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ABSTRACT
Results of unsteady 2D Navier-Stokes mathematical
modeling of convection-diffusion processes are
presented. The equations are solved by finite
element method in the cylindrical region. Taking into
account a calculated history of dopant concentration
at the surface of the crystallization we determine a
distribution of the dopant concentration in crystal .An
influence of steady and oscillatory rotation of
submerged heater on distribution of dopant in
crystals is investigated.

INTRODUCTION
Dependence and strong sensitivity of dopant
concentration in semiconductor melts on various
conditions of growth such as geometry, heat and
dynamic effects, convection (gravity and forced),
rotation, vibration etc., are known and published in
many papers (see for instance (see reference, for
example, Polezhaev (1994), Nikitin et al. (1981),
Zharikov et al. (1990), Meyer et al. (1997), Golyshev
et al (1995), Ostrogorsky et al. (1995, 1998),
Bourago et al. (1997, 1998)). The goal of such
investigations is to find out how to govern these
processes and dopant concentration. A classification
of methods of governing hydrodynamic processes of
heat and mass transfer under crystal growth and
some results of parametric calculations for models of

directional crystallization, fluid epitaxy and
Chochralski method are presented in Polezhaev
(1994).
This paper is devoted to numerical investigation of
influence of monocrystal growth conditions on axial
and radial distribution of dopant under crystallization
of Ge doped Ga in a frame of Submerged Heater
Method (SHM) crystal growth Fig.1, which is a
vertical unidirectional method of crystallization with
and without rotation and accurately controlled
thermal conditions near crystallization surface. An
interest to the method, which provides both thermal
and geometrical ways of governing in accordance
with classification Polezhaev (1994) is caused by two
reasons: from one hand it allows accurately
controlled thermal conditions of growth, which makes
it promising for study kinetics and mechanisms of
crystal growth, from other hand it allows to
production of monocrystals under decreased natural
convection, providing crystal growth conditions in
terrestrial environment which are very close to space
microgravity conditions. Primarily investigations on
experimental and numerical analysis of dopant
distribution in semiconductor monocrystals under
such conditions have been performed by A. G.
Ostrogorsky at al. (1995, 1997) (you can find
references on more earlier their works in this work).
The authors used two modifications of crystal growth
methods: submerged buffle method and submerged
heater method. Their study is not sufficient for
detection of a set of conditions, which are necessary
to provide reproducible results on dopant transfer in
slow flow of the melt between crystallization surface
and the buffle. This can be made by means of further
experimental and numerical parametric calculation
studies of heat and mass transfer in SHM crystal
growth. Given paper is devoted to the numerical
study SHM crystal growth with and without rotation of
crucible and heater.
Numerical modeling has been provided in a frame of
2D unsteady Navier-Stokes equations and heat and
mass transfer equations in cylindrical region.
Utilization of unsteady formulation allowed detecting
dopant distribution in growing crystal. Initial boundary
value problem has been solved by the finite element
method using hydrocode ASTRA conditions,
geometry, rotation, gravity and growth rate on radial
and axial distribution of the dopant has been
investigated. The existence of optimal rates of

MELT

g

Ws

CRUCIBLE

GAP

CRYSTAL

h

ΩΩΩΩ b

ΩΩΩΩ c

MELT

SEED

SUBMERGED
HEATER

 Fig.1 Scheme of the SHM method



rotation to provide a homogeneous distribution of
dopant is shown.

 FORMULATION OF PROBLEM
Computational region is shown in Fig. 2, where 1 –

heater, 2 - melt zone, 3 – gap, 4 – work melt zone, 5
- surface of crystal, R - radius of crucible, δ  - size of
gap, h - height of work zone, 0z - axis of symmetry.
The following assumptions have been in use: axial
symmetry of the crystal growth process, height h of
work zone 4, growth rate and thermal boundary
conditions are permanent in time.

