ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

ИНСТИТУТ ПРОБЛЕМ МЕХАНИКИ им А.Ю.ИШЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК

Н.Г. Бураго, А.Б. Журавлев, И.С. Никитин, П.А. Юшковский

ВЛИЯНИЕ АНИЗОТРОПИИ УСТАЛОСТНЫХ СВОЙСТВ ТИТАНОВОГО СПЛАВА НА ДОЛГОВЕЧНОСТЬ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

Препринт № 1064

Москва 2014

АННОТАЦИЯ

Предложено обобщение известных критериев многоосного усталостного разрушения на случай титановых сплавов, обладающих анизотропными усталостными свойствами. Разработана процедура определения параметров этих критериев по результатам одноосных усталостных испытаний в направлении осей, по-разному ориентированных к выделенному направлению текстуры сплава.

Решена задача определения напряженно-деформированного состояния и оценки усталостной долговечности вращающегося диска переменного сечения под действием центробежных нагрузок в диске и лопатках. Циклические воздействия данного типа соответствуют полетному циклу нагружения (малоцикловая усталость).

Для этого выведена упрощенная система обыкновенных дифференциальных уравнений для напряжений и смещений диска малой, но значительно изменяющейся по радиальной координате, толщины. Предложена численная схема решения полученной жесткой системы уравнений.

Также учтены дополнительные напряжения в ободной части диска, связанные с изгибом лопаток под действием аэродинамических давлений. Аэродинамические давления рассчитаны на основе гипотезы «изолированного профиля» с использованием известных решений об обтекании пластины с отрывом потока.

На основе предложенных критериев многоосного усталостного разрушения в изотропном и анизотропном случаях получены распределения долговечности по сечениям диска. Определены опасные сечения, зоны и сроки зарождения усталостного разрушения в диске.

Показано, что усталостная долговечность титанового диска для характерных частот вращения при учете анизотропии усталостных свойств может снижаться до критических значений $N \sim 10^4$ циклов в окрестности внутренней и внешней частей обода диска, что является недопустимым для безопасной эксплуатации.

Работа выполнена в рамках проектов РФФИ № 12-08-00366-а, № 12-08-01260-а и программы ОЭММПУ РАН ОЭ-12.

ISBN 978-5-91741-097-5 055(02)2 @ Институт проблем механики РАН 2014 г.

Оглавление

Введение	.4
1. Критерии многоосного усталостного разрушения с учетом анизотропии	
усталостных свойств титанового сплава	. 4

Выводы	32
Список литературы	.33

Введение

Предложено обобщение известных критериев многоосного усталостного разрушения на случай титановых сплавов, обладающих анизотропными усталостными свойствами. Разработана процедура определения параметров этих критериев по результатам одноосных усталостных испытаний в направлении осей, по-разному ориентированных к выделенному направлению текстуры сплава.

Решена задача определения напряженно-деформированного состояния и оценки усталостной долговечности вращающегося диска переменного сечения под действием центробежных нагрузок в диске и лопатках. Циклические воздействия данного типа соответствуют полетному циклу нагружения (малоцикловая усталость).

Для этого выведена упрощенная система обыкновенных дифференциальных уравнений для напряжений и смещений диска малой, но значительно изменяющейся по радиальной координате, толщины. Предложена численная схема решения полученной жесткой системы уравнений.

На основе предложенных критериев многоосного усталостного разрушения в изотропном и анизотропном случаях получены распределения долговечности по сечениям диска. Определены опасные сечения, зоны и сроки зарождения усталостного разрушения в диске.

Показано, что усталостная долговечность титанового диска для характерных частот вращения при учете анизотропии усталостных свойств может снижаться до критических значений $N \sim 10^4$ циклов в окрестности внутренней части обода диска, что является недопустимым для безопасной эксплуатации.

1. Критерии многоосного усталостного разрушения с учетом анизотропии усталостных свойств титанового сплава

1.1. Влияние анизотропии усталостных свойств титанового сплава на одноосные усталостные кривые. Идентификация и определение параметров выбранного критерия по результатам одноосных экспериментов с различными коэффициентами асимметрии цикла.

Ранее в работах [1-3] исследовалось напряженно-деформированное состояние и усталостная долговечность титановых дисков компрессора газотурбинного двигателя в полетных циклах нагружения. Для этого был предложен метод определения параметров изотропных многоосных критериев усталостного разрушения [4] по результатам одноосных испытаний при различных коэффициентах асимметрии цикла. Там же, на основе расчетов МКЭ были определены зоны зарождения усталостных микротрещин в окрестности ободной части диска. Эти зоны близки к наблюдаемым при эксплуатации данного элемента конструкции [5], но смещены к центральной части обода. Для уточнения расположения этих зон была выдвинута гипотеза о влиянии анизотропии

усталостных свойств титанового сплава, возникающей из-за текстуры, наведенной в технологических процессах изготовления полуфабрикатов (в первую очередь - прокатки).

Эффект зависимости пределов усталости от оси нагружения при одноосных усталостных испытаниях образцов с текстурой отмечен в различных источниках [6,7]. В работе [8] приведены результаты соответствующих усталостных испытаний, Рис. 1, и данные о зависимости прочностных и усталостных характеристик титанового сплава от ориентации текстуры по отношению к направлению нагружения.

Рис. 1. Усталостная долговечность текстурированного сплава Ti-6Al-4V [8]: • - ось «с» параллельна оси нагружения; • - ось «с» перпендикулярна оси нагружения.

В работах [9,10] было предложено обобщение многоосного усталостного критерия на основе уравнения для повреждаемости типа Лемэтра-Шабоша на случай сплава с анизотропией усталостных свойств. В основе этого обобщения лежит замена второго инварианта девиатора напряжений на функцию Хилла, предложенную им [11] для описания анизотропной пластичности металлов:

$$\Sigma_{Hill} = \sqrt{H(\sigma_{11} - \sigma_{22})^2 + G(\sigma_{11} - \sigma_{33})^2 + F(\sigma_{22} - \sigma_{33})^2 + 2N\sigma_{12}^2 + 2L\sigma_{13}^2 + 2M\sigma_{23}^2}$$

В [10] также приведены параметры функции Хилла *F*, *G*, *H*, *L*, *M*, *N* для титанового сплава Ti-6Al-4V, которые определены по результатам одноосных усталостных испытаний вдоль и поперек направления прокатки.

В данной работе идея такой замены положена в основу обобщения классических критериев Сайнса и Кроссланда на анизотропный случай. Процедура определения параметров критериев усталостного разрушения предложена в [4] и там же применена к критериям для изотропных материалов. Ниже рассмотрим применение этой процедуры для рассматриваемого случая анизотропных материалов. Для придания единообразной формы изотропным и анизотропным критериям вместо функции Хилла, введем связанное с ней эквивалентное напряжение Хилла по формуле:

$$\tau_{Hill} = \frac{1}{3}\sqrt{(\sigma_{11} - \sigma_{22})^2 + \tilde{G}(\sigma_{11} - \sigma_{33})^2 + \tilde{F}(\sigma_{22} - \sigma_{33})^2 + 2\tilde{N}\Delta\sigma_{12}^2 + 2\tilde{L}\sigma_{13}^2 + 2\tilde{M}\sigma_{23}^2}$$

rge $\tilde{G} = G/H$, $\tilde{F} = F/H$, $\tilde{N} = N/H$, $\tilde{M} = M/H$, $\tilde{L} = L/H$.

1.2. Учет анизотропии усталостных свойств в критерии многоосного усталостного разрушения

1.2.1. Модель Сайнса.

а) Изотропный критерий Сайнса.

Обобщение одноосной усталостной кривой на случай многоосного напряженного состояния согласно [12] имеет вид:

$$\begin{split} \Delta \tau / 2 + \alpha_s \sigma_{\text{mean}} &= S_0 + A N^{\beta} ,\\ \sigma_{\text{mean}} &= (\sigma_1 + \sigma_2 + \sigma_3)_{\text{mean}} ,\\ \Delta \tau &= \frac{1}{3} \sqrt{(\Delta \sigma_{11} - \Delta \sigma_{22})^2 + (\Delta \sigma_{11} - \Delta \sigma_{33})^2 + (\Delta \sigma_{22} - \Delta \sigma_{33})^2 + 6\Delta \sigma_{12}^2 + 6\Delta \sigma_{13}^2 + 6\Delta \sigma_{23}^2} \end{split}$$

где σ_{mean} - сумма главных напряжений, осредненная за цикл нагружения, $\Delta \tau$ - изменение октаэдрического касательного напряжения за цикл; $\Delta \tau/2$ - его амплитуда; α_s , S_0 , A, β - параметры, определяемые по данным эксперимента.

