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Abstract—We study criteria and models of multiaXi@cture under the conditions of low-cycle fatiglieCF).

The model parameters are determined by using tteeafauniaxial fatigue tests for different coeffcits of the
cycle asymmetry. A procedure for calculating theess state of the compressor disk in a gas turbngne
(GTE) in the flight cycle of loading is outlinedh& calculated stress state and models of multifigue fracture
are used to estimate the service life of the cosgmedisk. The results are compared with the obsenal data
collected during the operation.
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1. INTRODUCTION

In the present paper, we outline the basic modefaultiaxial fatigue fracture under the
conditions of low-cycle fatigue (LCF) and give axample of using them to estimate the service
life of elements of a specific engineering struetur

At present, there are several basic types of @itnd models of fatigue fracture which
permit estimating the number of loading cycles thahaterial sample or a structural element can
endure before failure; the criteria are based oaluating the stress state, strain state, or
accumulated fatigue. The determination of the patara of the models under study is a fairly
difficult experimental problem; it is carried oats a rule, by using the results of uniaxial fatigue
tests in tension, torsion, or bending with différepefficients of the cycle asymmetry.

Here we do not consider approaches related toisiydlye kinetics of fatigue crack growth
versus the number of loading cycles and the sétass type.

As an example, we solve the problem of fatiguetdiracof the compressor disk in a gas
turbine engine (GTE, series D30) in flight loadieygles. We outline a computational procedure
for determining the stress-strain state (SSS) efdbntact system of the compressor disk and
blades. The calculated SSS and chosen criterianadeéls of different typos are used to estimate the
compressor disk service life under conditions #iraulate the operating conditions.

2. STATEMENT OF THE PROBLEM
2.1. Estimation Models Bused on the Sress-Srain Sate

The determination of the parameters of multiaxalgtie fracture is based experimental
curves of uniaxial cyclic tests for different vaduef the cycle asymmetry parameR=0,,,/0,,,

where o, and g, are the maximum and minimum stresses in the cytie. uniaxial fatigue
strength tests are usually described using thewoipy notation:o, = (0, —7..)/ 2 is the stress

ax
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amplitude in a cycle arAo =o,,,, -0, Is the stress range in a uniaxial loading cycle.

One uses two types of representation of uniaxigjua tests in the form of an experimental
dataset (and/or the corresponding approximatingesirof o,(N) and o, (N) that show, for
different values of the asymmetry param&ehe limit value of cycleN before fracture for fixed
values of the stress amplituo, (N) (first type) or the maximum streo, . (N) (second type).

The experimental data of uniaxial tests are destrdy Weller curves, which can analytically
be represented by the Baskin relation [1-3]

og=0,+g N’ (2.1)

where g, is the fatigue limit,o. is the fatigue strength coefficier 8 is the fatigue strength

exponent, andN is the number of cycles before fracture. Typiesuits for titanium alloy [4, 5] are
shown in Fig. 1.

The problem of studying fatigue fracture implieattthe spatial distribution of a function of
the number of cycledN before fracture must be determined from equatwnshe form (2.1)
generalized to the case of multiaxial stress statiecontaining the calculated stresses in thetsteuc
under study.

If the dependencio,(N) is represented in the fornto, =g, +o.N” for R = -1 and
o,=0,,+0.,N” forR=0, then the corresponding cu g, _ (N) is expressed as

o,...=0,+0,N” for R=-1 (2.2)
0, =20,,+20, N” for R=0 (2.3)
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The ratio of the fatigue limits according to thevas o, (N) for R=—-1 ancR=0 is equal
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to k,=0,/(20,), whereo, ando,, are the fatigue limits according to the curo,(N) for R=

—1 andR = 0, respectively.
Let us consider the basic ways of generalizingréselts of uniaxial tests to the case of
multiaxial stress state.

2.1.1. Snesmodd. According to [6], the uniaxial fatigue curve (Rchn be generalized to the case of
multiaxial stress state as

At/2+ag0, . =S, +AN?, o =(0+0,%0) 0 (2.4)

ST mean mean

At :\/(Aal—Aaz)2 +(Ao,-DAo )’ +(Ao,-Do )’ 13

where o

mean
octahedral tangent stress per cyAr/2 is the octahedral tangent stress amplitude a)}(S,, A
and [ are parameters to he determined from experimeatal d

To determine the model parameters from uniaxigdatcurves, let us rewrite the equation of
the uniaxial curviog_, (N) forR=-1andR=0.