The Navier-Stokes-Boussinesq equations read:
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where: u and w are velocities in r and  z  directions,
v  is the azimutal velocity, T  is the temperature, C is
dopant concentration, p is the pressure, g is gravity
acceleration, Tβ  is thermal expansion factor, ν  is
the viscosity factor, D  is diffusion factors, α  is the
geometry factor, which equals to 0 for flat geometry
or 1 for axial symmetry.
The boundary conditions read:
at the axis of symmetry

0r =  , 0u = , 0
r
w =

∂
∂ , 0v = , 0

r
T =

∂
∂ , 0

r
C =

∂
∂ ;

at the  surface of the crystal
0z =  , 0u = , SWw −= , Cr2v Ωπ= , mTT = ,

( )0S k1CW
z
CD −=

∂
∂ ;

on the wall of the crucible
Rr = , 0u = , 0w = , CR2v Ωπ= ,

0
r
T =

∂
∂  )hz0( << , hTT =  )Hzh( << , 0

r
C =

∂
∂ ;

at the surface of the submerged heater

0u =  , 0w = , br2v Ωπ= , 0
n
C =

∂
∂ , 0

n
T =

∂
∂ (on

bottom heater )r(TT b= , where )r(Tb  is linear
function between value 1T  and 2T );
upper inlet boundary

Hz = , 0u = , 0
z
w =

∂
∂ , 0v = , hTT = , 0CC = .

Formulation of boundary conditions has principal
meaning for correctness of the model and
comparison with experimental data. In particular
boundary conditions can vary in time.
Initial conditions read:

0t = , 0u = , 0w = , 0v = , mTT = ,
),hz0(CC 101 ≤≤=  ).Hzh(CC 102 <<=

The problem characterized by following parameters
of similarity: Prandtl number λνρ= /cPr p , Reynolds

numbers νΩ=Ω /RRe 2
C , ν= /RWRe S , Grashof

number 23 /TRgGr ν∆β= , (or Rayleigh number
Ra=GrPr) and Schmidt number D/Sc ν= .  In most
cases the parameters had values: 01.0Pr = , ΩRe

and 310Re < , 6100Gr −= , 10Sc = .
The distribution of dopant in the crystal crC   has
been detected by history of concentration in the melt
on the surface of crystallization C  using following
formula: CkC 0cr = , where: 0k  is segregation factor.

4. Numerical method
Briefly most essential features of used numerical
method can be described in a following way. For a
typical convection-diffusion equation
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the following variational implicit Bubnov-Galerkin
self-conjugated finite difference scheme in time is
used:
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  Fig.2. Computational region
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Here an exponential viscosity correction a la
Samarski is used to provide monotonous behavior of
solution:
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Linear finite elements in space were used. Auxiliary
algebraic problems were solved by non-matrix
conjugate gradients method with preconditioning by
diagonal approximation of stiffness matrix. Algorithm
is unconditionally stable but for good accuracy time
step should not differ much from the value of
Courant’s time step: C

n
C t10tt1.0 ∆<∆<∆ ,

)U/hmin(t n
iiC =∆ . Incompressibility was handled by

penalty method (first method), by pressure correction
Poisson equationconju (second method), by use of
vorticity-stream function formulation (third method)
and by Chorin’s artificial compressibility (forth
method). Results are in a good accordance for all
four used techniques. The algorithms are
incorporated into known hydrocode “ASTRA” for 2D
and 3D geometry.

5. Test results
Following test problems have been solved:
1)thermal convection in rectangular region with T=0
at left wall and T=1 at right wall and insulation
horizontal walls, (international test problem published
in Davis et al. (1983) );
2) Wheeler’s international test for Czochralski swirl
flow Wheeler (1990);
3)stationary SHM problem of Ostrogorsky et al.
(1995)
Results for problem 1 calculated by code ASTRA
and independently by code COMGA are presented in
Fig. 3 and Table 1.
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Fig. 3 Thermal convection in square cavity (Ra=105,
Pr=0.71)

Table 1. Test convection problem (Ra=105, Pr=0.71).
Computer
code

  max ψ Max vx,
x=0.5

max vy
y=0.5

"ASTRA"  13.703 49.958 96.421
"COMGA"  13.479 48.300 94.950
Benchmark  13.538 49.592 95.894

In table 1 maximum values of stream function,
horizontal and vertical velocities calculated for test
problem 1 using different computer codes are
shown: “ASTRA”  is the finite element code Bourago
(1994) using grid 60x60, “COMGA" is the finite
difference code using grid 65х65 (Ermakov et.al.
(1992)), third row is benchmark solution, calculated
in Davis et al. (1983) by extrapolation of set of finite
difference solutions for different grids to the grid with
“zero size of cell”. Comparison shows that maximum
difference between results of ASTRA and
benchmark solution is not greater then 1.2%, while
difference for “COMGA” is not greater then 2.5%. In
Fig. 3 isolines of stream function and velocity profiles
calculated using of ASTRA and COMGA codes
almost consist.
Results of ASTRA were compared with numerical
solution test problem 2 and 3. The comparison of
results of given accounts with these test results has
shown good concurrence. (for example, for problem
3 see Bourago et.al. 1997)

