number of stress-based criteria are based on a direct generalization of the 

S-N Wöhler-type curves described by Basquin-type relations [1], and based upon the 

results of fatigue tests. The main criteria for multiaxial fatigue failure, taking into 

account the values of strain amplitudes (strain-based criteria), were proposed in [2-4]. 

These criteria are divided into two large groups. The first group includes criteria that 

use the amplitudes of the invariant characteristics of the stress state in the loading 

cycle such as octahedral stresses, principal stresses, etc. [5,6], and the second group 
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includes criteria that take into account the amplitudes of the tangent and/or normal 

stresses on the so-called critical plane [7-14]. As a rule, this plane is determined from 

the condition of the maximum amplitudes of the tangent, normal stresses, or a certain 

combination of them on the planes of various orientations. Reviews on this topic are 

given, say, in [15-19]. 

In order to study the development of fatigue damage zones, there are also two ap-

proaches. The first is based on the classical concepts of fracture mechanics and relates 

the conditions for the development of fatigue cracks depending on the amplitudes of 

stress intensity factors at the crack tip with the increase in the number of cycles. The 

basic equation was proposed by Paris and Erdogan [20], there are a large number of 

modifications of it [21-23]. The second approach uses representations of the theory of 

damage, dating back to [24–25] and developed in [26–28]. As applied to the problems 

of cyclic loading and fatigue failure, it was used in [29–32]. 

We study the processes of fatigue damage zones development using the damage 

theory approach dating back to [24, 25]. In the application to the cyclic loading and 

fatigue failure problems, this approach was applied in [27, 28]. We propose a multi-

mode model for the development of fatigue failure based on the evolutionary equation 

for the damage function. The model parameters are determined for various modes of 

fatigue failure: Low-Cycle Fatigue (LCF) and High-Cycle Fatigue (HCF), as well as, 

the regime of Very-High-Cycle Fatigue (VHCF), corresponding to high-frequency 

low-amplitude loading. 

To distinguish the various modes of fatigue failure, we use the multimode ampli-

tude fatigue curve diagram shown in Fig. 12.1. Up to a value of N ~ 10
3
, the regime of 

re-static loading is realized with an amplitude that differs little from the static strength 

limit 
B . Further, the left part of the bimodal fatigue curve (Wöhler curve) describes 

LCF-HCF modes up to N ~ 10
7
 and amplitude values of the order of the fatigue limit 

u . Then begins the zone of change of fracture mechanisms and a further drop in 

fatigue strength, starting from N ~ 10
8
 to a new fatigue limit value 

u  in accordance 

with the right branch of the bimodal S-N fatigue curve. This branch describes VHCF 

mode [33]. 

It should be noted that at present, the idea of an explicit division of the classic 

Wöhler branch into two parts (in fact, LCF and HCF) exists. The boundary of this 

transition region is determined not by the value of N, but by the value of the loading 

amplitude equal to the yield strength of the material 
T [34], since this changes the 

physical mechanism of fatigue failure. In addition, the boundary of the repeated-static 

range 3~10N  is rather arbitrary. It is also specified in [34] depending on the strength 

and plastic characteristics of the material. However, in this chapter we keep the sug-

gestion of the proposed model of damage development based on the scheme described 

above. 

In order to match the model with the well-known criteria for multiaxial fatigue 

failure, a stress-based criterion has been selected that describes the fatigue failure 

associated with the normal crack microcracks development. This is a modification of 

the Smith-Watson-Topper (SWT) criterion [4] described in [35], in which the ampli-
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tudes of maximum tensile stresses play a decisive role in the development of fatigue 

damage. 

 

 

Fig. 12.1. Bimodal fatigue curve. 

This chapter is organized as follows: Section 12.2 presents kinetic equations for two 

fatigue modes and a condition to switch between them. Algorithm for fatigue damage 

development calculation is presented in Sect. 12.3. Section 12.4 is dedicated to calcu-

lation results both in LCF-HCF and VHCF modes. Section 12.5 concludes the chap-

ter. 