В [4] подробно описана процедура определения параметров многоосного критерия по результатам одноосных экспериментов с разными коэффициентами асимметрии цикла. В изотропном случае параметры критерия Сайнса имеют вид:

$$S_0 = \sqrt{2}\sigma_u/3, \quad A = 10^{-3\beta}\sqrt{2}(\sigma_B - \sigma_u)/3, \quad \alpha_s = \sqrt{2}(2k_{-1} - 1)/3, \quad k_{-1} = \sigma_u/(2\sigma_{u0})$$

где σ_u и σ_{u0} - пределы усталости по амплитудным усталостным кривым при коэффициентах асимметрии цикла R = -1 и R = 0 соответственно, σ_B - предел прочности.

б) Анизотропный критерий Сайнса.

Обобщение критерия Сайнса на анизотропный случай с учетом вышеописанной замены примем в виде:

$$\begin{split} \Delta \tau_{Hill} / 2 + \alpha_s \sigma_{\text{mean}} &= S_0 + AN^{\beta} \\ \Delta \tau_{Hill} &= \frac{1}{3} \sqrt{(\Delta \sigma_{11} - \Delta \sigma_{22})^2 + \tilde{G} (\Delta \sigma_{11} - \Delta \sigma_{33})^2 + \tilde{F} (\Delta \sigma_{22} - \Delta \sigma_{33})^2 + 2\tilde{N} \Delta \sigma_{12}^2 + 2\tilde{L} \Delta \sigma_{13}^2 + 2\tilde{M} \Delta \sigma_{23}^2} \\ \tilde{G} &= G / H , \ \tilde{F} = F / H , \ \tilde{N} = N / H , \ \tilde{M} = M / H , \ \tilde{L} = L / H \end{split}$$

Вычисление параметров обобщенного критерия по схеме, изложенной в [4], дает результат:

$$S_0 = \frac{\sqrt{1+\tilde{G}}}{3}\sigma_u, \ A = 10^{-3\beta} \frac{\sqrt{1+\tilde{G}}}{3}(\sigma_B - \sigma_u), \ \alpha_s = \frac{\sqrt{1+\tilde{G}}}{3}(2k_{-1} - 1)$$

1.2.2. Модель Кроссланда. а) Изотропный критерий Кроссланда.

Обобщение одноосной усталостной кривой на случай многоосного напряженного состояния согласно [13] в данном случае имеет вид: $\Delta \tau/2 + \alpha_c (\overline{\sigma}_{\text{max}} - \Delta \tau/2) = S_0 + AN^{\beta}, \overline{\sigma}_{\text{max}} = (\sigma_1 + \sigma_2 + \sigma_3)_{\text{max}}$

где $\bar{\sigma}_{max}$ - сумма главных напряжений, максимальная за цикл нагружения; параметры α_c , S_0 , A, β подлежат определению.

В изотропном случае параметры критерия Кроссланда определены в [4]:

$$S_{0} = \sigma_{u} \left[\sqrt{2} / 3 + (1 - \sqrt{2} / 3)\alpha_{c} \right], A = 10^{-3b} \left[\sqrt{2} / 3 + (1 - \sqrt{2} / 3)\alpha_{c} \right] (\sigma_{B} - \sigma_{u})$$

$$\alpha_{c} = (k_{-1}\sqrt{2} / 3 - \sqrt{2} / 6) / \left[(1 - \sqrt{2} / 6) - k_{-1}(1 - \sqrt{2} / 3) \right]$$

б) Анизотропный критерий Кроссланда

Замена октаэдрического напряжения на эквивалентное напряжение Хилла, приводит к обобщенному критерию Кроссланда:

$$\Delta \tau_{Hill} / 2 + \alpha_c (\overline{\sigma}_{max} - \Delta \tau_{Hill} / 2) = S_0 + AN^{\beta}$$

В результате вычисления параметров по схеме [4], получим:

$$\alpha_{c} = (k_{-1}\sqrt{1+\tilde{G}}/3 - \sqrt{1+\tilde{G}}/6) / \left[(1 - \sqrt{1+\tilde{G}}/6) - k_{-1}(1 - \sqrt{1+\tilde{G}}/3) \right]$$

$$S_{0} = \sigma_{u} \left[\sqrt{1+\tilde{G}}/3 + (1 - \sqrt{1+\tilde{G}}/3)\alpha_{c} \right]$$

$$A = 10^{-3b} \left[\sqrt{1+\tilde{G}}/3 + (1 - \sqrt{1+\tilde{G}}/3)\alpha_{c} \right] (\sigma_{B} - \sigma_{u})$$

Имея в виду конкретный расчетный пример, рассмотренный далее, приведем приближенные значения параметров для титанового сплава Ti-6Al-4V [4,9,10]: предел прочности $\sigma_B = 1100$ MPa; пределы усталости по амплитудным усталостным кривым при коэффициентах асимметрии R = -1 и R = 0соответственно: $\sigma_u = 450$ MPa и $\sigma_{u0} = 350$ MPa; показатель степенной зависимости от числа циклов $\beta = -0.45$; модуль Юнга E = 116 GPa; модуль сдвига G = 44 GPa; коэффициент Пуассона v = 0.32; F = 0.54, G = 0.34, H = 0.65, N = M = L = 2.34.

1.2.3. Модель Лемэтра-Шабоша Критерий Лемэтра-Шабоша (изотропный)

Также для сравнения приведем критерии, принятые французскими авторами [9,10]. Изотропный критерий получается в результате интегрирования уравнения для повреждаемости Лемэтра. Интегрирование приводит к результату:

$$N = \frac{1}{(1+\beta)a_{M}} \left[\frac{(1-3b_{2}\overline{\sigma})}{A_{IIa}} \right]^{\beta} \left\langle \frac{(\sigma_{u}-\sigma_{VM})}{(A_{IIa}-A^{*})} \right\rangle$$

с сохраненными обозначениями из [10]:

$$A_{IIa} = 0.5\sqrt{1.5(S_{ij,\max} - S_{ij,\min})(S_{ij,\max} - S_{ij,\min})} , \quad \sigma_{VM} = \sqrt{0.5S_{ij,\max}S_{ij,\max}}$$
$$\overline{\sigma} = (\sigma_1 + \sigma_2 + \sigma_3)_{mean} / 3, \quad A^* = \sigma_{10}(1 - 3b_1\overline{\sigma}), \quad a_M = a / M_0^\beta$$

Здесь $S_{ij,\max}$ и $S_{ij,\max}$ - максимальное и минимальное значение девиатора напряжений в цикле нагружения. Для угловых скобок принято обозначение: $\langle X \rangle = 0$ при X < 0 и $\langle X \rangle = X$ при $X \ge 0$.

Параметры модели для титанового сплава, приведенные в [10], имеют значения: $\beta = 7.689$, $b_1 = 0.0012$, $b_2 = 0.00085$ 1/МПа, $a_M = 4.1 \cdot 10^{-28}$, $\sigma_{10} = 395$ МПа, $\sigma_\mu = 1085$ МПа.