ForR=—1, we hawiA7/2=/(20,,, f + (20} 16=Y @, /2 and a0, = 0, which

ST mean

is the mean sum of principal stresses over a Igadyale, A7 is the change in the

implies thaix/iamaX /3=S,+ AN”. Comparing with the uniaxial representation (2:&,can obtain
the relation:§, = \/Eau /3 and A= \/Eac /3.

ForR=0, we hav<Ar/2:\/(amx)2 +(0,.)16=N20_ /6andao, . =ao0, /2. As

ST mean

a result, we obtain(\/§/6+as/2)UmaX:SO+ANﬁ. Formula (2.3) implies the relation

S = 20u0(\/§ 16+a, | 2). Equating the values &, we find the parameta, = x/5(2<_1 -1)/2

Here we note the following fact. The representatibthe uniaxial fatigue curves by relation
(2.1) is valid starting from the level dfl ~ 1000; before these valuig(N) changes insignificantly

and equals the tensile stren g, in order of magnitude [1, p. 378] as shown in BigTherefore, to

estimate the paramet&ywe use the approximate relat \/EUB /3=S,+1G* A.

Fig.2
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Let us write out the final expressions for the muial model parameters in terms of the
uniaxial fatigue curves fdR=— 1 andR = 0:

S, =+20,/3, A=10%2(0,-0,)I3 a,=~N2(x,-1)/3 k,=0,/(20,) (2.5)

2.1.2. Crossland mode. According to [7], the uniaxial fatigue curve daageneralized to the case of
multiaxial stress state as

ATI2+0 (Omax—DT12)=S,+ AN? | Onax = (0, +0, + ) (2.6)

max

where gmax is the maximum sum of principal stresses in aitgpdycle; the parametera,, S, A
and S are to be determined.

To determine the model parameters from uniaxigjdatcurves, we rewrite its equation for
the uniaxial curvig,, (N) forR=-1andR=0.

ForR=-1, we haviAr/2= \/(Zamax)z +(20,.,) 16= \/_Zj'max /Zand @,0mx = 0,0, .

Therefore (\/5 I3+ (1-+/2 /3pc) O, =S,+ AN’ .

Comparing with the uniaxial representatioro, =o,+0,N” we obtain
s =(v2/3+@-v2/3p.)0,, A=(V2/3+@-V2/3p,)o,.

For R = 0, we obtain the expressi0|Ar/2=\/(amax)2+(amax)2/6=x/_20maX/6 and
a,0nx =00, . As a result, we hav(x/E/ 6+ (1—\/_2/6)rc)amax =S,+ AN”. Comparing with

the uniaxial representatioo,,, =20,,+20. /N”, we obtain § = 20u0(\/§/ 6+ (1-v/ 2/ Gpc) :

Equating the values 'S, , we find @, =(k_lJ§/3—f2/6y[ - 2/6)k, (v 2/3}.

Repeating the argument used to determine the ptranoé the Sines model, we determine a
refined value ofA. The final expressions relating the parameteth@imultiaxial model to those of
the uniaxial fatigue curves f&= -1 andR = 0 have the form

$=0,[V2/3+ (1-V2/3p, |, A=10"[V2/3+ 1=V 2/38,| 6, -0, | 2.7)
a. :(k_lx/§/3—x/_2/6)/[ a-v2/6rk, ¢V 2/3

The parametero,, o,, o, and the exponerf for different materials are determined

from the data of uniaxial fatigue tests for différeoefficients of the cycle asymmetry.
Here are approximate values of the parametersiteoium alloy Ti-6Al-4V [4, 5] for a
specific computational example that will be consedebelow: the limit strength i o, =1100 MPa,

the fatigue limits according to the cunog,(N) for R=-1 andR = 0 are equeo, =450 MPa and
o,, =350 MPa, respectively, the exponent in the power-lapeddence on the number of cycles is

[ =-0.45, Young's modulus i E =116 GPa, the shear modulusG =44 GPa, and Poisson’s ratio
isv=0.32.

