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A numerical method for solving axisymmetric problems for
geometrically nonlinear elastic-plastic shells of revolution

Burago N.G., Kukudzhanov V.N.
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1. Introduction. Axisymmetric finite displacement elastic-plastibels under quasi-static
deformation until very recently studied exclusively the basis of the deformation theory of
plasticity of Hencki-llyushin (see review [1]). Ehpreference, apparently, is based on the belief
that this theory provides a solution in a simplaywhan the theory of elastic-plastic flow, since
it does not require consequent tracking the defbomaprocess. However, in many cases,
because of the nature of the problem (the construaiependences of load - "general”
deformation in the study of buckling in the large)due to computational reasons (ensuring the
convergence of iterative processes) it needs tsist@mtly follow the deformation process. This
deprives the deformation theory of specified bdgeflOn the other hand, in most of
geometrically nonlinear problems complex loadinggmplemented, this requires the use of a
more physically-based theory of elastic-plastieviltaking into account the history of loading.

In the first papers [2-4], based on the theory @nBtl-Reuss, used a simplified geometrically
nonlinear theory of shells. The equations of thisoty take into account the quadratic terms
respectively to the angles of rotation of normathie middle surface, while the parameters of
the geometry correspond to initial non-deformedtkesta

The study of buckling of elastic spherical she8$, [6] is based on more accurate theory of
finite axisymmetric deformation of thin non-shall@hells [7], proposed by E. Reissner [7] and
modified in [5]. In this theory the influence ofetliotations of normal is fully considered, and
geometry parameters assigned to the current defbstag¢e. It was shown that the effect of use
of more accurate theoryon the values of the afitilbad can reach about 10%.
Obviously, for post-buckling deformation the effegl be even more significant.

In [8] proposed a numerical method for calculatisigb-critical deformation of shells of
revolution made from materials with complex thegloly was based on a modified E. Reissner
theory. The method was applied to calculate defooms of the round plates and cylindrical
shells using the theory of elastic-plastic flow.

In this paper, we propose another method basedwdiied E. Reissner theory and the theory
of elastic-plastic flow, which is suitable for tetudy of quasi-static processes of axisymmetric
deformation of shells of revolution, including sup@ical (post-buckling) regimes.

2. Statement of problem. The equations of the modified E. Reissner thedrshells are as
follows:

B=¢,—¢; u=r-r, w=z-z, r'=oacosp, Z=asind, g, =a/a,-1, g, =r/ry-1
Ke =B'fa,, Ko =(Sind,—sind)/ry, & =& +NK;, €5 =€ +NKy

H =N, cosp -Qsind,V =N, sinp +Qcosd, (rV)'+arp, =0, (rH)'-aN, +arp, =0
(rME)'—GMeCOEd) -arQ=0, Py =p\,(r,¢,z,€,p), Py =pH(rl¢!Z!E)p)

h/2 h/2

N, = [oidn, M, = [oydn (i=£8) 0

-h/2 -h/2

Here the bar denotes a spatial derivation alofg§, <§<¢&,); Iy, Z,, ¢,.0, are known
functions of¢, describing the initial geometry of the shell (§ég. 1); analogical geometrical
parameters for deformed state of the shell are tddnasr, z, ¢, a; o, O is a Lame
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coefficient along meridian) is the coordinate along the normal to t /a': \
middle surfaceh is the thickness of the shettli/ 2<n<h/2); B is ., /o°¢ ‘
the angle of rotation of normaly, w, H, V and p,, p, are =2
components of middle surface displacement, comusnef main | - |, .
force vector in meridian plane and components efrithuted load , :
alongx, andX,. Puc. 1

We assume that in general cgsg and p, may depend on spatial

parameterd and loading. The rest denotes are usual.

The elastic-plastic theory relations are represetag:

0,0= gllat££ +0,,0,&, 0,0= 911at€z +0,.0 & 2

Hered, means time derivative (“time” parameter is defifedow). Coefficientsy; (i,j =1,2)

are known functions of stresses, strains, mateoiastants and hardening parameters.

The imagination about “time” may be clarified. Imodution problems always presented some
parameter which plays the role of time. The indeleah monotonic growth of this parameter
defines the development of such processes. Fomanost in problems of sub-critical
deformation the role of time plays the loading pater. In problems of buckling and post-
buckling deformations the role of time may be pthya turn by the loading parameter,
displacement, deformation and so on. In genera frtasquasi-static buckling problems the role
of time may be passed to some functional, whicleddg on solution:

t=T(") 3)
Herel = (w,5,uV H M;,0; .0, ,p ) are major unknowns. The rest unknown functions can

be easily found using major unknowns and reIat(dr)sFunctionsF represent the solution of
the problem.