Критерий Марми-Хабракена-Дюшена (анизотропный)

Анизотропный вариант критерия Лемэтра приведен в [10]:

$$N = \frac{1}{(1+\beta)a_{M}} \left[\frac{(1-b_{2}\overline{\sigma})}{A_{IIa}} \right]^{\beta} \left\langle \frac{(\sigma_{u} - \sigma_{Hill,\max})}{(A_{IIa} - A^{*})} \right\rangle$$

Там же даны определения промежуточных величин и значения параметров:

$$A_{IIa} = 0.5\sqrt{1.5(S_{ij,max} - S_{ij,min})(S_{ij,max} - S_{ij,min})}$$

$$\sigma_{Hill,max} = \max \sqrt{H(\sigma_{11} - \sigma_{22})^2 + G(\sigma_{11} - \sigma_{33})^2 + F(\sigma_{22} - \sigma_{33})^2 + 2N\sigma_{12}^2 + 2L\sigma_{13}^2 + 2M\sigma_{23}^2}$$

$$\overline{\sigma} = (\sigma_1 + \sigma_2 + \sigma_3)_{mean}/3, \quad A^* = \sigma_{10}(1 - 3b_1\overline{\sigma}), \quad a_M = a/M_0^\beta$$

$$\beta = 1.79, \ a_M = 1.79 \times 10^{-11}, \quad b_1 = 0.0013, \quad b_2 = 0.00055, \ \sigma_{10} = 358 \text{ MPa}, \quad \sigma_u = 1040 \text{ MPa}$$

Значения параметров Хилла для титанового сплава с анизотропными усталостными свойствами равны [10]: F=0.54, G=0.34, H=0.65, N=M=L=2.34.

2. Исследование влияния анизотропии усталостных свойств на зоны зарождения микротрещин и долговечность конструкции

2.1. Влияние анизотропии усталостных свойств на долговечность элементов конструкции в полетных циклах нагружения

В [1,2] ранее были проведены МКЭ расчеты полетных циклов нагружения титанового диска компрессора ГТД с лопатками и бандажной полкой, фрагменты которого (расчетный сектор) показаны на Рис. 2-а,б,в.

На основе полученного напряженно-деформированного состояния были рассчитаны распределения долговечностей по различным критериям усталостного разрушения с учетом возможной анизотропии усталостных свойств. Результаты расчетов в зоне повышенной концентрации напряжений (Рис. 2-в, выделенный прямоугольник) показаны на Рис. 3 (критерий Сайнса и его анизотропное обобщение), на Рис. 4 (критерий Кроссланда и его анизотропное обобщение).

Анализ полученных численных результатов показывает, что наиболее близкую к наблюдаемой при эксплуатации локализацию зоны разрушения дает обобщенный критерий Сайнса. Как видно из Рис.3, при угле ориентации лопатки к выделенному направлению ~ 60⁰, происходит наиболее ярко выраженное смещение зоны зарождения усталостного разрушения к тыльной части обода диска.

Рис.3. Зоны усталостного разрушения для изотропного и анизотропного сплава по критерию типа Сайнса.

Рис.4. Зоны усталостного разрушения для изотропного и анизотропного сплава по критерию типа Кроссланда.

2.2. Определение дополнительных аэродинамических нагрузок на лопатки диска компрессора и их влияние на НДС диска

Расчет напряженно-деформированного состояния (НДС) вращающихся газотурбинного компрессора авиационного двигателя дисков является необходимым этапом при оценке их усталостной прочности и долговечности. Как известно из опыта эксплуатации, зона зарождения возможного разрушения располагается в окрестности области контакта обода диска и лопатки [4,5]. Основным силовым фактором в полетных циклах нагружения контактной системы диска и лопаток являются центробежные силы. Расчету дисков на подобные воздействия посвящена обширная литература [14-18]. Решения этой задачи были получены аналитическими и численно-аналитическими методами теории упругости и сопромата [14-16] и современными программными средствами на основе метода конечных элементов [1-4]. Однако дополнительным фактором, который может повлиять на НДС диска в зоне контакта с лопатками, являются аэродинамические нагрузки, возникающие при обтекании лопаток потоком сжимаемого газа (воздуха). Эти аэродинамические нагрузки вызывают дополнительные деформации лопаток деформации изгиба и кручения. Данный раздел посвящен оценке дополнительных напряжений, вызываемых этими деформациями в корне лопатки или, что то же самое, на внешнем ободе диска под лопаткой, и их сравнению с амплитудой основного поля напряжений, вызванного центробежными нагрузками.

Описание картины обтекания пластины без отрыва и с отрывом потока

Картина обтекания сечения лопатки компрессора показана на Рис.5. Принимается гипотеза «изолированного профиля [19]. Приняты следующие обозначения:

г - радиальная координата сечения лопатки компрессора,

 r_1 - расстояние от центра диска до корня лопатки,

 r_{2} - расстояние от центра диска до вершины лопатки,

d - ширина сечения лопатки, V_0 - скорость набегающего потока, ω - угловая скорость вращения лопатки, c - скорость звука.

Наличие решетки не учитывается, так как в этом случае нет обозримого аналитического решения задачи обтекания с отрывом потока.

Рис. 5. Схема обтекания пластины (сечения вращающейся лопатки).

Как видно из Рис. 5, переменный угол атаки сечения лопатки и локальная скорость обтекания равны:

$$\alpha = \operatorname{arctg} \frac{\omega r}{V_0}, \ V_{\infty} = \sqrt{V_0^2 + \omega^2 r^2}$$

Схемы безотрывного и отрывного обтекания показаны на Рис. 6-а,б.

Рис. 6. Схемы обтекания.

Для безотрывного обтекания разность давлений на сечение и смещение точки приложения давления (фокус) относительно середины пластины [20] показаны на Рис. 7.

Рис. 7. Фокус сечения при безотрывном обтекании.

Для отрывного обтекания разность давлений на сечение и фокус относительно середины пластины [21] показаны на Рис. 8.

Рис. 8. Фокус сечения при отрывном обтекании

Вычисление интегральных силовых факторов, действующих на лопатку, при обтекании с отрывом

Для вычисления распределенных силовых факторов – перерезывающих сил, изгибающих и крутящих моментов необходимо произвести интегрирование по радиальной координате r в пределах интегрирования от r_1 до r_2 .

Введем новую безразмерную переменную: $t = \omega r / V_0$. Новые пределы интегрирования примут вид: $t_1 = \omega r_1 / V_0$, $t_2 = \omega r_2 / V_0$. Выражения для тригонометрических функций, входящие в формулы для распределенных давлений, в новой переменной запишутся в следующем виде:

$$\sin \alpha = \frac{\omega r}{\sqrt{V_0^2 + \omega^2 r^2}} = \frac{t}{\sqrt{1 + t^2}} , \quad \cos \alpha = \frac{V_0}{\sqrt{V_0^2 + \omega^2 r^2}} = \frac{1}{\sqrt{1 + t^2}}.$$

Введем число Маха набегающего потока: $M = V_0 / c$.

Для учета сжимаемости газа в формулы для давления можно ввести известные поправки Прандтля - Глауэрта [19]:

$$\Delta p_b^c = \Delta p_b / \sqrt{1 - M^2} , \quad \Delta p_s^c = \Delta p_s / \sqrt{1 - M^2}$$

Обтекание вращающихся лопаток с учетом характерных значений скорости потока и угловой скорости вращения происходит под большими углами атаки порядка 30^{0} - 45^{0} , поэтому в качестве базовой примем схему отрывного обтекания лопаток. Функция распределения давления по радиальной координате, вытекающая из формулы для разности давлений на пластинке, имеет вид:

$$q_{s}(t) = \frac{(1+t^{2})t}{(\pi t + 4\sqrt{1+t^{2}})\sqrt{1-M^{2}}}$$

Эту функцию необходимо проинтегрировать по t. В случае безотрывного обтекания это несложно сделать, однако аналогичная формула для отрывного обтекания и формула для распределенного крутящего момента имеет более сложный и громоздкий вид, и их интегрирование приводит к труднообозримым выражениям. Поэтому был принят упрощенный подход, так как на интервале интегрирования все эти функции имеют вид, не сильно отличающийся от линейной функции. Ее приближенное линейное представление имеет вид: $q_s(t) \approx a_1 t - b_1$.

