Gmsh

Gmsh Reference Manual

The documentation for Gmsh 4.13.0 (development version)
A finite element mesh generator with built-in pre- and post-processing facilities

12 April 2024

Christophe Geuzaine
Jean-Francois Remacle

Copyright (©) 1997-2024 Christophe Geuzaine, Jean-Francois Remacle

Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.

Short Contents

Obtaining Gmsh e 1
Copying cONdItIONS . . .« vttt e 3
Reporting a bug.o e 5
1 Overview of Gmsh 7
2 Gmsh tutorial 15
3 Gmsh graphical user interface 79
4 Gmsh command-line interface 85
5 Gmsh scripting language e 91
6 Gmsh application programming interface 125
7 Gmsh optionso 225
8 Gmsh mesh size fields. 307
9 Gmsh plugins 325
10 Gmsh file formats o 353
A Compiling the source code i 377
B Information for developers. 381
C Frequently asked questions. 383
D Version historyo 391
E Copyright and credits. e 413
FoooLicense. . .. 417
Concept INdexX . . .ot 425

SYNEAX INAEK . .« v v et 427

iii

Table of Contents

Obtaining Gmsh 1
Copying conditions........ i 3
Reporting a bug 5
1 Overviewof Gmsh............ 7
1.1 Geometry module 7
1.2 Mesh module.o 8
1.2.1 Choosing the right unstructured algorithm 9

1.2.2 Specifying mesh element sizes........... . 10

1.2.3 Elementary entities vs. physical groups, 11

1.3 Solver module. 12
1.4 Post-processing module. ... 12
1.5 What Gmsh is pretty good at 13
1.6 ... and what Gmsh is not so good at....... i 14
1.7 Installing and running Gmsh on your computerciiiiiiniee.... 14

2 Gmsh tutorial 15
2.1 t1: Geometry basics, elementary entities, physical groups......................... 15
2.2 t2: Transformations, extruded geometries, volumesccoviuieennn... 18
2.3 t3: Extruded meshes, ONELAB parameters, options................oooviiiea.... 21
2.4 t4: Built-in functions, holes in surfaces, annotations, entity colors................. 23
2.5 t5: Mesh sizes, macros, loops, holes in volumes, 26
2.6 t6: Transfinite meshes, deleting entities.......... o i i 30
2.7 t7: Background meshes 32
2.8 t8: Post-processing, image export and animations.................... 33
2.9 £ Plugins. ..o e 36
2.10 £10: Mesh size fieldso 38
2.11 t11: Unstructured quadrangular meshes...... i i, 40
2.12 t12: Cross-patch meshing with compounds 42
2.13 t13: Remeshing an STL file without an underlying CAD model.................. 43
2.14 t14: Homology and cohomology computation.............. ..., 45
2.15 t15: Embedded points, lines and surfaces.......... o i i 47
2.16 t16: Constructive Solid Geometry, OpenCASCADE geometry kernel 49
2.17 t17: Anisotropic background mesh 50
2.18 t18: Periodic meshes. 51
2.19 t19: Thrusections, fillets, pipes, mesh size from curvature........................ 54
2.20 t20: STEP import and manipulation, geometry partitioning 55
2.21 £21: Mesh partitioningo o7
2.22 x1: Geometry and mesh data....... ... 59
2.23 x2: Mesh import, discrete entities, hybrid models, terrain meshing 62
2.24 x3: Post-processing data import: list-based L. 66
2.25 x4: Post-processing data import: model-based 69
2.26 x5: Additional geometrical data: parametrizations, normals, curvatures.......... 71
2.27 x6: Additional mesh data: integration points, Jacobians and basis functions. 73

2.28 x7: Additional mesh data: internal edges and faces 75

iv Gmsh 4.13.0 (development version)

3 Gmsh graphical user interface............................... 79
3.1 MOUSE ACHIOMS .« . v v vttt ettt e 81
3.2 Keyboard shortcuts 82

4 Gmsh command-line interface............................... 85

5 Gmsh scripting language L. 91
5.1 General scripting commands.t 91

B.11 0 COMINENES . . . v ettt e et et e e e e e 91
5.1.2 Floating point eXpressionsttt 91
5.1.3 SEIiNg eXPIeSSIONSottt ettt e 94
5.1.4 Color EXPIeSSIONS . . . vt vttt ettt ettt e e 95
B.1.5 OPEratorS . oottt ettt e e 95
5.1.6 Built-in functions. 97
5.1.7 User-defined MAaCTOS oottt e 98
5.1.8 Loops and conditionals 98
5.1.9 Other general commands i 99
5.2 Geometry scripting commands.t i 104
D.2.1 PoOInbS . .o 104
D.2.2 CUTVES « ot ettt et et e et e 104
D.2.3 SUITACES . . . 106
D.2.4 VOIUINES. .« oo 107
5.2.5 EXUIUSIONS . . oot 108
5.2.6 Boolean operationsoiiii 109
5.2.7 Transformations. 110
5.2.8 Other geometry commands ...t 111
5.3 Mesh scripting commands 113
5.3.1 Mesh element Sizest e 113
5.3.2 Structured grids.o i 113
5.3.3 Other mesh commands i 116
5.4 Post-processing scripting commands i 119

6 Gmsh application programming interface................. 125
6.1 Namespace gmsh: top-level functions.......... i i i 126
6.2 Namespace gmsh/option: option handling functions............... 128
6.3 Namespace gmsh/model: model functions.......... o il 130
6.4 Namespace gmsh/model/mesh: mesh functions.............o .. 142
6.5 Namespace gmsh/model/mesh/field: mesh size field functions................... 171
6.6 Namespace gmsh/model/geo: built-in CAD kernel functions 173
6.7 Namespace gmsh/model/geo/mesh: built-in CAD kernel meshing constraints. 183
6.8 Namespace gmsh/model/occ: OpenCASCADE CAD kernel functions............ 186
6.9 Namespace gmsh/model/occ/mesh: OpenCASCADE CAD kernel meshing constraints

... 206
6.10 Namespace gmsh/view: post-processing view functions.......................... 206
6.11 Namespace gmsh/view/option: view option handling functions................. 211
6.12 Namespace gmsh/plugin: plugin functions oo, 213
6.13 Namespace gmsh/graphics: graphics functions............ 214
6.14 Namespace gmsh/f1ltk: FLTK graphical user interface functions................ 214
6.15 Namespace gmsh/parser: parser functions............ ... 218
6.16 Namespace gmsh/onelab: ONELAB server functions 219

6.17 Namespace gmsh/logger: information logging functions 222

7 Gmshoptions.......... 225
7.1 General OptionSo 225
7.2 Print options. 248
7.3 GeometTy OPIONS . . oottt 252
T4 Mesh OptIOnSo 262
7.5 SOIVET OPIONIS . . v ettt et et et e e e e e 283
7.6 Post-processing Options.ouuuiunmi e 288
7.7 Post-processing view OPBIONSouunn e 290

8 Gmsh mesh size fields 307

9 Gmshoplugins........ 325

10 Gmsh file formats................... . 353
10.1 MSH file format.o 353
10.2 Node Ordering.ttt 360

10.2.1 Low order elements. 360
10.2.2 High-order elements 364
10.3 Legacy formats. 364
10.3.1 MSH file format version 2 (Legacy)ouuuiuiuiniuiriiiiiiaan.. 364
10.3.2 MSH file format version 1 (Legacy)oouiuiuiniiiiiiiiiiiann.. 369
10.3.3 POS ASCII file format (Legacy)ooiiiiiiiiiiiiii . 371
10.3.4 POS binary file format (Legacy)oooieiiiiiiiii i 374

Appendix A Compiling the source code 377

Appendix B Information for developers.................... 381
B.1 Source code Structure. 381
B.2 Coding style. e 381
B.3 Adding a new Option. 382

Appendix C Frequently asked questions.................... 383
C.1 The DaSICS - . v ettt e e 383
C.2 Installation problems i e 383
C.3 General qUESHIONSttt 383
C.4 Geometry module. 384
C.5 Mesh module. 385
C.6 Solver Module 388
C.7 Post-processing module 388

Appendix D Version history 391

Appendix E Copyright and credits.......................... 413

Appendix F License........... ..., 417

Concept index........... i 425

Syntax index 427

Obtaining Gmsh 1

Obtaining Gmsh

The source code and pre-compiled binary versions of Gmsh (for Windows, macOS and Linux)
can be downloaded from https://gmsh.info. Gmsh packages are also directly available in
various Linux and BSD distributions (Debian, Fedora, Ubuntu, FreeBSD, ...).

If you use Gmsh, we would appreciate that you mention it in your work by citing the follow-
ing paper: C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, Volume 79, Issue 11, pages 1309-1331, 2009. A preprint of that pa-
per as well as other references and the latest news about Gmsh development are available on
https://gmsh.info.

https://gmsh.info
https://gmsh.info

Copying conditions 3

Copying conditions

Gmsh is free software; this means that everyone is free to use it and to redistribute it on a
free basis. Gmsh is not in the public domain; it is copyrighted and there are restrictions on its
distribution, but these restrictions are designed to permit everything that a good cooperating
citizen would want to do. What is not allowed is to try to prevent others from further sharing
any version of Gmsh that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of Gmsh, that
you receive source code or else can get it if you want it, that you can change Gmsh or use pieces
of Gmsh in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of
these rights. For example, if you distribute copies of Gmsh, you must give the recipients all the
rights that you have. You must make sure that they, too, receive or can get the source code.
And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no
warranty for Gmsh. If Gmsh is modified by someone else and passed on, we want their recipients
to know that what they have is not what we distributed, so that any problems introduced by
others will not reflect on our reputation.