2.2. Estimation Models Based on the Srain Sate

The classical Coffin—Manson relation [1] describthg uniaxial fatigue fracture on the basis
of the strain change per loading cycle has the form
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Azg e (2NY +e, (2N

where g, is the (axial) fatigue strength coefficie&, is the (axial) fatigue plasticity coefficient, and

b andc are the fatigue strength and fatigue plasticifyogents.

Briefly outlined below are models generalizing tBeffin-Manson relation to the case of
multiaxial fatigue fracture. The fatigue fractureechanisms underlying each of the models listed
below are illustrated by figs. 3 a,dj8].

) ) c)
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Fig.3

2.2.1. Brown-Miller modd. The model was proposed in [9]; the correspondatigyde fracture
mechanism is illustrated in fig. 3 a. This modé&k&into account the influence of the normal s¢rain
to the plane of maximum shear strains:

A};nax +abmA£D —&%(ZN) +ﬁ2£ (2N) (2.8)

where ; = g, are the strain tensor componelAy, ., /2 is the range of the maximum shear

u ’
strains attained on a plarAg; is the range of the normal strains on this planel, o is the

mean

cycle-average normal stress on this plane. Appratémalues of the coefficients are given in [8]:
a,,=0.3, 5 =1+v)+(1-v)a,,, B, =1.5+0.9,
2.2.2. Fatemi-Socie modd. The model was proposed and developed in [10—#i8]fatigue fracture

mechanism is illustrated in Fig. 3 b. This modkétainto account the influence of the normal sa®ss
to the plane of maximum shear strains:

Bvae g1k Tamary = Le (N o 4y (2N Yo (2.9)
2 o G

y

Here o,

Omax

is the cycle-maximum normal stress on the planer@ ), . is attained o, is
the material yield strengttz, is the fatigue (shear) strength coefficie y,, is the fatigue (shear)

plasticity coefficient, anch, and ¢, are the fatigue strength and fatigue plasticitgoments. The

coefficientk is approximately equal to= 0.5 [13].

2.2.3. Smith-Watson-Topper model. The model was proposed in [14]; the fatigue necimecha-
nism is illustrated in Fig. 3c. This model taketoiaccount the influence of the normal stress ¢o th
plane of maximum tensile strains:
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2
B0 s = T (2NY + 0,6, (2N @1

where Ag, is the change in the maximum principal strain @@le ando, is the maximum

normal stress on the plane of maximum tensilenstrai
The fatigue parameters of titanium alloys for théss of models were chosen as follows.
In [15], the parameter estiméo, =1.670; is given, and in [16], this parameter is estimated

aso, = o0, +345 MPa. In [15-17], the (axial) fatigue parametersestimated as follow: £, = 0.35,
= —0.095, c= —0.69. For shear fatigue parameters, the followilgtions are given in [8]:
T, :O'C/\/é, A :EC/\/é, b=h,, c=c,.
Finally, it was assumed in the calculations o, =1445 MPa, &, =0.35, b=-0.095, c=
-0.69, 7, =835 MPa, y, =0.20, b,=-0.095,=-0.69, antg, =910 MPa.
We note that similar values of parameters are gdt3]: .= 1180MPa , £,= 0.278 ,
b=-0.025 c¢=-0.6657,= 881 MPa, y,=0.18 ,h,=-0.082, anig, = 910 MPa.

1max

2.3. Models of Fatigue Fracture with Damage

2.3.1. Lemaitre-Chaboche modd. In [18—20], the following differential equationrfthe damag®
accumulated under multiaxial cyclic loading wasgasged:

B
d_D= _ _ +1 a Ala - ;
=[1-a-py”] {Mo(l—i’ozg)(l—D)} | azl_a<M>, 0<Ds<1

(Ju - JVM )

Integrating yields

—.\178
(1+:3)a1v| A (Ala -A)

where the notation from [20] is preserved:

Ala = 05\/1i31max - Sj ,min) (SJ ,max__ Sj ,mir) ' UVM = \/O'SSj,maij ,max

/3, A*:alo(l—fbﬁ), a, =a/M/

E:(Jl"'az"'as)

mean

where §, ., and §, ;, are the maximum and minimum values of the stresgtbr in the loading
cycle; the angle brackets are defined (X)=0 for X < 0 and(X)=X for X =0. The model
parameters for a titanium alloy are given in [ =7.689, b =0.001Zz, b, =0.0008t 1/MPa,

a, =4.110%, g,,=395MPa, ando, =1085 MPa.