График функции распределения давления представлен на Рис. 9-а. Коэффициенты приближенной линейной функции:

$$a_1 = (q_s(t_2) - q_s(t_1)) / (t_2 - t_1), \ b_1 = a_1 t_1 - q_s(t_1).$$

Функция распределения перерезывающей силы по радиальной координате представлена на Рис. 9-б.

$$Q_{s}(t) = \int_{t}^{t_{2}} q_{s}(t)dt = a_{1}t_{2}^{2}/2 - b_{1}t_{2} - (a_{1}t^{2}/2 - b_{1}t)$$

Суммарная перерезывающая сила в корневом сечении лопатки:

$$Q_{\Sigma} = \pi \rho V_0^2 d \frac{V_0}{\omega} Q_s(t_1) \,.$$

Функция распределения изгибающего момента по радиальной координате:

$$M_{s}(t) = \int Q_{s}(t)dt = -a_{1}t^{3}/6 + b_{1}t^{2}/2 + (a_{1}t_{2}^{2}/2 - b_{1}t_{2})t$$

Суммарный изгибающий момент в корневом сечении лопатки:

$$M_{\Sigma} = \pi \rho V_0^2 d \frac{V_0}{\omega} \left(M_s(t_2) - M_s(t_1) \right)$$

Функция распределения крутящего момента по радиальной координате показана на рис. 9-в:

Рис. 9. Распределенная нагрузка a), перерезывающая сила б) и распределенный крутящий момент в) для обтекания с отрывом.

Ее приближенное линейное представление: $m_k(t) \approx a_2 t - b_2$.

Коэффициенты приближенной линейной функции:

$$a_2 = (m_k(t_2) - m_k(t_1)) / (t_2 - t_1), \quad b_2 = a_2 t_1 - m_k(t_1).$$

Интеграл от функции распределения по радиальной координате и суммарный крутящий момент равны:

$$M_{k} = \int_{t_{1}}^{t_{2}} m_{k}(t) dt = a_{2}t_{2}^{2} / 2 - b_{2}t_{2} - (a_{2}t_{1}^{2} / 2 - b_{2}t_{1}), \qquad M_{\Sigma k} = \pi \rho V_{0}^{2} d \frac{V_{0}}{\omega} M_{k} \frac{3d}{4}.$$

Все эти суммарные силовые факторы будут использованы для вычисления дополнительных напряжений в корне лопатке [14,22].

Вычисление напряжений в корневом сечении лопатки при обтекании с отрывом потока

Касательные напряжения от изгиба лопатки и их максимальные значения, а также касательные напряжения от кручения в ее корневом сечении равны:

$$\tau_s(y) = \frac{Q_{\Sigma}S_f(y)}{dJ_x}, \qquad \tau_{smax} = \frac{3Q_{\Sigma}}{2dh}, \quad \tau_{sk} = \frac{M_{\Sigma k}}{k_s dh^2}$$

Нормальные напряжения от изгиба лопатки и их максимальные значения в корневом сечении равны:

$$\sigma_s(y) = \frac{yM_{\Sigma}}{J_x}, \quad \sigma_{s\max} = \frac{6M_{\Sigma}}{dh^2}.$$

Для параметров расчета приняты следующие значения:

$$h=0.015$$
м, $d=0.07$ м, $r_1 = 0.40$ м, $r_2 = 0.70$ м, $V_0 = 220$ м/с, $\omega = 600$ 1/с, $\rho = 0.41$ кг/м³

Численная оценка величин дополнительных напряжений в корне лопатки для случая отрывного обтекания при выбранных параметрах расчета:

$$\tau_{smax} = 1.3 \text{ MIIa}, \quad \sigma_{smax} = 169 \text{ MIIa}, \quad \tau_{sk} = 0.5 \text{ MIIa}.$$

Оценка нормальных напряжений в корне лопатки для случая безотрывного обтекания приводит к нереалистичным значениям порядка 530 МПа, что дополнительно указывает на нереализуемость самой схемы такого обтекания.

Сравнивая вычисленные значения дополнительных напряжений, можно сказать следующее.

Основной уровень напряжений, обусловленных центробежными воздействиями, конечноэлементными расчетами [1,2] определен величинами ~ 600-700 МПа для нормальных (радиальных и тангенциальных) напряжений и величинами ~ 50-70 МПа для касательных. Более реалистичные значения

аэродинамических нагрузок и связанных с ними дополнительных напряжений на ободе диска дают формулы для отрывного обтекания лопаток.

Дополнительными касательными напряжениями для схемы отрывного обтекания, которые составляют порядка 1/50, т.е. ~2% от величины касательных напряжений, связанных с центробежными нагрузками, можно пренебречь. Дополнительные нормальные напряжения, составляющие 170/650, т.е. ~25% от величины нормальных напряжений, связанных с центробежными нагрузками, следует учитывать. В трехмерные конечноэлементные расчеты на усталостную прочность и усталостную эксплуатационную долговечность следует ввести дополнительный силовой фактор либо на основе приближенной схемы учета аэродинамических нагрузок, либо путем прямого решения связанной газодинамической и прочностной задачи.

2.3. Расчет напряженно-деформированного состояния вращающегося диска и оценка долговечности с учетом дополнительных аэродинамических нагрузок в полетных циклах нагружения

В данном разделе решается задача определения напряженно-деформированного состояния и оценки усталостной долговечности диска компрессора газотурбинного двигателя, изготовленного из титанового сплава с анизотропными усталостными свойствами.

Вывод упрощенной системы обыкновенных дифференциальных уравнений

В цилиндрической системе координат r, ϑ, z кольцевой диск $a \le r \le b$ имеет переменное сечение $-h(r) \le z \le h(r)$. Полная трехмерная система уравнений теории упругости в цилиндрической системе координат имеет вид [23]:

$$\frac{\partial \sigma_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{r\vartheta}}{\partial \vartheta} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{\sigma_{rr} - \sigma_{\vartheta\vartheta}}{r} = 0$$

$$\frac{\partial \sigma_{r\vartheta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\vartheta\vartheta}}{\partial \vartheta} + \frac{\partial \sigma_{\varthetaz}}{\partial z} + \frac{2\sigma_{r\vartheta}}{r} = 0$$

$$(1)$$

$$\frac{\partial \sigma_{rz}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\varthetaz}}{\partial \vartheta} + \frac{\partial \sigma_{zz}}{\partial z} + \frac{\sigma_{rz}}{r} = 0$$

В обезразмеренном на $\lambda + 2\mu = \rho c^2$ виде (*c* - скорость упругих продольных волн) уравнения закона Гука имеют вид [23]:

$$\sigma_{rr} = \varepsilon_{rr} + \lambda \varepsilon_{\vartheta\vartheta} + \lambda \varepsilon_{zz}, \quad \sigma_{\vartheta\vartheta} = \lambda \varepsilon_{rr} + \varepsilon_{\vartheta\vartheta} + \lambda \varepsilon_{zz}, \quad \sigma_{zz} = \lambda \varepsilon_{rr} + \lambda \varepsilon_{\vartheta\vartheta} + \varepsilon_{zz}$$
(2)
$$\sigma_{r\vartheta} = 2\mu \varepsilon_{r\vartheta}, \quad \sigma_{rz} = 2\mu \varepsilon_{rz}, \quad \sigma_{\vartheta z} = 2\mu \varepsilon_{\vartheta z}$$

Соотношения между деформациями и перемещениями [23]:

$$\varepsilon_{rr} = \frac{\partial u_r}{\partial r}, \quad \varepsilon_{\vartheta\vartheta} = \frac{1}{r} \frac{\partial u_{\vartheta}}{\partial \vartheta} + \frac{u_r}{r}, \quad \varepsilon_{zz} = \frac{\partial u_z}{\partial z}$$

$$\varepsilon_{r\vartheta} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_r}{\partial \vartheta} + \frac{\partial u_{\vartheta}}{\partial r} - \frac{u_{\vartheta}}{r} \right), \quad \varepsilon_{rz} = \frac{1}{2} \left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right), \quad \varepsilon_{\vartheta z} = \frac{1}{2} \left(\frac{1}{r} \frac{\partial u_z}{\partial \vartheta} + \frac{\partial u_{\vartheta}}{\partial z} \right)$$
(3)

Граничные условия при z = h(r) запишем с учетом выражения для компонент нагрузки P_i : $P_i = \sigma_{ii} n_i$. В покомпонентной записи получим:

$$P_r = \sigma_{rr}n_r + \sigma_{rz}n_z = 0, \quad P_{\vartheta} = \sigma_{\vartheta r}n_r + \sigma_{\vartheta z}n_z = 0, \quad P_z = \sigma_{zr}n_r + \sigma_{zz}n_z = 0$$

Компоненты вектора нормали равны:

$$\mathbf{n} = (n_r, n_{\vartheta}, n_z) = (-h' / \sqrt{1 + h'^2}, 0, 1 / \sqrt{1 + h'^2})$$