The precise conditions of the license for Gmsh are found in the General Public
License that accompanies the source code (see Appendix F [License|, page 417).
Further information about this license is available from the GNU Project webpage
https://www.gnu.org/copyleft/gpl-faq.html. Detailed copyright information can be found
in Appendix E [Copyright and credits], page 413.

If you want to integrate parts of Gmsh into a closed-source software, or want to sell a modified
closed-source version of Gmsh, you will need to obtain a different license. Please contact us
directly for more information.

https://www.gnu.org/copyleft/gpl-faq.html
http://geuz.org
http://geuz.org

Reporting a bug 5

Reporting a bug

If, after reading this reference manual, you think you have found a bug in Gmsh, please file an
issue on https://gitlab.onelab.info/gmsh/gmsh/issues. Provide as precise a description
of the problem as you can, including sample input files that produce the bug. Don’t forget to
mention both the version of Gmsh and your operation system.

See Appendix C [Frequently asked questions], page 383, and the bug tracking system to see
which problems we already know about.

https://gitlab.onelab.info/gmsh/gmsh/issues
https://gitlab.onelab.info/gmsh/gmsh/issues

Chapter 1: Overview of Gmsh 7

1 Overview of Gmsh

Gmsh is a three-dimensional finite element mesh generator with a build-in CAD engine and
post-processor. Its design goal is to provide a fast, light and user-friendly meshing tool with
parametric input and flexible visualization capabilities.

Gmsh is built around four modules (geometry, mesh, solver and post-processing), which can be
controlled with the graphical user interface (GUI; see Chapter 3 [Gmsh graphical user interface],
page 79), from the command line (see Chapter 4 [Gmsh command-line interface|, page 85), using
text files written in Gmsh’s own scripting language (‘. geo’ files; see Chapter 5 [Gmsh scripting
language], page 91), or through the C++, C, Python, Julia and Fortran application programming
interface (API; see Chapter 6 [Gmsh application programming interface], page 125).

A brief description of the four modules is given hereafter, before an overview of what Gmsh does
best (... and what it is not so good at), and some practical information on how to install and
run Gmsh on your computer.

1.1 Geometry module

A model in Gmsh is defined using its Boundary Representation (BRep): a volume is bounded
by a set of surfaces, a surface is bounded by a series of curves, and a curve is bounded by two
end points. Model entities are topological entities, i.e., they only deal with adjacencies in the
model, and are implemented as a set of abstract topological classes. This BRep is extended by
the definition of embedded, or internal, model entities: internal points, curves and surfaces can
be embedded in volumes; and internal points and curves can be embedded in surfaces.

The geometry of model entities can be provided by different CAD kernels. The two default
kernels interfaced by Gmsh are the built-in kernel and the OpenCASCADE kernel. Gmsh does
not translate the geometrical representation from one kernel to another, or from these kernels
to some neutral representation. Instead, Gmsh directly queries the native data for each CAD
kernel, which avoids data loss and is crucial for complex models where translations invariably
introduce issues linked to slightly different representations. Selecting the CAD kernel in ‘. geo’
scripts is done with the SetFactory command (see Section 5.2 [Geometry scripting commands],
page 104), while in the Gmsh API the kernel appears explicitly in all the relevant functions
from the gmsh/model namespace, with geo or occ prefixes for the built-in and OpenCASCADE
kernel, respectively (see Section 6.3 [Namespace gmsh/model], page 130).

Entities can either be built in a bottom-up manner (first points, then curves, surfaces and
volumes) with the built-in and OpenCASCADE kernels, or in a top-down constructive solid
geometry fashion (solids on which boolean operations are performed) with the OpenCASCADE
kernel. Both methodologies can also be combined. Finally, groups of model entities (called
“physical groups”) can be defined, based on the elementary geometric entities. (See Section 1.2.3
[Elementary entities vs physical groups], page 11, for more information about how physical
groups affect the way meshes are saved.)

Both model entities (also referred to as “elementary entities”) and physical groups are uniquely
defined by a pair of integers: their dimension (0 for points, 1 for curves, 2 for surfaces, 3 for
volumes) and their tag, a strictly positive global identification number. Entity and group tags
are unique per dimension:

1. each point must possess a unique tag;
2. each curve must possess a unique tag;
3. each surface must possess a unique tag;
4.

each volume must possess a unique tag.

Zero or negative tags are reserved by Gmsh for internal use.

8 Gmsh 4.13.0 (development version)

Model entities can be manipulated and transformed in a variety of ways within the geometry
module, but operations are always performed directly within their respective CAD kernels. As
explained above, there is no common internal geometrical representation: rather, Gmsh directly
performs the operations (translation, rotation, intersection, union, fragments, ...) on the native
geometrical representation using each CAD kernel’s own API. In the same philosophy, models
can be imported in the geometry module through each CAD kernel’s own import mechanisms.
For example, by default Gmsh imports STEP and IGES files through OpenCASCADE, which
will lead to the creation of model entities with an internal OpenCASCADE representation.
Models represented with the built-in CAD kernel can be serialized to disk by exporting them as
‘.geo_unrolled’ files, while models contructed with the OpenCASCADE kernel can be serialized
as ‘.brep’ or ‘.xao’ files.

The Chapter 2 [Gmsh tutorial], page 15, starting with Section 2.1 [t1], page 15, is the best place
to learn how to use the geometry module: it contains examples of increasing complexity based
on both the built-in and the OpenCASCADE kernel. Note that many features of the geometry
module can be used interactively in the GUI (see Chapter 3 [Gmsh graphical user interface],
page 79), which is also a good way to learn about both Gmsh’s scripting language and the API,
as actions in the geometry module automatically append the related command in the input
script file, and can optionally also generate input for the languages supported by the API (see
the General.Scriptinglanguages option; this is still work-in-progress as of Gmsh 4.12.)

In addition to CAD-type geometrical entities, whose geometry is provided by a CAD kernel,
Gmsh also supports discrete model entities, which are defined by a mesh (e.g. STL). Gmsh does
not perform geometrical operations on such discrete entities, but they can be equipped with a
geometry through a so-called “reparametrization” procedure!. The parametrization is then used
for meshing, in exactly the same way as for CAD entities. See Section 2.13 [t13], page 43 for an
example.

1.2 Mesh module

A finite element mesh of a model is a tessellation of its geometry by simple geometrical elements
of various shapes (in Gmsh: lines, triangles, quadrangles, tetrahedra, prisms, hexahedra and
pyramids), arranged in such a way that if two of them intersect, they do so along a face, an
edge or a node, and never otherwise. This defines a so-called conformal mesh. The mesh mod-
ule implements several algorithms to generate such meshes automatically. By default, meshes
produced by Gmsh are considered as unstructured, even if they were generated in a structured
way (e.g., by extrusion). This implies that the mesh elements are completely defined simply by
an ordered list of their nodes, and that no predefined ordering relation is assumed between any
two elements.

In order to guarantee the conformity of the mesh, mesh generation is performed in a bottom-up
flow: curves are discretized first; the mesh of the curves is then used to mesh the surfaces; then
the mesh of the surfaces is used to mesh the volumes. In this process, the mesh of an entity is
only constrained by the mesh of its boundary, unless entities of lower dimensions are explicitly
embedded in entities of higher dimension. For example, in three dimensions, the triangles
discretizing a surface will be forced to be faces of tetrahedra in the final 3D mesh only if the
surface is part of the boundary of a volume, or if that surface has been explicitly embedded in the
volume. This automatically ensures the conformity of the mesh when, for example, two volumes
share a common surface. Mesh elements are oriented according to the geometrical orientation of
the underlying entity. Every meshing step is constrained by a mesh size field, which prescribes
the desired size of the elements in the mesh. This size field can be uniform, specified by values
associated with points in the geometry, or defined by general mesh size fields (for example

P. A. Beaufort, C. Geuzaine, J.-F. Remacle Automatic surface mesh generation for discrete modelsA complete
and automatic pipeline based on reparametrization. Journal of Computational Physics, 417, 109575, 2020.

3

7

8

Chapter 1: Overview of Gmsh 9

related to the distance to some boundary, to a arbitrary scalar field defined on another mesh,
etc.): see Chapter 8 [Gmsh mesh size fields|, page 307. For each meshing step, all structured
mesh directives are executed first, and serve as additional constraints for the unstructured parts.
(The generation and handling of conformal meshes has important consequences on how meshes
are stored internally in Gmsh, and how they are accessed through the API: see Chapter 6 [Gmsh
application programming interface|, page 125.)

Gmsh’s mesh module regroups several 1D, 2D and 3D meshing algorithms:

e The 2D unstructured algorithms generate triangles and/or quadrangles (when recombina-
tion commands or options are used). The 3D unstructured algorithms generate tetrahedra,
or tetrahedra and pyramids (when the boundary mesh contains quadrangles).

e The 2D structured algorithms (transfinite and extrusion) generate triangles by default, but
quadrangles can be obtained by using the recombination commands or options. The 3D
structured algorithms generate tetrahedra, hexahedra, prisms and pyramids, depending on
the type of the surface meshes they are based on.

All meshes can be subdivided to generate fully quadrangular or fully hexahedral meshes with
the Mesh.SubdivisionAlgorithm option (see Section 7.4 [Mesh options|, page 262).

1.2.1 Choosing the right unstructured algorithm

Gmsh provides a choice between several 2D and 3D unstructured algorithms. Each algorithm
has its own advantages and disadvantages.