2.3.2. LU mode (Liege Univergty). This model was proposed and validated in [5]hls tase, the
integrated differential equation for the damagegjiv

N=Y 21<UUA - e_m/:YM > g0 (2.12)
la

where the notation of [5] is preserved:
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fcr:%(Ala-l-aUH _b)’ f<:r>o ! A*:U—l(1_3SO-H) ! JH :(0-1-+_0-2-+-0-3)ma></3

The model parameters [5] have the following valias0.467,b=220 MPa, y=0.572,
C=7.12010°, #=0.75,5=0.001051/MPa, 0_,=350MPa, 0,=1199MPa.

3. EXAMPLE OF MUFTIAXIAL STRESS STATE CALCULATION AD
SERVICE LIFE ESTIMATION FOR STRUCTURAL ELEMENTS

3.1. Computational Model of the Compressor Disk

As an example, we consider the problem of fatigaetdire of the compressor disk of a gas
turbine engine in flight loading cycles under tbeditions of low-cycle fatigue.

Below we outline the computational procedure faedwrining the SSS of a contact system
consisting of the compressor disk and blades iflifte mode and present the computational results.
A survey of papers on this topic can be found it].[®n the basis of chosen criteria and different
models, the SSS computation results are usedinaegsthe service life of the compressor disk under
the conditions simulating the operational condgion

It is assumed that the cycle of multiaxial loadufighe disk-blade system is the flight loading
cycle (FLC), in which the maximum loads at theraiftccruising speed and the corresponding angular
velocities of rotation of the compressor disk dtaied. The problem is to determine the disk servi
life N (the number of FLCs before fracture) from relai¢a4), (2.6), and (2.8)-(2.12).

To this end, it is necessary to calculate the ¥3Beadisk-blade system under the combined
action of the external loads, represented by theriftegal forces, the distributed aerodynamic
pressures on the blades, and the forces of nonlioegact interaction between the disk, blades, and
any other additional structural elements that akert into account; these elements will be discussed
below.

At present, there are modern software packagescématoe used to solve coupled three-
dimensional problems of gas dynamics and solid am@ck. However, the personal computers are
insufficiently fast to obtain solutions to such lpems efficiently. Therefore, in the present pafres,
three-dimensional stress-strain stale of the cosimtem of the compressor disk and blades (Figs. 4
and 5) is analyzed numerically using a finite-eletrgoftware package [22], and the distributed
aerodynamic loads are determined approximatelynblytical methods based on the use of classical
solutions to the problem of flow about a grid aitpk at an arbitrary angle of attack; the solutayas
obtained by the complex analysis methods on this bathe isolated profile hypothesis [21, 23, 24]
with the blade strain state taken into account.

A blade is assumed to be a thin rectangular platadth 2a with a varying twisty(r) . We

use the following notatiorv,,, p, and p are the velocity, pressure, and gas density @itinfx is
the coordinate of points of the pla|x| < a, andr is the radial coordinate of the plate. The locag/l@
of attack of the plate is equal a(r) = y(r) —arctg{,,/ @ )). The local step of the blade grid is

equal tcd =27 / N, , where N, is the number of blades on the disk.
The formula for the pressure drop on the surfagelis&de was obtained in [21]:

Ap(r, X) :,o(vf, +ahr 2)exp(—aNl/ Z) sin2r ( ,{/ sh@/ SW (3.1)

The gas compressibility was taken into accouninbpducing the Prandtl-Glauert multiplier
1/4/1-M? , whereM is the Mach number of the incident flcM =w/c=V2 +aw’r?/c, cis the
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sound speed, atAp°(r,x) = Ap(r,x)/~1-M?2.
The above formulas hold under the condition of salasflows, V2 + w’r? <c, and were

used to determine the distributed aerodynamic presson the blades in the stress-strain state
calculations of the contact system.
The computational parameters were the following: dhgular velocity of rotatiom = 314

rad/s (3,000 revolutions per minute), the dynareiogity pressure at infinit ov? / 2= 26,000 N/,

which corresponds to the flow speed 200 m/s witsitie 1.3 kg/m. The pressure on the blades was
taken to be equal to the additional pressure dye(8.1). The total number of finite elements does
not exceed 100,000, which is quite acceptabledomutations on a personal computer. The material
properties were as follows=116GPa, v=0.32, ando = 4370 kg/mi for the disk (titanium alloy)e

= 69 GPay = 0.33, angp = 2700 kg/m for the blades (aluminum alloy), afd= 207 GPay = 0.27,
andp = 7860 kg/mi for the fixing pins (steel).