Окончательные граничные условия при z = h(r) имеют вид:

$$\sigma_{rz} - h'\sigma_{rr} = 0, \quad \sigma_{\vartheta z} - h'\sigma_{r\vartheta} = 0, \quad \sigma_{zz} - h'\sigma_{rz} = 0$$
(4)

С учетом предполагаемой периодической зависимости радиальных нагрузок на внешнем контуре диска от угла и малой толщины диска, представим смещения в следующем виде:

$$u_r = (u + \alpha z^2) \cos n\vartheta, \ u_\vartheta = (v + \beta z^2) \sin n\vartheta, \ u_z = (wz + \gamma z^3) \cos n\vartheta$$
 (5)

Выражения для напряжений находим, подставляя (5) в (2) и (3):

$$\sigma_{rr} = \left(\left(\frac{\partial u}{\partial r} + \lambda \frac{nv + u}{r} + \lambda w \right) + \left(\frac{\partial \alpha}{\partial r} + \lambda \frac{n\beta + \alpha}{r} + 3\gamma \lambda \right) z^2 \right) \cos(n\vartheta)$$

$$\sigma_{\theta\theta} = \left(\left(\lambda \frac{\partial u}{\partial r} + \frac{nv + u}{r} + \lambda w \right) + \left(\lambda \frac{\partial \alpha}{\partial r} + \frac{n\beta + \alpha}{r} + 3\gamma \lambda \right) z^2 \right) \cos(n\vartheta)$$

$$\sigma_{zz} = \left(\left(\lambda \frac{\partial u}{\partial r} + \lambda \frac{nv + u}{r} + w \right) + \left(\lambda \frac{\partial \alpha}{\partial r} + \lambda \frac{n\beta + \alpha}{r} + 3\gamma \right) z^2 \right) \cos(n\vartheta)$$

$$\sigma_{r\vartheta} = \left(\left(\frac{\partial v}{\partial r} - \frac{nu + v}{r} \right) \mu - \left(\frac{n}{r} \alpha - \frac{\partial \beta}{\partial r} + \frac{1}{r} \beta \right) z^2 \mu \right) \sin(n\vartheta)$$

$$\sigma_{zz} = \left(\left(\frac{\partial w}{\partial r} + 2\alpha \right) z \mu + \left(\frac{\partial \gamma}{\partial r} + u \frac{1}{z^3} \right) z^3 \mu \right) \cos(n\vartheta)$$

$$\sigma_{\vartheta z} = \left(\left(2\beta - \frac{n}{r} w \right) \mu z + \left(\frac{v}{z^3} - \frac{n}{r} \gamma \right) \mu z^3 \right) \sin(n\vartheta)$$

Для наглядности, удобнее записать представление напряжений (6) в виде:

$$\sigma_{rr} = (\sigma + \sigma_2 z^2) \cos n\vartheta \qquad \sigma_{\vartheta\vartheta} = (s + s_2 z^2) \cos n\vartheta \qquad \sigma_{zz} = (\Sigma + \Sigma_2 z^2) \cos n\vartheta \qquad (7)$$

$$\sigma_{r\vartheta} = (\tau + \tau_2 z^2) \sin n\vartheta \qquad \sigma_{rz} = (t_1 z + t_3 z^3) \cos n\vartheta \qquad \sigma_{\vartheta z} = (T_1 z + T_3 z^3) \sin n\vartheta$$

Таким образом, как это видно из (6) и (7), главные приближения для закона Гука запишутся, с заменой переменных P = nv + u, Q = nu + v, в виде:

$$\sigma = \frac{\partial u}{\partial r} + \lambda \frac{P}{r} + \lambda w, \quad s = \lambda \frac{\partial u}{\partial r} + \frac{P}{r} + \lambda w, \quad \Sigma = \lambda \frac{\partial u}{\partial r} + \lambda \frac{P}{r} + w, \quad \tau = \mu \left(\frac{\partial v}{\partial r} - \frac{Q}{r}\right)$$
$$t_1 = \mu \left(\frac{\partial w}{\partial r} + 2\alpha\right), \quad T_1 = \mu \left(2\beta - \frac{nw}{r}\right), \quad \Sigma_2 = \lambda \frac{\partial \alpha}{\partial r} + \lambda \frac{(n\beta + \alpha)}{r} + 3\gamma$$
(8)

Подставив в систему уравнений (1) представления (7), получим главные приближения для уравнений равновесия:

$$\frac{\partial \sigma}{\partial r} + \frac{n\tau}{r} + t_1 + \frac{\sigma - s}{r} = 0$$

$$\frac{\partial \tau}{\partial r} - \frac{ns}{r} + T_1 + \frac{2\tau}{r} = 0$$

$$\frac{\partial t_1}{\partial r} + \frac{nT_1}{r} + 2\Sigma_2 + \frac{t_1}{r} = 0$$
(9)

Главные приближения для граничных условий (4) при z = h(r) с учетом (7):

$$t_1 h - h' \sigma = 0, \quad T_1 h - h' \tau = 0, \quad \Sigma - h h' t_1 = 0$$
 (10)

Примем за основные переменные σ , τ , u, v. Определим уравнения, которыми они описываются.

Из уравнений (7) и с учетом граничных условий (10) можно получить:

$$\frac{\partial u}{\partial r} = \frac{(1 - \lambda h^{\prime 2})}{(1 - \lambda^2)} \sigma - \frac{\lambda}{(1 + \lambda)} \frac{P}{r} , \qquad s = \frac{\lambda (1 + h^{\prime 2})}{(1 + \lambda)} \sigma + \frac{(1 - \lambda)(1 + 2\lambda)}{(1 + \lambda)} \frac{P}{r}$$
(11)

Выражения для t_1 , T_1 , которые входят в уравнения равновесия (9) найдем из граничных условий (10):

$$t_1 = \frac{h'}{h}\sigma, \quad T_1 = \frac{h'}{h}\tau, \quad \Sigma = h'^2\sigma$$
(12)

Окончательно, система уравнений нулевого приближения будет определена из (6-12) в переменных σ , τ , P = nv + u и Q = nu + v:

$$\frac{\partial \sigma}{\partial r} = \left[\frac{\lambda(1+h'^2)}{(1+\lambda)}\frac{1}{r} - \frac{1}{r} - \frac{h'}{h}\right]\sigma - \frac{n}{r}\tau + \frac{(1-\lambda)(1+2\lambda)}{(1+\lambda)}\frac{P}{r^2}$$

$$\frac{\partial \tau}{\partial r} = n\frac{\lambda(1+h'^2)}{(1+\lambda)}\frac{1}{r}\sigma - \left[\frac{2}{r} + \frac{h'}{h}\right]\tau + n\frac{(1-\lambda)(1+2\lambda)}{(1+\lambda)}\frac{P}{r^2}$$

$$\frac{\partial P}{\partial r} = \frac{(1-\lambda h'^2)}{(1-\lambda^2)}\sigma + \frac{n}{\mu}\tau - \frac{\lambda}{(1+\lambda)}\frac{P}{r} + n\frac{Q}{r}$$

$$\frac{\partial Q}{\partial r} = n\frac{(1-\lambda h'^2)}{(1-\lambda^2)}\sigma + \frac{1}{\mu}\tau - n\frac{\lambda}{(1+\lambda)}\frac{P}{r} + \frac{Q}{r}$$
(13)

После определения главных приближений σ , τ , *P* находим остальные главные приближения напряжений по формулам:

$$s = \frac{\lambda(1+h'^2)}{(1+\lambda)}\sigma + \frac{(1-\lambda)(1+2\lambda)}{(1+\lambda)}\frac{P}{r}, \ \Sigma = h'^2\sigma, \ t_1 = h'\sigma / h, \ T_1 = h'\tau / h$$

При n = 0 эта система совпадает с известными уравнениями осесимметричного деформирования диска переменной толщины [14] с точностью до членов, содержащих множитель h'^2 .

Решение неосесимметричной задачи

Определение распределений напряжений по радиусу диска сводится к решению двух задач Коши. Принимаем краевые условия на радиальных границах r = a и r = b с периодической по углу радиальной нагрузкой на внешнем ободе $\sigma_n \cos n\vartheta$: при $r = a: \sigma = 0, \tau = 0$, при $r = b: \sigma = \sigma_n, \tau = 0$.