For all 2D unstructured algorithms a Delaunay mesh that contains all the points of the 1D mesh
is initially constructed using a divide-and-conquer algorithm?. Missing edges are recovered using
edge swaps®. After this initial step several algorithms can be applied to generate the final mesh:

e The “MeshAdapt” algorithm? is based on local mesh modifications. This technique makes
use of edge swaps, splits, and collapses: long edges are split, short edges are collapsed, and
edges are swapped if a better geometrical configuration is obtained.

e The “Delaunay” algorithm is inspired by the work of the GAMMA team at INRIA®. New
points are inserted sequentially at the circumcenter of the element that has the largest
adimensional circumradius. The mesh is then reconnected using an anisotropic Delaunay
criterion.

e The “Frontal-Delaunay” algorithm is inspired by the work of S. Rebay®.

e Other experimental algorithms with specific features are also available. In particular,
“Frontal-Delaunay for Quads”” is a variant of the “Frontal-Delaunay” algorithm aiming
at generating right-angle triangles suitable for recombination; and “BAMG”® allows to
generate anisotropic triangulations.

R. A. Dwyer, A simple divide-and-conquer algorithm for computing Delaunay triangulations in O(n log n) expected
time, In Proceedings of the second annual symposium on computational geometry, Yorktown Heights, 2-4 June
1986.

N. P. Weatherill, The integrity of geometrical boundaries in the two-dimensional Delaunay triangulation, Commun.
Appl. Numer. Methods 6(2), pp. 101-109, 1990.

C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and
post-processing facilities, International Journal for Numerical Methods in Engineering 79(11), pp. 1309-1331,
2009.

P.-L. George and P. Frey, Mesh generation, Hermes, Lyon, 2000.

S. Rebay, Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer- Watson algo-
rithm, J. Comput. Phys. 106, pp. 25-138, 1993.

J.-F. Remacle, F. Henrotte, T. Carrier-Baudouin, E. Bchet, E. Marchandise, C. Geuzaine and T. Mouton, A
frontal Delaunay quad mesh generator using the Linf norm, International Journal for Numerical Methods in
Engineering, 94(5), pp. 494-512, 2013.

F. Hecht, BAMG: bidimensional anisotropic mesh generator, User Guide, INRIA, Rocquencourt, 1998.

10

11

10 Gmsh 4.13.0 (development version)

For very complex curved surfaces the “MeshAdapt” algorithm is the most robust. When high
element quality is important, the “Frontal-Delaunay” algorithm should be tried. For very large
meshes of plane surfaces the “Delaunay” algorithm is the fastest; it usually also handles com-
plex mesh size fields better than the “Frontal-Delaunay”. When the “Delaunay” or “Frontal-
Delaunay” algorithms fail, “MeshAdapt” is automatically triggered. The “Automatic” algorithm
uses “Delaunay” for plane surfaces and “MeshAdapt” for all other surfaces.

Several 3D unstructured algorithms are also available:

e The “Delaunay” algorithm is split into three separate steps. First, an initial mesh of the
union of all the volumes in the model is performed, without inserting points in the volume.
The surface mesh is then recovered using H. Si’s boundary recovery algorithm Tetgen/BR.
Then a three-dimensional version of the 2D Delaunay algorithm described above is applied
to insert points in the volume to respect the mesh size constraints.

e The “Frontal” algorithm uses J. Schoeberl’s Netgen algorithm®.

e The “HXT” algorithm!® is a new efficient and parallel reimplementaton of the Delaunay
algorithm.

e Other experimental algorithms with specific features are also available. In particular,
“MMG3D”!! allows to generate anisotropic tetrahedralizations.

The “Delaunay” algorithm is currently the most robust and is the only one that supports the
automatic generation of hybrid meshes with pyramids. Embedded model entities and general
mesh size fields (see Section 1.2.2 [Specifying mesh element sizes], page 10) are currently only
supported by the “Delaunay” and “HXT” algorithms.

When Gmsh is configured with OpenMP support (see Appendix A [Compiling the source code],
page 377), most of the meshing steps can be performed in parallel:

e 1D and 2D meshing is parallelized using a coarse-grained approach, i.e. curves (resp. sur-
faces) are each meshed sequentially, but several curves (resp. surfaces) can be meshed at
the same time.

e 3D meshing using HXT is parallelized using a fine-grained approach, i.e. the actual meshing
procedure for a single volume is done is parallel.

The number of threads can be controlled with the -nt flag on the command line (see
Chapter 4 [Gmsh command-line interface|, page 85), or with the General.NumThreads,
Mesh.MaxNumThreadsiD, Mesh.MaxNumThreads2D and Mesh.MaxNumThreads3D options (see
Section 7.1 [General options|, page 225 and Section 7.4 [Mesh options|, page 262).

1.2.2 Specifying mesh element sizes
There are several ways to specify the size of the mesh elements for a given geometry:

1. First, if the options Mesh.MeshSizeFromPoints and Mesh.MeshSizeExtendFromBoundary
are set (they are by default; see Section 7.4 [Mesh options|, page 262), you can simply
specify desired mesh element sizes at the geometrical points of the model. The size of the
mesh elements will then be computed by interpolating these values inside the domain during
mesh generation. This might sometimes lead to over-refinement in some areas, so that you
may have to add “dummy” geometrical entities in the model in order to get the desired
element sizes or use more advanced methods explained below.

J. Schoeberl, Netgen, an advancing front 2d/3d-mesh generator based on abstract rules, Comput. Visual. Sci., 1,
pp. 41-52, 1997.

C. Marot, J. Pellerin and J.F. Remacle, One machine, one minute, three billion tetrahedra, International Journal
for Numerical Methods in Engineering 117.9, pp 967-990, 2019.

C. Dobrzynski, MMG3D: user guide, INRIA, 2012.

Chapter 1: Overview of Gmsh 11

2. Second, if Mesh.MeshSizeFromCurvature is set to a positive value (it is set to 0 by default),
the mesh will be adapted with respect to the curvature of the model entities, the value giving
the target number of elements per 2 Pi radians.

3. Next, you can specify a general target mesh size, expressed as a combination of mesh size

fields (see Chapter 8 [Gmsh mesh size fields], page 307):
e The Box field specifies the size of the elements inside and outside of a parallelepipedic
region.
e The Distance field specifies the size of the mesh according to the distance to some
model entities.

e The MathEval field specifies the size of the mesh using an explicit mathematical func-
tion.

e The PostView field specifies an explicit background mesh in the form of a scalar post-
processing view (see Section 1.4 [Post-processing module], page 12, and Chapter 10
[Gmsh file formats|, page 353) in which the nodal values are the target element sizes.
This method is very general but it requires a first (usually rough) mesh and a way to
compute the target sizes on this mesh (usually through an error estimation procedure,
e.g. in an iterative process of mesh adaptation).

e The Min field specifies the size as the minimum of the sizes computed using other fields.

4. Mesh sizes are also constrained by structured meshing constraints (e.g. transfinite or ex-
truded meshes) as well as by any discrete model entity that is not equipped with a geometry,
and which will thus preserve it mesh during mesh generation.

5. Boundary mesh sizes are interpolated inside surfaces and/or volumes depending on the
value of Mesh.MeshSizeExtendFromBoundary.

To determine the actual mesh size at any given point in the model, Gmsh evaluates all the above
mesh size constraints and selects the smallest value. Using the Gmsh API, this value can then
be further modified using a C++, C, Python, Julia or Fortran mesh size callback function pro-
vided via gmsh/model/mesh/setSizeCallback (see Section 6.4 [Namespace gmsh/model/mesh],
page 142).

The resulting value is further constrained in the interval | Mesh.MeshSizeMin,
Mesh.MeshSizeMax | (which can also be provided on the command line with -clmin and
-clmax). The resulting value is then finally multiplied by Mesh.MeshSizeFactor (-clscale on
the command line).

Note that when the element size is fully specified by a mesh size field, it is thus often desirable
to set

Mesh.MeshSizeFromPoints = O0;
Mesh.MeshSizeFromCurvature = 0;
Mesh.MeshSizeExtendFromBoundary = O;

to prevent over-refinement inside an entity due to small mesh sizes on its boundary.

1.2.3 Elementary entities vs. physical groups

It is usually convenient to combine elementary geometrical entities into more meaningful groups,
e.g. to define some mathematical (“domain”, “boundary with Neumann condition”), functional
(“left wing”, “fuselage”) or material (“steel”, “carbon”) properties. Such grouping is done in
Gmsh’s geometry module (see Section 1.1 [Geometry module], page 7) through the definition of
“physical groups”.

By default in the native Gmsh MSH mesh file format (see Chapter 10 [Gmsh file formats],
page 353), as well as in most other mesh formats, if physical groups are defined, the output

12 Gmsh 4.13.0 (development version)

mesh only contains those elements that belong to at least one physical group. (Different mesh
file formats treat physical groups in slightly different ways, depending on their capability to
define groups.) To save all mesh elements whether or not physical groups are defined, use the
Mesh.SaveAll option (see Section 7.4 [Mesh options|, page 262) or specify -save_all on the
command line. In some formats (e.g. MSH2), setting Mesh.SaveAll will however discard all
physical group definitions.

1.3 Solver module

Gmsh implements a ONELAB (http://onelab.info) server to exchange data with external
solvers or other codes (called “clients”). The ONELAB interface allows to call such clients and
have them share parameters and modeling information.

The implementation is based on a client-server model, with a server-side database and local
or remote clients communicating in-memory or through TCP/IP sockets. Contrary to most
solver interfaces, the ONELAB server has no a priori knowledge about any specifics (input file
format, syntax, ...) of the clients. This is made possible by having any simulation preceded
by an analysis phase, during which the clients are asked to upload their parameter set to the
server. The issues of completeness and consistency of the parameter sets are completely dealt
with on the client side: the role of ONELAB is limited to data centralization, modification and
re-dispatching.