12.2 Kinetic Equation for Damage 

In this work, two different modes of fatigue loading are studied: classic LCF-HCF 

mode and VHCF mode in Sects. 12.2.1 and 12.2.2, respectively. Also an algorithm to 

choose between them is presented in Sect. 12.2.3. 

12.2.1 LCF-HCF Mode 

The criterion of multiaxial fatigue failure in LCF-HCF mode with the development of 

normal crack microcracks [35] (stress-based SWT) corresponding to the left branch of 

the bimodal fatigue curve (Fig. 12.1) is 

  
max1 1 / 2 LH

u L N
    

   , (12.1) 

where 
1  is the largest principal stress, 

1  is the range of the largest principal stress 

per cycle, 
1 / 2  is the amplitude. From the condition of repeated-static fracture up 

to values of 3~10N  by the method [19] it is possible to obtain the value
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3
10 ( )LH

L B u

    . According to the chosen criterion only tensile stresses lead to 

failure, thus it includes the value
max max max1 1 1( )H   . In these formulas 

B  is the 

static tensile strength of the material, 
u  is the classic fatigue limit of the material 

during a reverse cycle (asymmetry coefficient of the cycle R = -1), 
LH  is power 

index of the left branch of the bimodal fatigue curve. 

From the fatigue fracture criterion we obtain the number of cycles before fracture 

at uniform stressed state: 

 
max

1/3

1 110 ( ) / , / 2
LH

LH B u LH u LHN


              . (12.2) 

In order to describe the process of fatigue damage development in LCF-HCF mode, a 

damage function 0 ( ) 1N   is introduced, which describes the process of gradual 

cyclic material failure. When 1  , a material particle is considered completely 

destroyed. Its Lame modules become equal to zero. The damage function   as a 

function on the number of loading cycles for LCF-HCF mode is described by the 

kinetic equation: 

 / (1 )LHd dN B      , 

where   and 0 1   are the model parameters that determine the rate of fatigue 

damage development. The choice of the denominator in this two-parameter equation, 

which sets the infinitely large growth rate of the zone of complete failure at 1  , is 

determined by the known experimental data on the kinetic growth curves of fatigue 

cracks, which have a vertical asymptote and reflects the fact of their explosive, uncon-

trolled growth at the last stage of macro fracture. 

An equation for damage of a similar type was previously considered in [29], its 

numerous parameters and coefficients were determined indirectly from the results of 

uniaxial fatigue tests. In our case, the coefficient 
LHB  is determined by the procedure 

that is clearly associated with the selected criterion for multiaxial fatigue failure of 

one type or another. It has the following form. The number of cycles to complete 

failure 
LHN  at 1   is defined from the equation for damage for a uniform stress 

state provided by Eqs. 12.3. 

 

1
1 (1 )

00
/ (1 ) / (1 )

/ (1 ) / (1 ) /

LHN

LH

LH LH

B N

N B

      

   

        

   

 (12.3) 

By equating the values 
LHN  from the fracture criterion (Eq. 12.2) and from the solu-

tion of the equation for damage (Eqs. 12.3), we obtain the expression for the coeffi-

cient 
LHB : 



5 

 
1/310 / ( ) / (1 ) / (1 )

LH

LH LH u B uB


                , 

where the value 
LH  is determined by the selected mechanism of fatigue failure and 

the corresponding multiaxial criterion (Eq. 12.1). 

12.2.2 VHCF Mode 

The criterion of multiaxial fatigue failure in VHCF mode corresponding to the right 

branch of the bimodal fatigue curve (generalized stress-based SWT) (Fig. 12.1) has 

the form: 

 
max1 1 / 2 VH

u V N
    

   . 

Here, from the similarity condition of the control points for the left and right branches 

of the bimodal fatigue curve [33], we can obtain the formula: 

 8
10 ( )VH

V u u

    . 