The computations were performed in two stageshd@itfitst stage, on a coarse mesh, under
the assumption of elastic behavior of the matena, calculated the deformation of the entire
compressor disk together with the blades (Fig.o4)létermine the displacements at the boundary
between a disk sector and a single blade (Fig\t3he second stage, a more accurate computation of
the disk sector with the blade (Fig. 5) was pertminon a refined mesh for given boundary
displacements calculated at the first stage. Thedeigal pins fixing each blade to the disk and th
bandage flanges were also taken into account. iftfieience on the SSS is described in [25, 26].

The interaction of the aerodynamic loads with th&irs state of the disk-blade system is taken
into account in an iterative process of alternafm@ment of the loads and the strain state [2b, 26
The computations showed that 3 or 4 iterationgegaired to attain an acceptable accuracy of the
order of 1%. From the viewpoint of fatigue crackleation, the most dangerous areas are those near
the "swallow tail" contact regions [21] between digk and the blades. The computations showed that
the best correspondence between the computationdl experimentally observable stress
concentration regions is attained when the poggilof detachment and slip of the disk and blade
contact boundaries is taken into account. On tlhwdery of the fixing pin (Fig. 5), the conditionk o
complete adhesion were posed from technologicatiderations. Figure 6 shows the zone of
concentration of maximum tensile stresses at thé@deinded) corner of the groove where the blade i
inserted. One can see that the stress concentmtmases from the front to the rear part of the
groove, which coincides with the data on the lecatf fatigue crack nucleation regions in the rear
part of the disk?).
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3.2. Sarvice Life Estimation of Sructural Elements

In Fig. 7, the computed values of the numieaf flight cycles before fracture for the chosen
criteria and models of multiaxial fatigue fractame displayed near the left "swallow tail" diskd®a
contact joint (in the regions of maximum stresscemtration). In Fig. 8, the neighborhood of the lef
corner of the disk contact groove is shown by doliels. In Fig. 7, the horizontal axis represehés t
dimensionless coordinates of the rounding of tleeg's left corner; the vertical axis represengs th
dimensionless coordinate across the groove depth.
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The above computational results for the stresgisttate and the estimation of the number of
flight cycles before fractur® were compared with the results obtained in [2]aoalyzing the
observed laws of nucleation and growth of fatigweks during the operation of disks of the type in
question.

The Sines, Lemaitre-Chaboche, Brown-Miller, and tBfWatson-Topper criteria provided
estimates of the service life of gas turbine endisks around 20,000-50,000 cycles. The Crossland
and LU criteria predicted the possibility of fatggfracture after less than 20,000 flight cycles.tian
whole, all these criteria give similar pictureslafation of the fatigue fracture regions. The Fatem
Socie criterion gives a service life predictionatout 100,000 cycles. The deviation of the Fatemi-
Socie estimate from the results obtained basedhenother criteria may testify that the shear
mechanism of multiaxial fatigue fracture, whichreflected in this criterion, is not purely realized
flight loading cycles.

CONCLUSIONS

In the present paper, we have analyzed and idehptirameters of multiaxial fracture criteria
in the case of low-cycle fatigue (LCF) based ondbmesideration of the stress and strain states and
accumulated damage.

We have presented an example of the utilizing rdiffemodels for studying fatigue fracture of
compressor disks of D30 gas turbine engines. F®ptirpose, we have developed a computational
model of the compressor disk-blade contact systgkmg into account the aerodynamic and
centrifugal loads, simulating the operational lgaatsd performed computations of the stress-strain
state. Different criteria have been used to estirtia¢ service life of the chosen structural element
and these estimates correspond to the developrhéw-aycle fatigue fracture processes with the
number of cycles before fracture of 10,000-100,000
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