Using the Gmsh API, you can directly embed Gmsh in your C++, C, Python, Julia or Fortran
solver, use ONELAB for interactive parameter definition and modification, and to create post-
processing data on the fly. See prepro.py, custom_gui.py and custom_gui.cpp for examples.

If you prefer to keep codes separate, you can also communicate with Gmsh through a socket by
providing the solver name (Solver.NameO, Solver.Namel, etc.) and the path to the executable
(Solver.Executable0, Solver.Executablel, etc.). Parameters can then be exchanged using
the ONELAB protocol: see the utils/solvers directory for examples. A full-featured solver
interfaced in this manner is GetDP (https://getdp.info), a general finite element solver using
mixed finite elements.

1.4 Post-processing module

The post-processing module can handle multiple scalar, vector or tensor datasets along with
the geometry and the mesh. The datasets can be given in several formats: in human-readable
“parsed” format (these are just part of a standard input script, but are usually put in separate
files with a ‘.pos’ extension — see Section 5.4 [Post-processing scripting commands], page 119),
in native MSH files (ASCII or binary files with ‘.msh’ extensions: see Chapter 10 [Gmsh file
formats], page 353), or in standard third-party formats such as CGNS or MED. Datasets can also
be directly imported using the Gmsh API (see Section 6.10 [Namespace gmsh /view|, page 206).

Once loaded into Gmsh, scalar fields can be displayed as iso-curves, iso-surfaces or color maps,
whereas vector fields can be represented either by three-dimensional arrows or by displacement
maps. Tensor fields can be displayed as Von-Mises effective stresses, min/max eigenvalues,
eigenvectors, ellipses or ellipsoids. (To display other combinations of components, you can use
the View.ForceNumComponents option — see Section 7.6 [Post-processing options|, page 288.)

Each dataset, along with the visualization options, is called a “post-processing view”, or simply
a “view”. Each view is given a name, and can be manipulated either individually (each view has
its own button in the GUI and can be referred to by its index or its unique tag in a script or in the
APT) or globally (see the PostProcessing.Link option in Section 7.6 [Post-processing options],
page 288). Possible operations on post-processing views include section computation, offset,
elevation, boundary and component extraction, color map and range modification, animation,
vector graphic output, etc. These operations are either carried out nondestructively through
the modification of post-processing options, or can lead to the actual modification of the view

http://onelab.info
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/prepro.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples/api/custom_gui.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/utils/solvers
https://getdp.info

Chapter 1: Overview of Gmsh 13

data or the creation of new views when done using post-processing plugins (see Chapter 9
[Gmsh plugins], page 325). Both can be fully automated in scripts or through the API (see e.g.,
Section 2.8 [t8], page 33, and Section 2.9 [t9], page 36).

By default, Gmsh treats all post-processing views as three-dimensional plots, i.e., draws the
scalar, vector and tensor primitives (points, curves, triangles, tetrahedra, etc.) in 3D space. But
Gmsh can also represent each post-processing view containing scalar points as two-dimensional
(“X-Y") plots, either space- or time-oriented:

in a ‘2D space’ plot, the scalar points are taken in the same order as they are defined in the
post-processing view: the abscissa of the 2D graph is the curvilinear abscissa of the curve
defined by the point series, and only one curve is drawn using the values associated with
the points. If several time steps are available, each time step generates a new curve;

in a ‘2D time’ plot, one curve is drawn for each scalar point in the view and the abscissa is
the time step.

1.5 What Gmsh is pretty good at ...

Here is a tentative list of what Gmsh does best:

quickly describe simple and/or “repetitive” geometries with the built-in scripting language,
thanks to user-defined macros, loops, conditionals and includes (see Section 5.1.7 [User-
defined macros|, page 98, Section 5.1.8 [Loops and conditionals], page 98, and Section 5.1.9
[Other general commands], page 99). For more advanced geometries, using the Gmsh API
(see Chapter 6 [Gmsh application programming interface|, page 125) in the language of
your choice (C++, C, Python, Julia or Fortran) brings even greater flexibility, the only
downside being that you need to either compile your code (for C++, C and Fortran) or
to configure and install an interpreter (Python or Julia) in addition to Gmsh. A binary
Software Development Kit (SDK) is distributed on the Gmsh web site to make the process
easier (see Section 1.7 [Installing and running Gmsh on your computer]|, page 14);

parametrize these geometries. Gmsh’s scripting language or the Gmsh API enable all com-
mands and command arguments to depend on previous calculations. Using the OpenCAS-
CADE geometry kernel, Gmsh gives access to all the usual constructive solid geometry
operations (see e.g. Section 2.16 [t16], page 49);

import geometries from other CAD software in standard exchange formats. Gmsh uses
OpenCASCADE to import such files, including label and color information from STEP and
IGES files (see e.g. Section 2.20 [t20], page 55);

generate unstructured 1D, 2D and 3D simplicial (i.e., using line segments, triangles and
tetrahedra) finite element meshes (see Section 1.2 [Mesh module], page 8), with fine control
over the element size (see Section 1.2.2 [Specifying mesh element sizes|, page 10);

create simple extruded geometries and meshes, and allow to automatically couple such
structured meshes with unstructured ones (using a layer of pyramids in 3D);

generate high-order (curved) meshes that conform to the CAD model geometry. High-order
mesh optimization tools allow to guarantee the validity of such curved meshes;

interact with external solvers by defining ONELAB parameters, shared between Gmsh and
the solvers and easily modifiable in the GUI (see Section 1.3 [Solver module], page 12);

visualize and export computational results in a great variety of ways. Gmsh can dis-
play scalar, vector and tensor datasets, perform various operations on the resulting post-
processing views (see Section 1.4 [Post-processing module], page 12), can export plots in
many different formats, and can generate complex animations (see e.g. Section 2.8 [t8],
page 33);

14 Gmsh 4.13.0 (development version)

e run on low end machines and/or machines with no graphical interface. Gmsh can be
compiled with or without the GUI (see Appendix A [Compiling the source code|, page 377),
and all versions can be used either interactively or directly from the command line;

e configure your preferred options. Gmsh has a large number of configuration options that
can be set interactively using the GUI, scattered inside script files, changed through the
API, set in per-user configuration files and specified on the command line (see Chapter 7
[Gmsh options], page 225);

e and do all the above on various platforms (Windows, macOS and Linux), for free (see
[Copying conditions], page 3)!

1.6 ... and what Gmsh is not so good at

Here are some known weaknesses of Gmsh:

e Gmsh is not a multi-bloc mesh generator: all meshes produced by Gmsh are conforming in
the sense of finite element meshes;

e Gmsh’s graphical user interface is only exposing a limited number of the available features,
and many aspects of the interface could be enhanced (especially manipulators).

e Your complaints about Gmsh here :-)

If you have the skills and some free time, feel free to join the project: we gladly accept any code
contributions (see Appendix B [Information for developers], page 381) to remedy the aforemen-
tioned (and all other) shortcomings!

1.7 Installing and running Gmsh on your computer

Gmsh can be used either as a standalone application, or as a library.

As a standalone application, Gmsh can be controlled with the GUI (see Chapter 3 [Gmsh
graphical user interface], page 79), through the command line (see Chapter 4 [Gmsh command-
line interface|, page 85) and through ‘.geo’ script files (see Chapter 5 [Gmsh scripting lan-
guage], page 91). In addition, the ONELAB interface (see Section 1.3 [Solver module],
page 12) allows to interact with the Gmsh application through Unix or TCP/IP sockets. Bi-
nary versions of the Gmsh app for Windows, Linux and macOS can be downloaded from
https://gmsh.info/#Download. Several Linux distributions also ship the Gmsh app. See
Appendix A [Compiling the source code], page 377 for instructions on how to compile the Gmsh
app from source.

As a library, Gmsh can still be used in the same way as the standalone Gmsh app, but in addition
it can also be embedded in external codes using the Gmsh API (see Chapter 6 [Gmsh application
programming interface], page 125). The API is available in C++, C, Python, Julia and Fortran.
A binary Software Development Kit (SDK) for Windows, Linux and macOS, that contains the
dynamic Gmsh library and the associated header and module files, can be downloaded from
https://gmsh.info/#Download. Python users can use

pip install --upgrade gmsh

which will download the binary SDK and install the files in the appropriate system directories.
Several Linux distributions also ship the Gmsh SDK. See Appendix A [Compiling the source
code], page 377 for instructions on how to compile the dynamic Gmsh library from source.

https://gmsh.info/#Download
https://gmsh.info/#Download

Chapter 2: Gmsh tutorial 15

2 Gmsh tutorial

The following tutorials introduce new features gradually, starting with the first tutorial t1 (see
Section 2.1 [t1], page 15). The corresponding files are available in the tutorials directory of the
Gmsh distribution.

The ‘. geo’ files (e.g. ‘t1.geo’) are written in Gmsh’s built-in scripting language (see Chapter 5
[Gmsh scripting language], page 91). You can open them directly with the Gmsh app: in the
GUI (see Chapter 3 [Gmsh graphical user interface], page 79), use the ‘File->Open’ menu and
select e.g. ‘t1.geo’. Or on the command line, run

> gmsh tl.geo
which will launch the GUI, or run

> gmsh tl.geo -2
to perform 2D meshing in batch mode (see Chapter 4 [Gmsh command-line interface|, page 85).
The ‘c++’, ‘c’, ‘python’, ‘julia’ and ‘fortran’ subdirectories of the tutorials directory contain
the C++, C, Python, Julia and Fortran versions of the tutorials, written using the Gmsh API
(see Chapter 6 [Gmsh application programming interface], page 125). You will need the Gmsh
dynamic library and the associated header files (for C++ and C) or modules (for Python, Julia
and Fortran) to run them (see Section 1.7 [Installing and running Gmsh on your computer],
page 14). Each subdirectory contains additional information on how to run the tutorials for
each supported language.
All the tutorials starting with the letter ‘t’ are available both using the scripting language

and the API. Extended tutorials, starting with the letter ‘x’, introduce features that are only
available through the API.