From the criterion of fatigue failure, we obtain the number of cycles to failure in a 

uniform stress state: 

 
max

1/8

1 110 ( ) / , / 2
VH

VH u u VH u VH LHN


                , 

where 
u  is the fatigue limit of the material during the reverse cycle for VHCF mode, 

VH  is the power-law index of the right branch of the bimodal fatigue curve. 

12.2.3 Condition for Switching the Modes of Accumulation of Fatigue Damage 

The transition point from the left branch of the fatigue curve to the right branch, at 

which the mechanism of fatigue fracture changes, is slightly above the fatigue limit 

u  (Fig. 12.1) and is determined by the value 
* u    . To ensure continuous 

conjugation of the left and right branches of the fatigue curve, it is necessary to fulfill 

a condition 
LH VHN N  that is equivalent to the equation for the quantity  : 

 
1/ 1/3 810 ( ) / 10 ( ) /

LH VH

B u u u u u

 
                      

or 

  
/5

10 ( ) 1 / ( )
LH VHLH

B u u u

      
     . 

Given the actual smallness of the correction term in square brackets, one can set the 

correction value   by an approximate formula: 
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5

10 ( )LH

B u

  
   . 

The corresponding approximate value 
* *( )LHN N   is determined by 

  
1/3 8

* 10 ( ) / 10
LH

B uN


      . 

Given the updated estimates obtained for the transition point from one branch of the 

fatigue curve to another, we obtain the final formulas for the ranges and coefficients 

of the kinetic equations of damage. 

For LCF-HCF mode when 
u u LH B       and 

5
10 ( )LH

B u

  
   , we 

obtain: 

      
1/310 / / 1 / 1

LH

LH LH u B uB


                , 

 
max1 1 / 2LH    . 

For VHCF mode when 
u VH u u      , we have: 

      
1/810 / / 1 / 1

VH

VH VH u u uB


                , 

 
max1 1 / 2VH    . 

When 
VH u  , fatigue failure doesn’t occur; when 

LH B  , it happens instantly. 

12.3 Fatigue Damage Development Calculation Algorithm 

Section 12.3 presents the approach to implement fatigue damage and calculate one’s 

development. Ansys software was used to calculate the stress state within a loading 

cycle of a deformable specimen supplemented by a code to calculate the damage 

equation and changes of elasticity modulus. 

To integrate the equation / (1 )d dN B      , where B  either 
LHB  or

VHB , 

the damage function approximation was applied at the k-node of the computational 

grid for given discrete values 
n

k  at moments nN  and sought 
1n

k 
 at moments 1nN  . 

To calculate the damage equation, the value 1    was chosen for which by ana-

lytic integration an explicit expression for 
1( , )n n n

k k N    can be obtained: 

 
1

11 2(1 )/ (1 ) / 2 / (1 )
n
k

n

n
n

k

N

N
B N


 


   



       . 
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With the denotations
1 1( )n

k x    , 
1 2(1 )2(1 ) ( ) 2( )n n n

k kq B N           and 

1n n nN N N    the equation transforms to 
2 2 0x x q    and its valid root

1 1 1x q    . The analytical expression for the increment of damage on the in-

crement of the number of cycles nN  is derived from: 

  
1/(1 )

1 1 2(1 )1 1 2(1 ) ( ) 2( )n n n n

k k kB N


    


           . 