Для решения краевой задачи следует получить фундаментальные решения двух задач Коши на внутренней границе r = a:

1) $\sigma = 0, \tau = 0, P = 1, Q = 0$ 2) $\sigma = 0, \tau = 0, P = 0, Q = 1$

Напряжения $\sigma_1(r)$ и $\tau_1(r)$ из решения первой задачи Коши на внешней границе при r = b обозначим σ_{1b} и τ_{1b} . Напряжения $\sigma_2(r)$ и $\tau_2(r)$ из решения второй задачи Коши на внешней границе при r = b обозначим σ_{2b} и τ_{2b} .

Найдем коэффициенты k_1 и k_2 из системы:

$$k_{1}\sigma_{1b} + k_{2}\sigma_{2b} = \sigma_{n}, \quad k_{1}\tau_{1b} + k_{2}\tau_{2b} = 0$$

$$k_{1} = \sigma_{n} \frac{\tau_{2b}}{(\sigma_{1b}\tau_{2b} - \sigma_{2b}\tau_{1b})}, \quad k_{2} = -\sigma_{n} \frac{\tau_{1b}}{(\sigma_{1b}\tau_{2b} - \sigma_{2b}\tau_{1b})}.$$

Тогда решение исходной краевой задачи будет иметь вид:

$$\sigma(r) = k_1 \sigma_1(r) + k_2 \sigma_2(r), \quad \tau(r) = k_1 \tau_1(r) + k_2 \tau_2(r)$$

Решение осесимметричной задачи

К периодической радиальной нагрузке на внешнем контуре $\sigma_n \cos n\vartheta$ с n > 1 нужно добавить осесимметричное решение с n = 0 и с учетом напряжений от распределенной центробежной нагрузки в объеме самого диска.

Касательные напряжения и смещения по угловой составляющей в данном случае будут равны нулю, поэтому $Q = v = \tau = 0$, а P = u, тогда уравнения (13) примут вид:

$$\frac{\partial \sigma}{\partial r} = \left[\frac{\lambda(1+h'^2)}{(1+\lambda)}\frac{1}{r} - \frac{1}{r} - \frac{h'}{h}\right]\sigma + \frac{(1-\lambda)(1+2\lambda)}{(1+\lambda)}\frac{P}{r^2} - \rho\omega^2 r$$
$$\frac{\partial P}{\partial r} = \frac{(1-\lambda h'^2)}{(1-\lambda^2)}\sigma - \frac{\lambda}{(1+\lambda)}\frac{P}{r}$$

Граничные условия: при $r = a : \sigma = 0$, при $r = b : \sigma = \sigma_0$.

Если решением задачи Коши с $\sigma = 0$ P = 1 при r = a является функция $\sigma_1(r)$, то решение краевой задачи имеет вид:

$$\boldsymbol{\sigma}(r) = k_1 \boldsymbol{\sigma}_1(r), \ k_1 = \boldsymbol{\sigma}_0 / \boldsymbol{\sigma}_{1b}$$

Безразмерное значение члена $\rho\omega^2 r$ равно: $\rho\omega^2 ra / \rho c^2 = (\omega a / c)^2 (r / a)$, безразмерная частота $\overline{\omega} = \omega a / c$. Амплитуда радиального напряжения на внешнем контуре, согласованная с центробежной нагрузкой от лопаток, равна $\sigma_0 = \rho\omega^2 (b_1^2 - b^2) / 2$ [14], в безразмерном виде $\overline{\sigma}_0 = \omega^2 (b_1^2 - b^2) / (2c^2)$, ω скорость вращения диска, b_1 - внешний радиус лопаток.

Граничные условия на внешнем ободе диска

Далее определим функции $\sigma_n \cos n\vartheta$, описывающие радиальные воздействия на ободе диска. На внешнем контуре диска зададим переменные и периодические по углу радиальные напряжения, которые моделируют центробежное воздействие от лопаток и согласованы с ним по амплитуде.

Зададим периодическую функцию распределения радиального напряжения на внешнем контуре $\sigma_b(\vartheta) = S_0 H_\delta(\vartheta)$ (один период $-\pi / N_0 < \vartheta < \pi / N_0$). Здесь $S_0 = \rho \omega^2 (b_1^2 - b^2) / 2$ - величина амплитуды радиальных напряжений, определяемых центробежным воздействием лопаток [14], *b* и b_1 - внутренний и внешний радиус лопаток кольцевого диска, *d* – ширина лопаток, N_0 - число

лопаток, $H_{\delta}(\vartheta) = 1$ при $\vartheta \in [-\delta/2, \delta/2], H_{\delta}(\vartheta) = 0$ при $\vartheta \notin [-\delta/2, \delta/2], \delta = d/b.$

Разложение радиальной нагрузки в ряд Фурье имеет вид:

$$\sigma_{b}(\vartheta) = \sum_{k=0}^{\infty} \sigma_{n} \cos(n\vartheta), \quad n = kN_{0}, \quad \sigma_{0} = S_{0}N_{0}\delta/(2\pi), \quad \sigma_{n} = 2S_{0}\sin(kN_{0}\delta/2)/(k\pi).$$

Осесимметричная часть задачи учитывает центробежное нагружение самого диска и радиальное напряжение на внешнем контуре σ_0 .

При расчетах скорость сходимости рядов Фурье была улучшена с 1/k до $1/k^2$ за счет малого «размазывания» разрывной функции $H_{\delta}(\vartheta)$ в точках разрыва.

Численный метод решения полученных систем уравнений

Численно решая систему с граничными условиями, соответствующими различным σ_n и суммируя по k=0,1,2,3..., получим распределения компонент напряжений по радиальной, угловой и осевой координатам.

Обозначим решения системы для σ , τ , P, соответствующие различным k, через $\sigma_k(r)$, $\tau_k(r)$, $P_k(r)$. Тогда компоненты напряжений в диске будут вычисляться по следующим формулам:

$$\sigma_{rr} = \sum_{k} \sigma_{k}(r) \cos(kN_{0}\vartheta)$$

$$\tau_{r\vartheta} = \sum_{k} \tau_{k}(r) \sin(kN_{0}\vartheta)$$

$$\sigma_{\vartheta\vartheta} = \sum_{k} \left[\frac{\lambda(1+h'^{2})}{(1+\lambda)} \sigma_{k}(r) + \frac{(1-\lambda)(1+2\lambda)}{(1+\lambda)} \frac{P_{k}(r)}{r} \right] \cos(kN_{0}\vartheta)$$

$$\sigma_{zz} = \sum_{k} h'^{2} \sigma_{k}(r) \cos(kN_{0}\vartheta)$$

$$\sigma_{rz} = \sum_{k} h' \sigma_{k}(r) \cos(kN_{0}\vartheta) z / h$$

$$\sigma_{\vartheta z} = \sum_{k} h' \tau_{k}(r) \sin(kN_{0}\vartheta) z / h$$
(14)

Систему простых дифференциальных уравнений с краевыми условиями будем решать численно, конечно-разностным методом [24]. Следует, однако, отметить, что правая часть системы содержит большой параметр n>>1 и, следовательно, является жесткой [24]. Для ее решения неприменимы явные схемы, необходимо использовать неявную конечно-разностную аппроксимацию.

Запишем систему (13) в матричной форме, *А* – неоднородная, зависящая от *r* матрица 4х4:

 $d\mathbf{X}/dr = A\mathbf{X}$

Неявная разностная аппроксимация первого порядка системы запишется в следующем виде:

$$\left(\mathbf{X}^{i+1} - \mathbf{X}^{i}\right) / \Delta r = A^{i+1} \mathbf{X}^{i+1}$$

Разрешая эту разностную систему относительно вектора неизвестных, получим его выражение для пошагового вычисления по начальным данным задач Коши при r=a и последующего решения исходной краевой задачи:

$\mathbf{X}^{i+1} = \left(E - A^{i+1} \Delta r\right)^{-1} \mathbf{X}^{i}$

Учет дополнительных напряжений от изгиба лопаток под действием аэродинамических нагрузок

Аналогично предложенной выше схеме можно вычислить дополнительные напряжения в диске от радиальных нагрузок на внешнем контуре, вызванных изгибом лопаток под действием аэродинамических давлений. В этом случае периодическое распределение радиальных напряжений на внешнем контуре при r = b примем в виде $\sigma_b(\vartheta) = \sigma_{s \max} Y_{\delta}(\vartheta)$ (один период $-\pi / N_0 < \vartheta < \pi / N_0$).