Note that besides these tutorials, the Gmsh distribution contains many other examples written
using both the built-in scripting language and the API: see examples and benchmarks.

2.1 t1: Geometry basics, elementary entities, physical groups

See tl.geo. Also available in C++ (tl.cpp), C (tl.c), Python (t1.py), Julia (t1.jl) and Fortran
(t1.£90).

VAYAYi)
Kk
¥iy

4
S

Kl

oy

TN

AVavy
AAAA
Yaravavy;
Avivavay,
RO
A

5
0
2%

A

YAYY
CRELS
B

v,

)

YAy
YAYay
A
Yavavy
Yy
s
3

B
AVay
YaYs
AVAY
VAV
0
v,
AVay
e

af
LRk
RO
it
Vavuvay.
TATAVATA r A
VAYAVav o 4%
A#; 1
%

<<l
KK
VA
7
95

av
A7
o

A
i

%
e
SO AVAVAY v,y
Yavy
VAVAVAV,
e
K]

1
=
Be
X
Avaws!

VAVL.Y

vavii
sy
&
¥

o
52
VLT
i
AV

0
va
4¥)

AV
e
o
1#
éf
s

)
vt

o
k5
b

v,

//

// Gmsh GEO tutorial 1

//

// Geometry basics, elementary entities, physical groups

//

[/ —mmmm T

// The simplest construction in Gmsh’s scripting language is the

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials
https://gitlab.onelab.info/gmsh/gmsh/blob/master/examples
https://gitlab.onelab.info/gmsh/gmsh/blob/master/benchmarks
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t1.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t1.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c/t1.c
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t1.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t1.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t1.f90

16 Gmsh 4.13.0 (development version)

// ‘affectation’. The following command defines a new variable ‘lc’:
lc = 1le-2;

// This variable can then be used in the definition of Gmsh’s simplest

// ‘elementary entity’, a ‘Point’. A Point is uniquely identified by a tag (a
// strictly positive integer; here ‘1’) and defined by a list of four numbers:
// three coordinates (X, Y and Z) and the target mesh size (1lc) close to the
// point:

Point (1) = {0, 0, 0, 1lc};

// The distribution of the mesh element sizes will then be obtained by

// interpolation of these mesh sizes throughout the geometry. Another method to
// specify mesh sizes is to use general mesh size Fields (see ‘t10.geo’). A

// particular case is the use of a background mesh (see ‘t7.geo’).

// If no target mesh size of provided, a default uniform coarse size will be
// used for the model, based on the overall model size.

// We can then define some additional points. All points should have different
// tags:

Point(2) = {.1, 0, 0, 1c};
Point(3) = {.1, .3, 0, 1lc};
Point(4) = {0, .3, 0, 1lc};

// Curves are Gmsh’s second type of elementary entities, and, amongst curves,
// straight lines are the simplest. A straight line is identified by a tag and
// is defined by a list of two point tags. In the commands below, for example,
// the line 1 starts at point 1 and ends at point 2.

//

// Note that curve tags are separate from point tags - hence we can reuse tag
// ‘1’ for our first curve. And as a general rule, elementary entity tags in
// Gmsh have to be unique per geometrical dimension.

Line(1) = {1, 2};
Line(2) = {3, 2};
Line(3) = {3, 4};
Line(4) = {4, 1};

// The third elementary entity is the surface. In order to define a simple

// rectangular surface from the four curves defined above, a curve loop has

// first to be defined. A curve loop is also identified by a tag (unique amongst
// curve loops) and defined by an ordered list of connected curves, a sign being
// associated with each curve (depending on the orientation of the curve to form
// a loop):

Curve Loop(1) = {4, 1, -2, 3};

// We can then define the surface as a list of curve loops (only one here,
// representing the external contour, since there are no holes--see ‘t4.geo’ for

Chapter 2: Gmsh tutorial 17

//

an example of a surface with a hole):

Plane Surface(1l) = {1};

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

At this level, Gmsh knows everything to display the rectangular surface 1 and
to mesh it. An optional step is needed if we want to group elementary

geometrical entities into more meaningful groups, e.g. to define some
mathematical ("domain", "boundary"), functional ("left wing", "fuselage") or
material ("steel", "carbon") properties.

Such groups are called "Physical Groups" in Gmsh. By default, if physical

groups are defined, Gmsh will export in output files only mesh elements that
belong to at least one physical group. (To force Gmsh to save all elements,
whether they belong to physical groups or not, set ‘Mesh.SaveAll=1;’, or
specify ‘-save_all’ on the command line.) Physical groups are also identified
by tags, i.e. strictly positive integers, that should be unique per dimension
(0D, 1D, 2D or 3D). Physical groups can also be given names.

Here we define a physical curve that groups the left, bottom and right curves
in a single group (with prescribed tag 5); and a physical surface with name
"My surface" (with an automatic tag) containing the geometrical surface 1:

Physical Curve(5) = {1, 2, 4};
Physical Surface("My surface") = {1};

//
//
//
//
//

//
//
//
//
//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//

Now that the geometry is complete, you can

- either open this file with Gmsh and select ‘2D’ in the ‘Mesh’ module to
create a mesh; then select ‘Save’ to save it to disk in the default format
(or use ‘File->Export’ to export in other formats);

- or run ‘gmsh tl.geo -2 to mesh in batch mode on the command line.

You could also uncomment the following lines in this script:

Mesh 2;
Save "tl1.msh";

which would lead Gmsh to mesh and save the mesh every time the file is
parsed. (To simply parse the file from the command line, you can use ‘gmsh
tl.geo -7)

By default, Gmsh saves meshes in the latest version of the Gmsh mesh file
format (the ‘MSH’ format). You can save meshes in other mesh formats by
specifying a filename with a different extension in the GUI, on the command
line or in scripts. For example

Save "tl1l.unv";

will save the mesh in the UNV format. You can also save the mesh in older
versions of the MSH format:

- In the GUI: open ‘File->Export’, enter your ‘filename.msh’ and then pick
the version in the dropdown menu.

18 Gmsh 4.13.0 (development version)
// - On the command line: use the ‘-format’ option (e.g. ‘gmsh file.geo -format
// msh2 -2°).

// - In a ‘.geo’ script: add ‘Mesh.MshFileVersion = x.y;’ for any version

// number ‘x.y’.

// - As an alternative method, you can also not specify the format explicitly,
// and just choose a filename with the ‘.msh2’ or ‘.msh4’ extension.

// Note that starting with Gmsh 3.0, models can be built using other geometry

// kernels than the default built-in kernel. By specifying

//

// SetFactory("OpenCASCADE") ;

//

// any subsequent command in the ‘.geo’ file would be handled by the OpenCASCADE
// geometry kernel instead of the built-in kernel. Different geometry kernels

// have different features. With OpenCASCADE, instead of defining the surface by
// successively defining 4 points, 4 curves and 1 curve loop, one can define the
// rectangular surface directly with

//

// Rectangle(2) = {.2, 0, 0, .1, .3};

//

// The underlying curves and points could be accessed with the ‘Boundary’ or

// ‘CombinedBoundary’ operators.

//

// See e.g. ‘tl6.geo’, ‘tl18.geo’, ‘tl19.geo’ or ‘t20.geo’ for complete examples
// based on OpenCASCADE, and ‘examples/boolean’ for more.

2.2 t2: Transformations, extruded geometries, volumes

See t2.geo. Also available in C++ (t2.cpp), C (t2.c), Python (t2.py), Julia (t2.jl) and Fortran
(t2.£90).

A
//

// Gmsh GEO tutorial 2

//

// Transformations, extruded geometries, volumes

//

/] mmmm e

// We first include the previous tutorial file, in order to use it as a basis

//

for this one. Including a file is equivalent to copy-pasting its contents:

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t2.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t2.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c/t2.c
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t2.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t2.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t2.f90

Chapter 2: Gmsh tutorial 19

Include "tl.geo";
// We can then add new points and curves in the same way as we did in ‘tl.geo’:

Point(5) = {0, .4, 0, lc};
Line(5) = {4, 5};

// Gmsh also provides tools to transform (translate, rotate, etc.)
// elementary entities or copies of elementary entities. For example, point
// 5 can be moved by 0.02 to the left with:

Translate {-0.02, 0, 0} { Point{5}; }

// And it can be further rotated by -Pi/4 around (0, 0.3, 0) (with the rotation
// along the z axis) with:

Rotate {{0,0,1}, {0,0.3,0}, -Pi/4} { Point{5}; }

// Note that there are no units in Gmsh: coordinates are just numbers - it’s up
// to the user to associate a meaning to them.

// Point 3 can be duplicated and translated by 0.05 along the y axis:
Translate {0, 0.05, 0} { Duplicata{ Point{3}; } }

// This command created a new point with an automatically assigned tag. This tag
// can be obtained using the graphical user interface by hovering the mouse over
// the point: in this case, the new point has tag ‘6°’.