6. Influence of the value initial concentration on
impurity distribution in crystal
The goal this path of the parametric calculations was
to find conditions under which longitudinal
distribution of dopant in the crystal becomes
permanent while radial dopant distribution stays so
homogeneous as possible.
Parametric calculations have been performed using
code ASTRA for the following input data:

m 0.016R = ; m008.0h = ; m016.0h1 = ;

m032.0H = ; m10 3−=δ ; o
m C936T = ; C956T o

h = ;

C942T o
1 = ; C945T o

2 = . Table 2 contains: N is a
number of variant; hour/cm 1001.0Ws −=  is growth
rate; 0201 C/Cn =  is the ratio of initial concentrations
( 1C01 =  is the concentration under heater, 02C  is
the concentration above heater); sign dC/dt  is
calculated value of time derivative of dopant
concentration for t=tmax; g/go - dimensionless
gravity acceleration (go  - terrestrial ).
Distribution of Ga in Ge is demonstrated in Fig. 4.
These are results of parametric calculations of
variants from Table 2. Number of variant in Fig. 4 is
indicated at the left. Hereinafter referring on this or
that variant in Figure 4 we shall write "Fig.4.number
of variant".
Table 2 Variants of calculations

N g/go Ws   n sign dC/dt tmax

cm/h ( r=1, z=0, t=tmax ) hours
1 0 1 10 + 3,29
2 1 0,01 16.67 - 8,2
3 1 10 16.67 - 1,32
4 1 1 1.667 + 1,29
5 1 1 10 0 1,09
6 1 3,6 10 - 1,16
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Fig. 4. Distribution of Ga in Ge. Results of parametric calculations of variants from Table 1 (numbers pointed on
the left sides), a)- dopant concentration versus time for r=1 and z=0 b) concentration of dopant for t= tmax, c)
contour lines of concentration in the crystal, d) distribution of dopant along vertical axis of crystal for r=0, e) radial
distribution of dopant in the crystal for t= tmax (percentage of maximum in homogeneity is pointed).



In Fig.4 there are 5 pictures for each variant: a)
concentration of dopant versus time for r=1 and z=0,
b) concentration of dopant in the melt for t=tmax,  c)
contour lines of dopant concentration in the crystal,
d) distribution of dopant along vertical axis of crystal
for r=0,  e) radial distribution of dopant in the crystal
for t=tmax (value of %100C/)CC( maxminmax ⋅−  is
pointed).

The structure of convection flow becomes steady
after several minutes; temperature gets steady after
several seconds. However, the dopant concentration
permanently varies during a whole process and does
not reach stationary values. Only some quasi-
stationary state after several hours is reached. The
intensity of convection in work zone 4 is much less
than in the region 2 above heater and can be
practically excluded by special choice of radial
temperature gradients. It should be pointed out that
for all variants the melt flows in counter-clockwise
direction. The direction of the flow can be changed if

21 TT > . The calculations have shown, that the
control by thermal conditions (for example, when

const)r(Tb = ) allows for SHM on ground to receive
conditions close to conditions of a microgravitation.

A case of absence of natural convection (Fig. 4#1)
does not lead to homogeneous distribution of dopant
because forced convection (a melt flow from region 2
through the gap δ  into the region 4 due to crystal
growth and relative motion of crucible and heater)
violates homogeneity of dopant distribution near
interface of crystal. Weak )10Ra( < natural
convection  (without forced convection) also violates
homogeneity of dopant distribution because the
dopant )10Sc( =  is very sensitive to convection
flows. Therefore there exist some optimal conditions
of balance between natural and forced convection
flows when they compensate each other and provide
the almost homogeneous distribution of dopant.
These conditions depend on growth rate, size of the
gap δ , thermal conditions and values of initial
concentrations 01C  and 02C . In calculations such
conditions have been found: it is variant 5 (Fig. 4#5).

Results of parametric calculations, presented in Fig.
4, can be systematized as follows:
•  The concentration  is increasing in time (or along

axis of crystal) )0dt/(dC >  in variants 1, 4
(Fig.4#1a and Fig.4#4a), is almost permanent in
variant 5 and is decreasing in all other variants

)0dt/(dC > .
•  With increase of growth rate non-homogeneity

increases - it is seen by comparison of variants 2
(Fig.4#2)  with 3 (Fig.4#3) and 5 (Fig.4#5) with 6
(Fig.4#6).