Increment value nN  defined as follows. Based on the stress state calculation data, 

the coefficient ,LH VHB B B  is calculated for each node. After that, for each node, the 

following values are calculated by 

 
1

1 2(1 )/ (1 ) / 2 / (1 ) /
n
k

n

kN B 


             

corresponding to the number of cycles, at which in the node k from its current level of 

damage and equivalent stress complete destruction will be achieved (damage is equal 

to 1). If the damage level in the considered node is less than the threshold 
0  (thresh-

old 
0 0.95   is selected), then the value for this node n

kN  is multiplied by a factor 

of 0.5. Otherwise, it is multiplied by a factor of 1. Thus, the step of incrementing the 

number of cycles for a given node is 0.5(1 ( 0.95))n n n

k k kN H N     . Of all the 

n

kN  values, the smallest one is selected. The increment of the number of loading 

cycles for the calculation of the entire specimen is minn n

k
k

N N   . For each node 

based on its current level of damage and equivalent voltage, a new level of damage is 

found taking into account the calculated increment nN . 

All elements are sorted out, for each of them the most damaged node is searched 

and according to its damage the mechanical properties of the element are adjusted: 

 0 0( ) (1 ), ( ) (1 )n n n n

k k k k           . 

Those elements that belong to nodes with damage 1   are removed from the calcu-

lation area and form a localized zone (crack-like) of completely destroyed material. 

The calculation ends when the boundaries of a completely damaged region exit to the 

specimen surface (macro destruction) or the evolution of this region stops. 

12.4 Calculation results 

Calculation of S-N curves and fatigue cracks propagation performed both in LCF-

HCF and VHCF modes are presented in Sect. 12.4. 

To determine parameters of the proposed model and verify its performance, one of 

the fatigue experiments described in [29] was performed numerically. From the con-
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dition of matching the experimental and calculated fatigue curve for a specimen of 

certain geometry for a given loading amplitude and cycle asymmetry the numerical 

coefficients were found. Using the obtained values, the experimental results on spec-

imens of a different geometry and asymmetry coefficients were reproduced, and cal-

culation algorithm operability was confirmed. 

Hereinafter, the numerical results for LCH-HCF mode and VHCF mode are dis-

cussed in Sects. 12.4.1 and 12.4.2, respectively. 

12.4.1 Results for LCH-HCF Mode 

Initial tests were conducted on a plate 100251.57 mm in size with 1.56 mm diame-

ter through hole in the ones center. Ratification tests were conducted on a V-notched 

specimen that has 15 mm width w/o a notch, thickness of 1.7 mm, the notch depth of 

1.32 mm, the V-notch angle of 60 degrees, and the notch radius of 0.675 mm. The 

cyclic loading of the upper and lower boundaries of the specimen with amplitude of 

0.096 mm with the development of damage zones up to macroscopic destruction was 

simulated and matched with the results from [29]. In the center of the plate, there is a 

through hole with diameter of 1.56 mm. Plate material is titanium alloy with strength 

and fatigue parameters 
B  = 1135 MPa, 

u  = 330 MPa, 
LH  = 0.31. Elasticity mod-

ulus of intact alloy are 
0  = 77 GPa, 

0  = 44 GPa. Figs. 12.2 and 12.4 show the lines 

of the effective stress level 
LH  for the specimen with a hole (Fig. 12.2) and for the 

specimen with a notch (Fig. 12.4) in two states: before the fatigue quasi-crack initia-

tion and at the moment when it has passed approximately halfway to macro-

destruction. 

In Figs. 12.3 and 12.5, the results of real and computational experiments on con-

structing fatigue curves for specimens with a hole and a side notch are presented. 

Both real and calculated points represent the moment of a crack initiation. The curves 

in the figures approximate the experimental points. The calculations presented in 

Fig. 12.3b almost exactly fit the approximation curve for the values of the model pa-

rameters 0.1  and 0.5k  . Utilizing these parameters, the fatigue curves presented 

in Fig. 12.3a (specimen with a hole, R = –1) and in Fig. 12.5 (notched specimen, 

R = –0.5 and R = 0.1). In Fig. 12.3b, the relative error equals 0 for the calibration 

series. The average relative errors in Figs. 12.3a, 12.5a and 12.5b are 1%, 7%, and 

6%, respectively. The obtained satisfactory quality reproduction of real fatigue exper-

iments indicates the efficiency and prospects of the model and calculation algorithm. 