Line(7) = {3, 6};

Line(8) = {6, 5};

Curve Loop(10) = {5,-8,-7,3%};
Plane Surface(11) = {10};

// To automate the workflow, instead of using the graphical user interface to

// obtain the tags of newly created entities, one can use the return value of

// the transformation commands directly. For example, the ‘Translate’ command

// returns a list containing the tags of the translated entities. Let’s

// translate copies of the two surfaces 1 and 11 to the right with the following
// command:

my_new_surfs[] = Translate {0.12, 0, 0} { Duplicata{ Surface{l, 11}; } };

// my_new_surfs[] (note the square brackets, and the ‘;’ at the end of the
// command) denotes a list, which contains the tags of the two new surfaces
// (check ‘Tools->Message console’ to see the message):

Printf ("New surfaces ’%g’ and ’%g’", my_new_surfs[0], my_new_surfs[1]);

// In Gmsh lists use square brackets for their definition (mylist[] = {1, 2,

// 3};) as well as to access their elements (myotherlist[] = {mylist[O],
// mylist[2]}; mythirdlist[] = myotherlist[];), with list indexing starting at

20 Gmsh 4.13.0 (development version)

// 0. To get the size of a list, use the hash (pound): len = #mylist[].

//

// Note that parentheses can also be used instead of square brackets, so that we
// could also write ‘myfourthlist() = {mylist(0), mylist(1)};’.

// Volumes are the fourth type of elementary entities in Gmsh. In the same way
// one defines curve loops to build surfaces, one has to define surface loops
// (i.e. ‘shells’) to build volumes. The following volume does not have holes
// and thus consists of a single surface loop:

Point (100)
Point (102)

{0., 0.3, 0.12, 1c}; Point(101) = {0.1, 0.3, 0.12, 1c};
{0.1, 0.35, 0.12, 1lc};

xyz[] = Point{5}; // Get coordinates of point 5
Point(103) = {xyz[0], xyz[1], 0.12, 1c};

Line(110) = {4, 100}; Line(111) = {3, 101};

Line(112) = {6, 102}; Line(113) = {5, 103};

Line(114) = {103, 100}; Line(115) = {100, 101};

Line(116) = {101, 102}; Line(117) = {102, 103};

Curve Loop(118) = {115, -111, 3, 110}; Plane Surface(119) = {118};
Curve Loop(120) = {111, 116, -112, -7}; Plane Surface(121) = {120};
Curve Loop(122) = {112, 117, -113, -8}; Plane Surface(123) = {122};
Curve Loop(124) = {114, -110, 5, 113}; Plane Surface(125) = {124};
Curve Loop(126) = {115, 116, 117, 114}; Plane Surface(127) = {126};

Surface Loop(128) = {127, 119, 121, 123, 125, 11};
Volume (129) = {128%};

// When a volume can be extruded from a surface, it is usually easier to use the
// ‘Extrude’ command directly instead of creating all the points, curves and

// surfaces by hand. For example, the following command extrudes the surface 11
// along the z axis and automatically creates a new volume (as well as all the
// needed points, curves and surfaces):

Extrude {0, 0, 0.12} { Surface{my_new_surfs[1]}; }

// The following command permits to manually assign a mesh size to some of the
// new points:

MeshSize {103, 105, 109, 102, 28, 24, 6, 5} = 1lc * 3;

// We finally group volumes 129 and 130 in a single physical group with tag ‘1’
// and name "The volume":

Physical Volume("The volume", 1) = {129,130};

// Note that, if the transformation tools are handy to create complex
// geometries, it is also sometimes useful to generate the ‘flat’ geometry, with
// an explicit representation of all the elementary entities.

//

Chapter 2: Gmsh tutorial 21

// With the built-in geometry kernel, this can be achieved with ‘File->Export’ by
// selecting the ‘Gmsh Unrolled GEO’ format, or by adding

//

// Save "file.geo_unrolled";

//

// in the script. It can also be achieved with ‘gmsh t2.geo -0’ on the command
// line.

//

// With the OpenCASCADE geometry kernel, unrolling the geometry can be achieved
// with ‘File->Export’ by selecting the ‘OpenCASCADE BRep’ format, or by adding
//

// Save "file.brep";

//

// in the script. (OpenCASCADE geometries can also be exported to STEP.)

// It is important to note that Gmsh never translates geometry data into a
// common representation: all the operations on a geometrical entity are

// performed natively with the associated geometry kernel. Consequently, one
// cannot export a geometry constructed with the built-in kernel as an

// OpenCASCADE BRep file; or export an OpenCASCADE model as an Unrolled GEO
// file.

2.3 t3: Extruded meshes, ONELAB parameters, options
See t3.geo. Also available in C++ (t3.cpp), Python (t3.py), Julia (t3.j1) and Fortran (t3.f90).

//

// Gmsh GEO tutorial 3

//

// Extruded meshes, ONELAB parameters, options

//

=

// Again, we start by including the first tutorial:

Include "t1l.geo";

// As in ‘t2.geo’, we plan to perform an extrusion along the z axis. But here,
// instead of only extruding the geometry, we also want to extrude the 2D

// mesh. This is done with the same ‘Extrude’ command, but by specifying element
// ’Layers’ (2 layers in this case, the first one with 8 subdivisions and the

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t3.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t3.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t3.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t3.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t3.f90

22 Gmsh 4.13.0 (development version)

// second one with 2 subdivisions, both with a height of h/2):
h=0.1;

Extrude {0,0,h} {
Surface{1}; Layers{ {8,2}, {0.5,1} };
}

// The extrusion can also be performed with a rotation instead of a translation,
// and the resulting mesh can be recombined into prisms (we use only one layer
// here, with 7 subdivisions). All rotations are specified by an axis direction
// ({0,1,0}), an axis point ({-0.1,0,0.1}) and a rotation angle (-Pi/2):

Extrude { {0,1,0} , {-0.1,0,0.1} , -Pi/2 } {
Surface{28}; Layers{7}; Recombine;
}

// Using the built-in geometry kernel, only rotations with angles < Pi are
// supported. To do a full turn, you will thus need to apply at least 3
// rotations. The OpenCASCADE geometry kernel does not have this limitation.

// Note that a translation ({-2%h,0,0}) and a rotation ({1,0,0}, {0,0.15,0.25},
// Pi/2) can also be combined to form a "twist". Here the angle is specified as
// a ONELAB parameter, using the ‘DefineConstant’ syntax. ONELAB parameters can
// be modified interactively in the GUI, and can be exchanged with other codes

// connected to the same ONELAB database:

DefineConstant [angle = {90, Min O, Max 120, Step 1,
Name "Parameters/Twisting angle"}];

// In more details, ‘DefineConstant’ allows you to assign the value of the

// ONELAB parameter "Parameters/Twisting angle" to the variable ‘angle’. If the
// ONELAB parameter does not exist in the database, ‘DefineConstant’ will create
// it and assign the default value ‘90°’. Moreover, if the variable ‘angle’ was
// defined before the call to ‘DefineConstant’, the ‘DefineConstant’ call would
// simply be skipped. This allows to build generic parametric models, whose

// parameters can be frozen from the outside - the parameters ceasing to be

// "parameters".

//

// An interesting use of this feature is in conjunction with the ‘-setnumber

// name value’ command line switch, which defines a variable ‘name’ with value
// ‘value’. Calling ‘gmsh t3.geo -setnumber angle 30’ would define ‘angle’

// before the ‘DefineConstant’, making ‘t3.geo’ non-parametric

// ("Parameters/Twisting angle" will not be created in the ONELAB database and
// will not be available for modification in the graphical user interface).

[4

out[] = Extrude { {-2#h,0,0}, {1,0,0} , {0,0.15,0.25} , angle * Pi / 180 } {
Surface{50}; Layers{10}; Recombine;
}s

// In this last extrusion command we retrieved the volume number
// programmatically by using the return value (a list) of the ‘Extrude’

Chapter 2: Gmsh tutorial 23

// command. This list contains the "top" of the extruded surface (in ‘out[0]’),
// the newly created volume (in ‘out[1]’) and the tags of the lateral surfaces
// (in ‘out([2]’, ‘out[3]’, ...).

// We can then define a new physical volume (with tag 101) to group all the
// elementary volumes:

Physical Volume(101) = {1, 2, out[1]};

// Let us now change some options... Since all interactive options are
// accessible in Gmsh’s scripting language, we can for example make point tags
// visible or redefine some colors directly in the input file:

Geometry.PointNumbers = 1;
Geometry.Color.Points = Orange;
General.Color.Text = White;
Mesh.Color.Points = {255, 0, 0};

// Note that all colors can be defined literally or numerically, i.e.

// ‘Mesh.Color.Points = Red’ is equivalent to ‘Mesh.Color.Points = {255,0,0}’;
// and also note that, as with user-defined variables, the options can be used
// either as right or left hand sides, so that the following command will set

// the surface color to the same color as the points:

Geometry.Color.Surfaces = Geometry.Color.Points;

// You can use the ‘Help->Current Options and Workspace’ menu to see the current
// values of all options. To save all the options in a file, use

// ‘File->Export->Gmsh Options’. To associate the current options with the

// current file use ‘File->Save Model Options’. To save the current options for
// all future Gmsh sessions use ‘File->Save Options As Default’.

2.4 t4: Built-in functions, holes in surfaces, annotations, entity
colors

See t4.geo. Also available in C++ (t4.cpp), Python (t4.py), Julia (t4.j1) and Fortran (t4.f90).