Здесь $\sigma_{smax} = 6M_{\Sigma}/(dh^2)$ - величина амплитуды радиальных напряжений, определяемых изгибом лопаток под действием аэродинамических давлений, $Y_{\delta}(\vartheta) = 2\vartheta/\delta$ при $\vartheta \in [-\delta/2, \delta/2], Y_{\delta}(\vartheta) = 0$ при $\vartheta \notin [-\delta/2, \delta/2].$

В этом случае разложение радиальной нагрузки в ряд Фурье имеет вид:

$$\sigma_{b}(\vartheta) = \sum_{k=1}^{\infty} \sigma_{n} \sin(n\vartheta), \quad n = kN_{0}, \quad \sigma_{n} = \frac{2}{k\pi} \sigma_{s\max} \left(\frac{\sin(kN_{0}\delta/2)}{kN_{0}\delta/2} - \cos(kN_{0}\delta/2) \right)$$

Для такого вида нагружения (антисимметричного по угловой координате на периоде $-\pi / N_0 < \vartheta < \pi / N_0$) система уравнений (13) сохранит свой вид с заменой $n \rightarrow -n$. Представление решения для напряжений будет отличаться от (14) заменами $\cos(kN_0\vartheta) \leftrightarrow \sin(kN_0\vartheta)$.

И в этом случае при расчетах скорость сходимости рядов Фурье была улучшена с 1/k до $1/k^2$ за счет малого «размазывания» разрывной функции $Y_{\delta}(\vartheta)$ в точках разрыва.

Результаты расчетов

Для расчетов были выбрана форма диска, сечение которого z>0 показано на Рис. 10, и значения параметров $N_0=32$, $\omega=600 \ 1/c$, $\lambda=78 \ M\Pi a$, $\mu=44 \ M\Pi a$, $\rho=4370 \ \kappa_2/M^3$ (титановый сплав). Распределения компонент напряжений по радиальной координате при $\vartheta=0$ и при z=0 показаны на Рис. 11-12. Распределения компонент напряжений по радиальной координате при $\vartheta=\vartheta_0=1.074^0$ (правый край корня лопатки) и при z=0 показаны на Рис. 13-14. Распределения компонент напряжений по радиальной координате при $\vartheta=0$ и при $z=z_{max}=h$ показаны на Рис. 15-16. Распределения компонент напряжений по радиальной координате при $\vartheta = \vartheta_0 = 1.074^\circ$ и при $z=z_{max}=h$ показаны на Рис. 17-18.

Рис. 10. Сечение диска

а) без учета б) с учетом аэродинамических давлений Рис. 11. Радиальное распределение напряжений при $\vartheta = 0$ и z = 0

а) без учета б) с учетом аэродинамических давлений Рис. 12. Радиальное распределение напряжений при $\vartheta = 0$ и z=0

а) без учета б) с учетом аэродинамических давлений Рис. 13. Радиальное распределение напряжений при $v = v_0^3 = 1.074^\circ$ и z=0

а) без учета б) с учетом аэродинамических давлений Рис. 14. Радиальное распределение напряжений при $\vartheta = \vartheta_0 = 1.074^\circ$ и z=0

а) без учета б) с учетом аэродинамических давлений Рис. 15. Радиальное распределение напряжений при v=0 и $z=z_{max}=h$

а) без учета б) с учетом аэродинамических давлений Рис. 16. Радиальное распределение напряжений при $\vartheta = 0$ и $z = z_{max} = h$

б) с учетом аэродинамических давлений

а) без учета

Рис. 17. Радиальное распределение напряжений при $\vartheta = \vartheta_0 = 1.074^\circ$ и $z = z_{max} = h$

а) без учета б) с учетом аэродинамических давлений Рис. 18. Радиальное распределение напряжений при $\vartheta = \vartheta_0 = 1.074^0$ и $z = z_{max} = h$

Из этих графиков видно, что учет изгиба лопаток под действием аэродинамических давлений приводит к существенному росту и нормальных и касательных напряжений на внешнем ободе диска.

Таким образом, с помощью полученной системы обыкновенных дифференциальных уравнений (13) удалось решить трехмерную по своей сути задачу теории упругости и определить многоосное напряженное состояние деформируемого тела со всеми шестью ненулевыми компонентами тензора напряжений с учетом дополнительных напряжений в ободной части диска, связанных с деформированием лопаток (изгибом) под действием аэродинамических давлений.

2.4. Влияние анизотропии усталостных свойств на долговечность диска компрессора ГТД. Определение зон зарождения усталостного разрушения с учетом анизотропии усталостных свойств титанового сплава

На основе критериев многоосного усталостного разрушения [4] были получены распределения логарифма долговечности $\log_{N(r)}$ (количества циклов нагружения до разрушения) по радиальной координате для титанового сплава с изотропными усталостными свойствами и с пределом усталости ~ 350 МПа. Использован критерий Сайнса, который в изотропном случае имеет следующий вид:

 $\Delta \tau / 2 + \alpha_s \sigma_{\text{mean}} = S_0 + A N^{\beta}$

При расчете долговечности диска из титанового сплава с анизотропными усталостными свойствами применялся модифицированный критерий Сайнса:

$$\Delta \tau_{Hill} / 2 + \alpha_s \sigma_{mean} = S_0 + A N^{\beta}$$

В этом случае лопатки, ориентированные под разными углами φ к выделенному направлению *x*, будут находиться в разных условиях с точки зрения определения компонент напряжений, входящих комбинацию Хилла:

$$\Delta \tau_{Hill} = \frac{1}{3} \sqrt{(\Delta \sigma_{11} - \Delta \sigma_{22})^2 + \tilde{G}(\Delta \sigma_{11} - \Delta \sigma_{33})^2 + \tilde{F}(\Delta \sigma_{22} - \Delta \sigma_{33})^2 + 2\tilde{N}\Delta \sigma_{12}^2 + 2\tilde{L}\Delta \sigma_{13}^2 + 2\tilde{M}\Delta \sigma_{23}^2 + 2\tilde{L}\Delta \sigma_{13}^2 + 2\tilde{L}\Delta \sigma_$$

Соответствующие компоненты напряжений будут вычисляться по формулам:

$$\sigma_{11} = (\sigma_{rr} + \sigma_{\vartheta\vartheta}) / 2 + (\sigma_{rr} - \sigma_{\vartheta\vartheta}) \cos 2\varphi / 2 + \sigma_{r\vartheta} \sin 2\varphi$$

$$\sigma_{22} = (\sigma_{rr} + \sigma_{\vartheta\vartheta}) / 2 + (\sigma_{\vartheta\vartheta} - \sigma_{rr}) \cos 2\varphi / 2 - \sigma_{r\vartheta} \sin 2\varphi$$

$$\sigma_{12} = (\sigma_{\vartheta\vartheta} - \sigma_{rr}) \sin 2\varphi / 2 + \sigma_{r\vartheta} \cos 2\varphi$$

Распределения долговечности по радиальной координате для изотропной и анизотропной усталости

Распределения логарифма долговечности (далее – просто долговечности) по радиальной координате под лопаткой в сечении $\vartheta = 0.548^{\circ}$ при z=0 и $z=z_{max}=h$ для титанового сплава с изотропными и анизотропными усталостными свойствами показаны на Рис. 19-22. В этих результатах для долговечности учтены дополнительные нагрузки от изгиба лопаток под действием аэродинамических давлений.