•  The dependence of non-homogeneity of dopant
distribution on ratio initial values of concentration

n   is illustrated that with increase of n  value of
dt/dC  (or dz/dC  in the crystal) is decreasing.

•  The influence of gravity acceleration can be
observed by comparison of variants 1 ( 0g/g0 = )
and 5 ( 1g/g0 = ). In this case homogeneity is
better if 1g/g0 = .

•  Radial non-homogeneity is minimal in variants 2
(Fig.4#2e), maximal in variant 1 (Fig.4#1e).

•  Axial non-homogeneity is minimal in variant 5
(Fig.4#5d).

7. Results of calculations with rotation
To investigate an influence of rotation of the heater
and the crucible on distribution of dopant in the
crystal parametric calculations have been performed
under following input data: hour/cm  1Ws = ,

1CC 0201 == . All other parameters were the same
as well as in paragraph 6 and values of frequencies
indicated in Table 3. .
Table 3 contains: N is a number of run;

))0z,r(C(
r

min))0z,r(C(
r

maxC =−==∆   and maxt  is

maximal  time of crystal growth process calculated .

Table 3. Script of runs.
N g/g0 bΩ cΩ f C∆ tmax

rps rps Hz Sec
1 1 0 0 0 0.198 3880
2 0 0 0 0 0.275 17100
3 1 0.05 0 0 0.263 5330
4 0 0.05 0 0 0.077 1940
5 1 0.3117 0 0 0.192 3650
6 0 0.3117 0 0 0.100 1030
7 1 0.6217 0 0 0.077 1410
8 1 0 0.3117 0 0.061 3640
9 1 0.05 0.3117 0 0.075 2310
10 1 -0.05 0.3117 0 0.049 3630
11 1 -0.3117 0.3117 0 0.054 2440
12 1 0.3117 0 0.68 0.279 1620

No gravity convection and no rotation (run 2). For
1k0 ≠  while the following conditions are fulfilled:

0gCC 
W
ht 0201

s
=∧=∧<  the distribution of dopant

stays almost homogeneous on the interface melt-
crystal and then for greater moments of time
inhomogenuity can become essential. For 1k0 =
and 0201 CC =  the dopant distribution stays
homogeneous.

No rotation, convection is present (run 1). Natural
convection leads to more homogeneous dopant
distribution near interface of crystal. In Fig. 6a (run 1)



it is seen, that concentration of dopant is higher near
wall of crucible then near axis of symmetry. This is
qualitative difference of this case from the case of
run 2 (without natural convection). This happens
because a one-vortex flow of the melt in work zone 4
is directed in clockwise direction. Flow in upper
region 2 has the same direction. Varying the thermal
conditions on the wall of crucible or on the surface of
submerged heater it is possible to get more
homogeneous radial dopant distribution in the crystal
and as well in particular it is possible to get the
distribution of dopant which is very close to the one
in case of microgravity g/g0=0 (run 2).
In Fig. 6 the distributions of dopant in the crystal
were calculated for normal gravity on the Earth and
for low gravity in space. No rotation was applied.
Maximal values of dopant concentration are situated
near axis of symmetry for microgravity space
conditions and near wall of crucible in terrestrial
environment when influence of thermo-gravitational
convection becomes essential.

Influence of rotation.
In Fig.5 are shown stream functions without and with
rotation of the heater ( rps3117.0b =Ω ).

                    
a) b)

Fig.5 Stream function on the Earth for SHM
a) without rotation (run 1), b) with rotation of the
heater (run 5),  see Table 3.

Rotation of heater lead to dopant distributions shown
in Fig. 7 and 8. More fast rotation of heater (Fig. 8)
provides more homogeneous distribution of dopant.
Perhaps the rotation of crucible is more efficient as it
can be seen from comparison of results for very fast
rotating heater or crucible presented in Fig.9. The
homogeneity can be improved if simultaneous
rotation of heater and crucible is applied (Fig. 10).
The best case if they are rotating in opposite
directions. Heater should not be rotating too fast
(Fig.10a) and there are no sense to apply oscillatory
rotation (Fig.10b).

                      a)                                          b)
Fig. 6. Modes of dopant distribution in the crystal
without rotations.
a) On the Earth (run 1),  b) In Space (run 2).