Functional (3) may have different representatiams/arious stages of deformation process and
is chosen so that the monotone growth o#flects the physical nature of the process. Qhose

functional (3) is suitable while solution time degiives are less than some predefined value

(3. >0: |T K&.) . The violation of this condition signals abohetnecessity to change the

time functional (3).

In some tasks of buckling it is possible to makelusky choice of time functional that the
necessity of its replacement does not appear afatl instance, in tasks for spherical caps
buckling under external pressure such choice is

12
Tzﬁiwdz/(ab—za) )

Maximum and minimum of functiop(t) are defined during calculations and correspond to

upper and lower critical loads.
The system of equation (1—3) are solved usingainithd boundary conditions:

[o=T, (5)

UaVlE:Ea = va’ u bylizib = vb (6)
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Herey = (w,B,u,V,H,M;). We assume that boundary conditions (6) satisfykmown

restrictions, following from the principle of thertwal work [7]. VectorsV, and V, may
depend on loading parameter (action of side foaoesforce moments).

3. Method of solution. The step-by-step procedure of solution is desdriiow. During each
small step along time parameter the quasi-linetioizaof primary nonlinear equations is used
[9].

Let’s differentiate the equations (1), (3) and abads (6) with respect to «time». In result we
get the relations, which are linear regarding «wi@ks» of unknowns (i.e. derivatives along
«time»). Joining these relations with relations (¢ transform this system of relations so, that

it contains only «velocities» of major unknownsin result we have:

V. =AY +F, UV |, :aa_vpa, UpY. leze, :aa_vpb (7)
Ov‘@ﬁEEQQEJ?,GW-QAE+QQEY¥ ©)
p{g(awavi)vw} ©
Here

V. =Y/P,0u =0 1P, O =0g/D, Vi =V, /D, T ={y} (10)

Matrix A and vectorf,E,,E, in relations for «velocities» (7)--(9) are knowanttions of
solution components. Detailed expressions for tliesetions are not presented here because
they are quite complicated.

By using found major unknowr's it is possible to calculate the «velocities» 1) using (1) it

is possible to find all unknowns. Then the coeffits g; in (2) may be found; 2) Then, by
using mentioned above formulas the matixand vectors~,E,,E, may be found; 3) Solving
the boundary value problem (7), we find vecyor then using (8) we find values., 0,.; 4)
Finally, using (9), we find the «velocity» of loadi parameter and using (10) «velocities» of
the rest unknown§ .

The described operations for detection of «velesitiof major unknownB are denoted as

r=n() (11)

Cauchy problem (11), (5) is solved by the predicimrector method and Euler recalculation
method. The stresseg, 0, are calculated in grid node§, ( n:

Ei :Ea +ih1’ hl =(Eb _Ea)/nl I =Oll’---|n;
n,=n,+jh, h,=h/(2m), i=-m,..01..,m. (12)

Solution of boundary value problems (7) are redlibg two ways: a) using finite difference
approximation and orthogonal sweep method [10];ilamy Cauchy problems are solved by
Runge-Kutta methodj) using spline-approximation [11] and describedtelariant of spline
method implementation.

Let’s consider application of splines to the santof boundary value problem (7). The solution
is sought as spline of 2nd degree with coefficiepts
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V(&) =5, +3.(E &) +5,(6-&)°/2 (13)

Here {U[¢,.,,¢;], 1=01,...,n—1. Polinomials (13) represent spline being subjedied
continuity conditions:

3+1,o :_$,0 +_§1 h.+_is,2 F}/Z’ gi+1,1 :S,1+§I,2h1 (14)
Here i =0,1,...,n—1. This spline should satisfy boundary conditions:
U.So0= ov,/adp, U,Sio = ov,/adp (15)

The spline should also satisfy equations in ndg€s=0,1,...,n)

S, = A|z=zi %0 +_|:E=zi (16)

Relations (14—16) are the closed system of equatregarding the spline coefficiens,
(i=04%,...,m;j=01), (i=01,...,n=1j=2), the number of algebraic equations 1€r{+12).
We decrease the number of equations using contirmgihditions (14). By induction from

continuity conditions it is not difficult to get e¢hfollowing relations between major spline
coefficients §, , §; ; S, (=0l..,n-1) and the rest its coefficients

i-1
S0=%,0+105,+05R) Tsp(2+ 2k ) (17)
k=1

Relations (17), being substituted in to continuitynditions, convert them in to identities.
Introducing relations (17) in equations (15, 16§, get closed system of algebraic equations for
major spline coefficients:

n-1
U5, =0V,/dp, ua{:eo,“ nh$,+05R) s,(2r 2k 3} =0 Y/d p
k=1
i-1 _
“Alg, S0 TIE-TNAL, ]§a1+2{ h,E- 0'5}%1'45:&1 (2i- 2k- ])}_§,2 = R
k=0

Here E is the unitary matrix. This system 6fn+2) equations has quasi-triangular matrix and
is easy solved by Gaussian elimination method.