Рис.19. Радиальное распределение долговечности, изотропная усталость, $\vartheta = 0.548^{\circ}$

Рис.20. Радиальное распределение долговечности, анизотропная усталость при $\varphi = 0^{\circ}$, $\vartheta = 0.548^{\circ}$

Рис.21. Радиальное распределение долговечности, анизотропная усталость при $\varphi = 45^{\circ}$, $\vartheta = 0.548^{\circ}$

Рис.22. Радиальное распределение долговечности, анизотропная усталость при $\varphi = 90^{\circ}$, $\vartheta = 0.548^{\circ}$

На этих рисунках значения логарифма долговечности, превышающие 8, обрезаются и приравниваются к 8. Видно, что и в изотропном и анизотропном случаях наиболее опасными с точки зрения развития усталостного разрушения являются сечения на внешней (r=8) и внутренней части обода с максимальной производной толщины диска по радиальной координате (r=7.4). В этих сечениях долговечность приближается к опасному порогу 10⁴ циклов (подразумеваются полетные циклы нагружения).

Минимальные значения долговечности получаются в случае учета усталостной анизотропии при значении $\varphi = 90^{\circ}$ (Рис. 22). Соответствующие точки сечения обода диска имеют значения долговечности ~10^{4.5} и наиболее опасны с точки зрения зарождения усталостной микротрещины.

Изолинии долговечности на опасных сечениях для изотропной и анизотропной усталости

Более подробно рассмотрим картину распределения долговечностей с помощью графика изолиний в координатах z, ϑ в определенных выше опасных сечениях под лопаткой на внешней части обода r=8 и внутренней части r=7.4. На Рис. 23-24 показаны результаты для сплава с изотропными и анизотропными усталостными свойствами при различных углах ориентации φ .

Наименее долговечными выглядят сечения диска под лопатками, ориентированными под углом $\varphi = 90^{\circ}$ (Рис. 24-а,б) к направлению оси анизотропной усталости (направлению прокатки, если говорить о технологическом процессе изготовления диска). Наиболее чувствительным к анизотропии усталостных свойств выглядит сечение на внешнем ободе лопатки при r=8 (Рис. 23-б и 24-б).

Во все этих случаях результаты близки и принимают критические значения усталостной долговечности титанового диска для выбранных частот вращения $N \sim 10^4$ циклов, что является недопустимым для безопасной эксплуатации. Во избежание данной ситуации следует не доводить угловые скорости вращения до критических значений и технологически избегать наведенной текстуры сплава, приводящей к анизотропии усталостных свойств.

а) Внутренняя часть обода
 Б) Внешняя часть обода
 Рис.23. Изолинии долговечности, изотропная усталость.

Выводы

Предложено обобщение известных критериев многоосного усталостного разрушения на случай титановых сплавов, обладающих анизотропными усталостными свойствами. Разработана процедура определения параметров этих критериев по результатам одноосных усталостных испытаний в направлении осей, по-разному ориентированных к выделенному направлению текстуры сплава.

Решена задача определения напряженно-деформированного состояния и оценки усталостной долговечности вращающегося диска переменного сечения под действием центробежных нагрузок в диске и лопатках.

Получена упрощенная система обыкновенных дифференциальных уравнений для напряжений и смещений кольцевого диска малой, но значительно изменяющейся по радиальной координате, толщины. На внешнем контуре диска задавались переменные и периодические по углу радиальные напряжения, которые моделировали центробежное воздействие от лопаток и были согласованы с ним по амплитуде. Учитывались распределенные центробежные нагрузки в самом диске. Циклические воздействия данного типа соответствуют полетному циклу нагружения (малоцикловая усталость).

Также учтены дополнительные напряжения в ободной части диска, связанные с изгибом лопаток под действием аэродинамических давлений. Аэродинамические давления рассчитаны на основе гипотезы «изолированного профиля» с использованием известных решений об обтекании пластины с отрывом потока.

На основе предложенных критериев многоосного усталостного разрушения в изотропном и анизотропном случаях были получены распределения долговечности по сечениям диска. Определены опасные сечения, зоны и сроки зарождения усталостного разрушения в диске.

Показано, что усталостная долговечность титанового диска для характерных частот вращения при учете анизотропии усталостных свойств может снижаться до критических значений $N \sim 10^4$ циклов в окрестности внутренней части обода диска, что является недопустимым для безопасной эксплуатации.

Список литературы

1. Бураго Н.Г., Журавлев А.Б., Никитин И.С. Анализ напряженного состояния контактной системы «диск-лопатка» газотурбинного двигателя. //Вычисл. мех. сплош. сред. 2011. Т.4. № 2. С. 5-16.

2. Беклемишев Н.Н., Бураго Н.Г., Журавлев А.Б., Никитин И.С. Аэроупругий анализ элементов конструкции компрессора.// Вестник МАИ. Т.18. № 5. 2011. С.3-22.

3. Бураго Н.Г., Журавлев А.Б., Никитин И.С. Сверхмногоцикловое усталостное разрушение титановых дисков компрессора.// Вестник ПНИПУ. Механика. 2013. №1. С. 52-67.

4. Бураго Н.Г., Журавлев А.Б., Никитин И.С. Модели многоосного усталостного разрушения и оценка долговечности элементов конструкций. // Изв. РАН. МТТ. 2011. № 6. С. 22-33.

5. Шанявский А.А. Моделирование усталостных разрушений металлов. - Уфа. Издво научно-технической литературы «Монография». 2007. 498с.

6. Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. - М.: ВИЛС-МАТИ. 2009. 520с.

7. Горынин И.В., Чечулин Б.Б. Титан в машиностроении. - М.: Машиностроение. 1990. 400с.

8. Соммер А., Кригер М., Фудзисиро С., Айлон Д. Развитие текстуры в $\alpha + \beta$ титановых сплавах. Титан. Металловедение и технология. Труды 3-й Международной конференции по титану. - М.: ВИЛС. 1978. Т.3. С. 87-96.

9. Marmi A.K., Habraken A.M., Duchene L. Multiaxial fatigue damage modeling at macro scale of Ti6Al4V alloy.// Int. J. of fatigue. 2009. V. 31. Pp. 2031-2040.

10. Marmi A.K., Habraken A.M., Duchene L. Multiaxial fatigue damage modeling of Ti6Al4V alloy. Proc. 9 Int. Conf.on Multiaxial Fatigue and Fracture (ICMFF9). Parma, Italy. 2010. Pp. 559-567.

11. Хилл Р. Математическая теория пластичности. - М.: Государственное издательство технико-теоретической литературы. 1956. 407с.

12. Sines G. Behavior of metals under complex static and alternating stresses. Metal fatigue. McGraw-Hill, 1959. Pp. 145-169.

13. Crossland B. Effect of large hydrostatic pressures on torsional fatigue strength of an alloy steel. // Proc. Int. Conf. on Fatigue of Metals. London. 1956. Pp.138-149.

14. Демьянушко И.В., Биргер И.А. Расчет на прочность вращающихся дисков. - М: Машиностроение. 1978. 247с.

15. Прочность. Устойчивость. Колебания. Т.1. Под ред. И.А. Биргера и Я.Г. Пановко. - М.: Машиностроение. 1968. 832с.

16. Биргер И.А. Стержни, пластины, оболочки. - М.: Физматлит. 1992. 392с.

17. Костюк А.Г. Динамика и прочность турбомашин. - М.: Издательский дом МЭИ. 2007. 476с.

18. Иноземцев А.А., Нихамкин М.А., Сандрацкий В.Л. Динамика и прочность авиационных двигателей и энергетических установок. - М.: Машиностроение. 2008. 204с.

19. Мхитарян А.М. Аэродинамика. - М.: Машиностроение. 1976. 447с.

20. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. Ч.1. - М.: Физматгиз. 1963. 584с.

21. Гуревич М.И. Теория струй идеальной жидкости. - М.: Наука. 1979. 536с.

22. Работнов Ю.Н. Механика деформируемого твердого тела. - М.: Наука. 1979. 744с.

23. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.

24. Кукуджанов В.Н. Вычислительная механика сплошных сред. - М.: ФИЗМАТЛИТ. 2006. 320с.

Николай Георгиевич Бураго Алексей Борисович Журавлев Илья Степанович Никитин Павел Анатольевич Юшковский

Влияние анизотропии усталостных свойств

титанового сплава

на долговечность элементов конструкций

Подписано к печати 18 декабря 2013 г. Заказ № 44-2013 Тираж 40 экз.

Отпечатано на ризографе

в ИНСТИТУТЕ ПРОБЛЕМ МЕХАНИКИ им. А.Ю.ИШЛИНСКОГО РАН 119526 Москва, пр-т Вернадского, 101-1