The considered model represents the development of the damage model in case of 

cyclic loads presented in [36] for the description of damages during dynamic loading. 
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a                b 

Fig. 12.2. Ti-alloy specimen with a hole at R = –1: a emergence of a "quasi-crack", b growth of 

a "quasi-crack". 

 
        a                b 

Fig. 12.3. Fatigue curves 
max ( )N  for Ti-alloy specimen with a hole, where  means real test 

points,   means calculating points: a R = –1, b R = 0.54. 
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a               b 

Fig. 12.4. V-notched Ti-alloy specimen at R = –0.5: a emergence of a "quasi-crack", b growth 

of a "quasi-crack". 

 
        a                b 

Fig. 12.5. Fatigue curves 
max ( )N  for V-notched Ti-alloy specimen, where  means real test 

points,   means calculating points: a R = –0.5, b R = 0.1. 

12.4.2 Results for VHCF Mode 

In order to numerically investigate the development of crack-like regions of fatigue 

failure in UHMW mode, the cyclic loading of a specimen made of AS7G06-T6 alu-

minum alloy with reduced displacement amplitude of 0.1 mm was calculated. The 

corresponding experimental results are taken from the [37]. The mechanical proper-

ties of the Al-alloy: density   = 2680 kg/m3, E = 68 GPa, tensile strength B  = 288 
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MPa, HCF fatigue limit 
u  = 130 MPa, VHCF fatigue limit 

u  = 60 MPa, 
VH  = 

0.3. 

In the series of tests, the bi-curved notched specimen shape was used. In the waist, 

it has quasi-flat shape of 6.18 mm width and 3 mm thick. The notch was 1 mm depth 

with the tip curvature radius of 0.5 mm and the angle of cleavage of 60 degrees. 

 

 
a                 b 

Fig. 12.6. V-notched Al-alloy specimen at R = –1: a emergence of a "quasi-crack", b growth of 

a "quasi-crack". 

 
        a                b 

Fig. 12.7. VHCF fatigue curves 
max ( )N  for V-notched Al-alloy specimen, where  means 

real test points, means calculating points: a R = –1, b R = 0.01. 
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Figures 12.6 and 12.7 show the calculation results for VHCF mode. In Fig. 12.7 the 

results of real and computational experiments on constructing fatigue curves for spec-

imens with a side notch are presented. The curves in the figures approximate the ex-

perimental points for R = –1 (Fig. 12.7a) and R = 0.01 (Fig. 12.7b). 

In Fig. 12.7, slight differences are observed between the calculated and experi-

mental points. This can be explained as follows. The exponential exponent 
VH of the 

fatigue curve for aluminium weakly depends on the cycle asymmetry coefficient R 

[23, 37], but in the accepted calculating scheme with SWT criterion, this exponent is 

considered constant. Fig. 12.6 shows the lines of the effective stress level 
VH  for the 

specimen with a notch in two states: before the fatigue quasi-crack initiation and at 

the moment when it has passed approximately halfway to macro-destruction. 

12.5 Conclusions 

A multi-mode kinetic model of cyclic loading damage development is proposed to 

describe the fatigue fracture process development. To determine the coefficients of 

the kinetic equation of damage, the well-known criterion of multiaxial fatigue failure 

SWT based on the mechanism associated with the development of microcracks of 

normal detachment is used. 

A procedure has been proposed for calculating the kinetic equation coefficients for 

various fatigue failure modes of the LCF-HCF and VHCF. A numerical method for 

calculating crack-like zones up to macrofracture is proposed. The model parameters 

are determined from the condition of matching the experimental and calculated fa-

tigue curve for a specimen of a certain geometry at a given load amplitude and cycle 

asymmetry coefficient. Using the obtained values, the results of experiments on spec-

imens of a different geometry and asymmetry coefficients were reproduced and the 

model and calculation algorithm performance was confirmed. 
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