4. Results of calculations. Described algorithms are coded for BESM-6 compuibe codes
are checked by comparison with known numericaltamiufor a) physically and geometrically
nonlinear problems about sub-critical deformatidériccular plates [12] (stress-strain relations
corresponded to differentiated with respect to tiegpiations of Hencki-llyushin theory of
plasticity) and b) geometrically nonlinear probleafsbuckling and post-buckling behavior of
elastic spherical shells [13]. Results calculatgedusing different codes are in good agreement
between each other and with mentioned above knatan d

The spline and orthogonal sweep methods are comhparecalculations of toroidal shell
deformations forced by internal pressure. The &mistare controlled by known results [14]. It
is found that in the range of geometry paraméter[31-v)]Y“L /(Rh) "?< 25- 30the
solutions of accuracy 1—3% may be calculated moomemically by the spline method (here
L ., is a meridian lengthR is a minimal radius of curvature of middle surfahes a thickness
of shell; v is Poisson ratio). In this case along meridian mlbenber of grid intervals is
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n=10-40. Outside the pointed range and for solution witfhlr accuracy more economical
is the orthogonal sweep method.

For detection of upper critical loads with accurdey3% in calculations with constant «time»
step it needs about 20—30 steps. In calculatioreasttic-plastic shells the accuracy 1—3% it
needs about 10—20 grid nodes along thicknass 6—1C).

Let’'s consider the buckling of spherical cap unaietion of external pressure. The cap borders
are fixed (no displacement and no rotation). Ihd&ta we assume as follows:

d,(8) =157079¢+&, r,(]) =Rco€, Zz,(§)=Rsing, 0,)=R, ¢&,=078540(, ¢&, =157079
p, =-pcosd, p,, =-psind, R/h=10C, v=03, &, =026€¢ -2

here E is Young's modulus; that range &f corresponds to the angle 45°; expressions for
external pressure account the changes of shape ahell during deformatiorRR is the radius

of curvature of meridian in initial state, deformation corresponding to yield limit,. The
strain-stress diagram of material is shown in t@lelew

o/o, |00(.0 ({1,13(1.35(1,46(|1,54|1.57|1.63|1,66
ele, |0.0(1.0(1,49(2,24|2,98(3,74|4,48|5,96|7,48

-

75

30—\

025

Fig. 2. 3.4

Expression of «time» parameter is used as (4).dehafi parameter (4) as «time» is confirmed
by experimental results [15]. For direct use ofstiparameter during solution process the
expression (4) should be substituted in to genegalation (9). It is easy to see that in this
particular case the equation (8)

-1

BES. _ _
p—{ﬁijﬁw*d&/(éb zb)} . W =W/

Considered example was studied earlier in [4] whid help of numerical algorithm using the
load as «time». In this study also was used thstielplastic flow theory, but equations of
geometrical non-linear theory of shells was usesirmplified form. Upper critical load found in
[4] by divergence of solution algorithm is equal t@=p/p. =078 (where

p. =2E/(31-v?))"?(h/ R? is a critical load, predicted for elastic sphericap by the linear
bifurcation analysis)This load level is depicted by dashed line in RigThe dashed linea” in
figure corresponds to upper critical load, detedmdthe case under consideration by using
geometrically nonlinear theory without plastic etfe(=092).

The dependence “load—central displacement» whidbuad in our study, is drawn in Fig. 2
by solid line. Maximum on this curve correspondsipper critical loac = 067, it is about 16%
less than results of work [4lt shows that the influence of more accurate temexquations of
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geometrically nonlinear theory of shells in theeca$ elastic-plastic shells is similar to that in
the case of elastic shells. Also it shows thattiitiecal loads detected by the fact of convergence
of algorithms should be treated as quite approx@mat

Fig. 3 shows the displacement in the directionafmal to the middle surface of spherical shell
for various time instants (this time instants auwenbered in Fig. 2 by digits 1, 2, 3,. £ig. 4
demonstrates the situation of zone with elastic Ifatching) and plastic (angular hatching)
states of shell material for instants of «time»n2 &. Horizontal hatching indicated zones of
unloading from plastic state. Vertical hatching ksarthe zones of secondary plastic
deformations.

Conclusion. Suggested method allows to study in more accettengs the class of important
practically and theoretically problems of nonlineaell theory.

The numerical results indicate the complex charaofeloading during buckling of elastic-
plastic shells. Therefore the use of elastic-ptafbiw theory in studies of this class of problems
is necessary.
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