//
// Gmsh GEO tutorial 4
//

// Built-in functions, holes in surfaces, annotations, entity colors

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t4.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t4.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t4.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t4.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t4.f90

24 Gmsh 4.13.0 (development version)

// As usual, we start by defining some variables:

cm = 1e-02;

el =45 xcm; e2 =6 *xcm / 2; e3 = 5 * cm / 2;

hli1 =5 *%x cm; h2 = 10 * cm; h3 =5 * cm; h4d = 2 * cm; h6 = 4.5 * cm;
Rl =1 % cm; R2=1.5 x cm; r =1 * cm;

Lcl = 0.01;

Lc2 = 0.003;

// We can use all the usual mathematical functions (note the capitalized first

// letters), plus some useful functions like Hypot(a, b) := Sqrt(a”2 + b"2):
ccos = (-h5*R1 + e2 * Hypot(h5, Hypot(e2, R1))) / (h5°2 + e272);
ssin = Sqrt(l - ccos”2);

// Then we define some points and some lines using these variables:

Point(1) = {-el-e2, 0 , 0, Lc1}; Point(2) = {-el-e2, hi , 0, Lcl};
Point(3) = {-e3-r , hi , 0, Lc2}; Point(4) = {-e3-r , hil+r , 0, Lc2};
Point(5) = {-e3 , hi+r , 0, Lc2}; Point(6) = {-e3 , hi+h2, 0, Lcl};
Point(7) = { e3 , hi+h2, 0, Lcl}; Point(8) = { e3 , hi+r , 0, Lc2};
Point(9) = { e3+r , hl+r , 0, Lc2}; Point(10)= { e3+r , hi , 0, Lc23};
Point(11)= { el+e2, hi , 0, Lci1}; Point(12)= { el+e2, O , 0, Lcl};
Point(13)= { e2 , 0 , 0, Lci};

Point(14)= { R1 / ssin, h5+Rl*ccos, 0, Lc2};

Point(15)= { 0 , hb , 0, Lc2};

Point(16)= {-R1 / ssin, hb5+Rl*ccos, 0, Lc2};

Point (17)= {-e2 , 0.0 , 0, Lci};

Point(18)= {-R2 , h1+h3 , 0, Lc2}; Point(19)= {-R2 , hi1+h3+h4, 0, Lc2};
Point(20)= { 0 , hi+h3+h4, 0, Lc2}; Point(21)= { R2 , hi1+h3+h4, 0, Lc2};
Point(22)= { R2 , hi1+h3 , 0, Lc2}; Point(23)= { 0 , hi1+h3 , 0, Lc2%};
Point(24)= { 0, h1+h3+h4+R2, 0, Lc2}; Point(25)= { 0, h1+h3-R2, 0, Lc2};
Line(1) = {1 , 173};

Line(2) = {17, 16};

// Gmsh provides other curve primitives than straight lines: splines, B-splines,
// circle arcs, ellipse arcs, etc. Here we define a new circle arc, starting at
// point 14 and ending at point 16, with the circle’s center being the point 15:
Circle(3) = {14,15,16};

// Note that, in Gmsh, circle arcs should always be smaller than Pi. The
// OpenCASCADE geometry kernel does not have this limitation.

// We can then define additional lines and circles, as well as a new surface:

Chapter 2: Gmsh tutorial 25

Line(4) = {14, 13}; Line(5) = {13, 12}; Line(6) = {12, 11};
Line(7) = {11, 10}; Circle(8) = {8, 9, 10}; Line(9) = {8, 7};
Line(10) = {7, 6}; Line(11) = {6, 5}; Circle(12) = {3, 4, 5};
Line(13) = {3, 2}; Line(14) = {2, 1}; Line(15) = {18, 19};
Circle(16) = {21, 20, 24}; Circle(17) = {24, 20, 19%};

Circle(18) = {18, 23, 25}; Circle(19) = {25, 23, 22};

Line(20) = {21,22};

Curve Loop(21) = {17, -15, 18, 19, -20, 16};
Plane Surface(22) = {21};

// But we still need to define the exterior surface. Since this surface has a
// hole, its definition now requires two curves loops:

Curve Loop(23) = {11, -12, 13, 14, 1, 2, -3, 4, 5, 6, 7, -8, 9, 10};
Plane Surface(24) = {23, 21};

// As a general rule, if a surface has N holes, it is defined by N+1 curve loops:
// the first loop defines the exterior boundary; the other loops define the
// boundaries of the holes.

// Finally, we can add some comments by embedding a post-processing view
// containing some strings:

View "comments" {
// Add a text string in window coordinates, 10 pixels from the left and 10
// pixels from the bottom, using the ‘StrCat’ function to concatenate strings:
T2(10, -10, 0){ StrCat("Created on ", Today, " with Gmsh") };

// Add a text string in model coordinates centered at (X,Y,Z) = (0, 0.11, 0):

T3(0, 0.11, 0, TextAttributes("Align", "Center", "Font", "Helvetica")){
"Hole"

};

// If a string starts with ‘file://’, the rest is interpreted as an image

// file. For 3D annotations, the size in model coordinates can be specified

// after a ‘@ symbol in the form ‘widthxheight’ (if one of ‘width’ or

// ‘height’ is zero, natural scaling is used; if both are zero, original image

// dimensions in pixels are used):

T3(0, 0.09, 0, TextAttributes("Align", "Center")){
"file://t4_image.png@0.01x0"

3

// The 3D orientation of the image can be specified by proving the direction
// of the bottom and left edge of the image in model space:
T3(-0.01, 0.09, 0, 0){ "file://t4_image.png0.01x0,0,0,1,0,1,0" };

// The image can also be drawn in "billboard" mode, i.e. always parallel to

// the camera, by using the ‘#’ symbol:

T3(0, 0.12, 0, TextAttributes("Align", "Center")){
"file://t4_image.png@0.01x0#"

26 Gmsh 4.13.0 (development version)

};

// The size of 2D annotations is given directly in pixels:
T2(350, -7, 0){ "file://t4_image.png@20x0" };
s

// This post-processing view is in the "parsed" format, i.e. it is interpreted
// using the same parser as the ‘.geo’ file. For large post-processing datasets,
// that contain actual field values defined on a mesh, you should use the MSH
// file format instead, which allows to efficiently store continuous or

// discontinuous scalar, vector and tensor fields, or arbitrary polynomial

// order.

// Views and geometrical entities can be made to respond to double-click events,
// here to print some messages to the console:

View[0] .DoubleClickedCommand = "Printf(’View[0] has been double-clicked!’);";
Geometry.DoubleClickedCurveCommand = "Printf(’Curve %g has been double-clicked!’,
Geometry.DoubleClickedEntityTag);";

// We can also change the color of some entities:

Color Greyb50{ Surface{ 22 }; }
Color Purple{ Surface{ 24 }; }
Color Red{ Curve{ 1:14 }; }
Color Yellow{ Curve{ 15:20 }; }

2.5 t5: Mesh sizes, macros, loops, holes in volumes
See t5.geo. Also available in C++ (t5.cpp), Python (t5.py), Julia (t5.j1) and Fortran (t5.f90).

//
// Gmsh GEO tutorial 5

//

// Mesh sizes, macros, loops, holes in volumes
//
]

// We start by defining some target mesh sizes:

lcarl = .1;

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t5.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t5.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t5.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t5.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t5.f90

Chapter 2: Gmsh tutorial 27

lcar2 = .0005;
lcar3 .055;

// If we wanted to change these mesh sizes globally (without changing the above

// definitions), we could give a global scaling factor for all mesh sizes on the
// command line with the ‘-clscale’ option (or with ‘Mesh.MeshSizeFactor’ in an

// option file). For example, with:

//

// > gmsh t5.geo -clscale 1

//

// this input file produces a mesh of approximately 3000 nodes and 14,000

// tetrahedra. With

//

// > gmsh t5.geo -clscale 0.2

//

// the mesh counts approximately 231,000 nodes and 1,360,000 tetrahedra. You can
// check mesh statistics in the graphical user interface with the

// ‘Tools->Statistics’ menu.

//

// See ‘t10.geo’ for more information about mesh sizes.

// We proceed by defining some elementary entities describing a truncated cube:

Point(1) = {0.5,0.5,0.5,1car2}; Point(2) = {0.5,0.5,0,1carl};
Point(3) = {0,0.5,0.5,1carl}; Point(4) = {0,0,0.5,1carl};
Point(5) = {0.5,0,0.5,1carl}; Point(6) = {0.5,0,0,1carl};
Point(7) = {0,0.5,0,1lcarl}; Point(8) = {0,1,0,1lcarl};
Point(9) = {1,1,0,1carl}; Point(10) = {0,0,1,1lcarl};
Point(11) = {0,1,1,1carl}; Point(12) = {1,1,1,1carl};
Point(13) = {1,0,1,1lcarl}; Point(14) = {1,0,0,1lcarl};
Line(1) = {8,9}; Line(2) = {9,12}; Line(3) = {12,11};
Line(4) = {11,8}; Line(5) = {9,14}; Line(6) = {14,13};
Line(7) = {13,12}; Line(8) = {11,10}; Line(9) = {10,13};
Line(10) = {10,4}; Line(11) = {4,5}; Line(12) = {5,6%};
Line(13) = {6,2}; Line(14) = {2,1}; Line(15) = {1,3};
Line(16) = {3,7}; Line(17) = {7,2}; Line(18) = {3,4};
Line(19) = {5,1}; Line(20) = {7,8}; Line(21) = {6,14};

Curve Loop(22) = {-11,-19,-15,-18}; Plane Surface(23) = {22};

Curve Loop(24) = {16,17,14,15}; Plane Surface(25) = {24};
Curve Loop(26) = {-17,20,1,5,-21,13}; Plane Surface(27) = {26};
Curve Loop(28) = {-4,-1,-2,-3}; Plane Surface(29) = {28};
Curve Loop(30) = {-7,2,-5,-6}; Plane Surface(31) = {30};
Curve Loop(32) = {6,-9,10,11,12,21}; Plane Surface(33) = {32};
Curve Loop(34) = {7,3,8,9%}; Plane Surface(35) = {34};
Curve Loop(36) = {-10,18,-16,-20,4,-8}; Plane Surface(37) = {36};

Curve Loop(38)

{-14,-13,-12,19%}; Plane Surface(39) = {38};

// Instead of using included files, we now use a user-defined macro in order
// to carve some holes in the cube:

28

Gmsh 4.13.0 (development version)

Macro CheeseHole

//
//
//
//
//
//
//
//
//
//

pl
p2
p3

p4 =

p5
p6
p7

cl
c3
chb
c7
c9

In the following commands we use the reserved variable name ‘newp’, which
automatically selects a new point tag. Analogously to ‘newp’, the special
variables ‘newc’, ‘newcl, ‘news’, ‘newsl’ and ‘newv’ select new curve,
curve loop, surface, surface loop and volume tags.