                       a)                                          b)
Fig.7 Modes of dopant distribution in the crystal (runs
3,4).
a) On the Earth, rotating heater rps05.0b =Ω ;
b) In Space, rotating heater rps05.0b =Ω ;

                      a)                                          b)
Fig.8 Modes of dopant distribution in the crystal (runs
5-6).
a) On the Earth, rotating heater rps3117.0b =Ω ;
b) In Space, rotating heater rps3117.0b =Ω ;

                      a)                                          b)
Fig.9 Modes of dopant distribution in the crystal (runs
7-8).
a) On the Earth, rotating heater rps6217.0b =Ω ;   
b) On the Earth, rotating crucible rps3117.0C =Ω ;



                   a)                                          b)

Fig.10 Modes of dopant distribution in the crystal
(runs 9-10).
a) On the Earth, rotating heater rps05.0b =Ω  and
crucible rps3117.0C =Ω ;
b) On the Earth, rotating heater

rps05.0b −=Ω and crucible rps3117.0C =Ω ;

                    a)                                          b)
Fig.11 Modes of dopant distribution in the crystal
(runs 11-12).
a) On the Earth, rotating heater

rps31170 .b −=Ω and crucible rps3117.0C =Ω ;
 b) On the Earth, rotating heater rps05.0b =Ω and
crucible 0C =Ω . Oscillatory rotation with f = 0.68 Hz.

Rotation causes an additional convection in opposite
direction to the thermo-gravitational convection flow.
Fight between these to flows lead to a better mixing
of dopant and may level the dopant distribution on
the interface of crystal. This fight takes place in both
subregions above (subregion 2 in Fig.2) and below
heater (subregion 4 in Fig.2). It accelerates vortex
flow in subregion 2 and compensates natural
convection in subregion 4 near interface of the
crystal. Even in the case of steady rotation the flow
slightly oscillates especially in subregion 2.
Well-known drawback of non-rotating mode of crystal
growth in terrestrial environment is an existence of
peak of concentration in the crystal near wall of
crucible under the gap. The rotation can help in fight
against this drawback. Our calculations indicate that
most homogeneous radial distribution of dopant in
the crystal may be provided by simultaneous
opposite rotation of crucible and heater (run 10,
Fig.10b).  Calculations of oscillatory rotation of
heater show that the distribution of dopant in the
crystal is characterized also by similar oscillations of
concentration (Fig.11b)

CONCLUSION
The modes of SHM crystal growth process which
provide almost permanent longitudinal dopant
distribution in Ge crystals dopant by Ga  are found in
numerical modeling (Fig. 4#5).
From results of calculations can make a conclusion
that there is principal possibility to provide space
conditions using SHM crystal growth method and
special thermal conditions.
Rotation can lead to more homogeneous distribution
of dopant in the crystal. Optimal rate of rotation
depends on other physical, mechanical and
geometrical conditions.
So the numerical modeling is necessary for detection
of these optimal values in every particular case:
changes in geometry, in rate of crystal growth, in
temperature distribution, in gravity acceleration will
lead to various values of optimal rates of rotation.
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NOMENCLATURE
pc      specific heat [J/kg/K]

f        frequency of oscillatory rotation of the heater
[Hz];
g        gravitational acceleration [m s-2];

0g       terrestrial gravity acceleration [m s-2];
h        height of work zone [m];

0k       segregation factor;
n        normal
p         pressure [N/m2];
r          radial coordinate [m];
t          time coordinate;

 wv, u,  radial, circumferential and axial velocities
[m/s];
z        axial coordinate [m];
C       dimensionless concentration of impurity in a
melt;

crC     dimensionless concentration of impurity in a
crystal;

01C , 02C   initial dimensionless concentration;
C∆      difference of concentractions

D        mass diffusion factor [m2/s];
H         height of computational region [m];
Gr       Grashof number;
Pr        Prandtl number;
R         radius of the crucible;
Ra       Rayleigh numbers;
Re       Reynolds numbers;
Sc       Schmidt numbers;
T         temperature [K];

)r(Tb    temperature at the submerged heater [K];



hT        temperature on the top region [K];

mT       temperature of crystallization [K];

0T        initial temperature [K];

sW        rate of crystal growth [m/s];
Greek symbols:
α    geometry factor
δ     size of a gap;

Tβ   coefficient of volumetric thermal expansion [K-1];
λ       thermal conductivity [W m-1 K-1];
ν      kinematic viscosity [m2/s];

0ρ    density [kg m-3];
ψ     stream function;

bΩ  frequency of rotation of the heater [rps];

CΩ  frequency of rotation of the crucible [rps];
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