If ‘Geometry.0ldNewReg’ is set to O, the new tags are chosen as the highest
current tag for each category (points, curves, curve loops, ...), plus

one. By default, for backward compatibility, ‘Geometry.0ldNewReg’ is set

to 1, and only two categories are used: one for points and one for the
rest.

{x, y, =z, lcar3};
{x+r,y, =z, lcar3};
{x, y+r,z, lcar3};
{x, y, =z+r,lcar3};
{x-r,y, =z, 1lcar3};
{x, y-r,z, lcar3};
{x, y, =z-r,lcar3};

= newp; Point(pl)
= newp; Point(p2)
= newp; Point(p3)
newp; Point(p4)
= newp; Point(p5)
= newp; Point(p6)
= newp; Point(p7)

= newc; Circle(cl) = {p2,pl,p7}; c2 = newc; Circle(c2) = {p7,pl,p5};
= newc; Circle(c3) = {p5,pl,pd4}; c4 = newc; Circle(c4) = {p4,pl,p2};
= newc; Circle(chb) = {p2,pl,p3}; c6 = newc; Circle(c6) = {p3,pl,p5};

{p5,p1,p6}; c8 = newc; Circle(c8) = {p6,pl,p2};
{p7,p1,p3}; c10 = newc; Circle(c10) = {p3,pl,p4};

= newc; Circle(c7)
= newc; Circle(c9)

cll = newc; Circle(cll) = {p4,pl,p6}; cl1l2 = newc; Circle(cl12) = {p6,pl,p7};

//
//
//
//
//
//
//
//
//

11
12
13
14
15
16
17
18

s1
s2
s3

s4 =

sb

We need non-plane surfaces to define the spherical holes. Here we use
‘Surface’, which can be used for surfaces with 3 or 4 curves on their
boundary. With the he built-in kernel, if the curves are circle arcs, ruled
surfaces are created; otherwise transfinite interpolation is used.

With the OpenCASCADE kernel, ‘Surface’ uses a much more general generic
surface filling algorithm, creating a BSpline surface passing through an
arbitrary number of boundary curves; and ‘ThruSections’ allows to create
ruled surfaces (see ‘t19.geo’).

= newcl; Curve Loop(1l1) = {c5,c10,c4};
= newcl; Curve Loop(12) = {c9,-cb5,cl};
= newcl; Curve Loop(13) = {c12,-c8,-cl};
= newcl; Curve Loop(1l4) = {c8,-c4,cll};
= newcl; Curve Loop(15) = {-c10,c6,c3};
= newcl; Curve Loop(16) = {-cl11,-c3,c7};
= newcl; Curve Loop(17) = {-c2,-c7,-c12};
= newcl; Curve Loop(18) = {-c6,-c9,c2};

= news; Surface(sl) = {11};
= news; Surface(s2) = {12};
= news; Surface(s3) = {13};

news; Surface(s4) = {14};
= news; Surface(s5) = {15};

Chapter 2: Gmsh tutorial 29

s6 = news; Surface(s6) = {16};
s7 = news; Surface(s7) = {17};
s8 = news; Surface(s8) {183};

// We then store the surface loops tags in a list for later reference (we will
// need these to define the final volume):

theloops([t] = newsl;
Surface Loop(theloops[t]) = {sl, s2, s3, s4, sb, s6, s7, s8};

thehole = newv;
Volume (thehole) = theloops([t];

Return

// We can use a ‘For’ loop to generate five holes in the cube:
x=0; y=0.75;, z=0; r=0.09;

For t In {1:5%}

x += 0.166;
z += 0.166;

// We call the ‘CheeseHole’ macro:

Call CheeseHole;

// We define a physical volume for each hole:

Physical Volume (t) = thehole;

// We also print some variables on the terminal (note that, since all

// variables in ¢.geo’ files are treated internally as floating point numbers,
// the format string should only contain valid floating point format

// specifiers like ‘Y%g’, ‘%f’, ’%e’, etc.):

Printf ("Hole %g (center = {%g,%g,%g}, radius = %g) has number %g!",
t, x, y, z, r, thehole);

EndFor
// We can then define the surface loop for the exterior surface of the cube:

theloops[0] = newreg;
Surface Loop(theloops[0]) = {23:39:2};

// The volume of the cube, without the 5 holes, is now defined by 6 surface

// loops: the first surface loop defines the exterior surface; the surface loops
// other than the first one define holes. (Again, to reference an array of

// variables, its identifier is followed by square brackets):

30 Gmsh 4.13.0 (development version)

Volume (186) = {theloops[l};

// Note that using solid modelling with the OpenCASCADE geometry kernel, the
// same geometry could be built quite differently: see ‘tl16.geo’.

// We finally define a physical volume for the elements discretizing the cube,
// without the holes (for which physical groups were already created in the
// ‘For’ loop):

Physical Volume (10) = 186;

// We could make only part of the model visible to only mesh this subset:
//

// Hide {:}

// Recursive Show { Volume{129}; }

// Mesh.MeshOnlyVisible=1;

// Meshing algorithms can changed globally using options:
Mesh.Algorithm = 6; // Frontal-Delaunay for 2D meshes

// They can also be set for individual surfaces, e.g.

MeshAlgorithm Surface {31, 35} = 1; // MeshAdapt on surfaces 31 and 35

// To generate a curvilinear mesh and optimize it to produce provably valid

// curved elements (see A. Johnen, J.-F. Remacle and C. Geuzaine. Geometric

// validity of curvilinear finite elements. Journal of Computational Physics
// 233, pp. 359-372, 2013; and T. Toulorge, C. Geuzaine, J.-F. Remacle,

// J. Lambrechts. Robust untangling of curvilinear meshes. Journal of

// Computational Physics 254, pp. 8-26, 2013), you can uncomment the following
// lines:

//

// Mesh.ElementOrder = 2;

// Mesh.HighOrderOptimize = 2;

2.6 t6: Transfinite meshes, deleting entities

See t6.geo. Also available in C++ (t6.cpp), C (t6.c), Python (t6.py), Julia (t6.jl) and Fortran
(t6.190).

v e .
<
e

=N

il N
jilly N

Nl

7
il
|\

B s e

<o

= T e

o
S
555

0
S Y
N
i \4
S !

o
o
S
S
%

%
.

£
L0
0050
o
7
"//%
%/

{N
x

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t6.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t6.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c/t6.c
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t6.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t6.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t6.f90

Chapter 2: Gmsh tutorial 31

//

// Gmsh GEO tutorial 6

//

// Transfinite meshes, deleting entities

//

A R R S

// Let’s use the geometry from the first tutorial as a basis for this one:
lc = 1e-2;
Point (1) = {0, 0, 0, 1lc};

Point(2) = {.1, 0, 0, 1lc};
Point(3) = {.1, .3, 0, 1lc};
Point(4) = {0, .3, 0, 1lc};

Line(1) = {1, 2};

Line(2) = {3, 2};

Line(3) = {3, 4};

Line(4) = {4, 1};

Curve Loop(1) = {4, 1, -2, 3};
Plane Surface(1l) = {1};

// Delete the surface and the left line, and replace the line with 3 new ones:
Delete{ Surface{1}; Curve{4}; }

.05, 0.05, 0, 1c};

pl = newp; Point(p1) = {-0
{-0.05, 0.1, 0, 1c};

p2 = newp; Point(p2)

11 = newc; Line(11) = {1, pil};
12 = newc; Line(12) = {p1l, p2};
13 = newc; Line(13) = {p2, 4};

// Create a surface:
Curve Loop(2) = {2, -1, 11, 12, 13, -3};
Plane Surface(l) = {-2};

// The ‘Transfinite Curve’ meshing constraints explicitly specifies the location
// of the nodes on the curve. For example, the following command forces 20

// uniformly placed nodes on curve 2 (including the nodes on the two end

// points):

Transfinite Curve{2} = 20;

// Let’s put 20 points total on combination of curves ‘11’, ‘12’ and ‘13’
// (beware that the points ‘pl’ and ‘p2’ are shared by the curves, so we do not
// create 6 + 6 + 10 = 22 nodes, but 20!)

Transfinite Curve{l1l} = 6;
Transfinite Curve{12} = 6;
Transfinite Curve{13} = 10;

// Finally, we put 30 nodes following a geometric progression on curve 1
// (reversed) and on curve 3:
Transfinite Curve{-1, 3} = 30 Using Progression 1.2;

// The ‘Transfinite Surface’ meshing constraint uses a transfinite interpolation

32 Gmsh 4.13.0 (development version)

// algorithm in the parametric plane of the surface to connect the nodes on the
// boundary using a structured grid. If the surface has more than 4 corner

// points, the corners of the transfinite interpolation have to be specified by
// hand:

Transfinite Surface{1} = {1, 2, 3, 4};

// To create quadrangles instead of triangles, one can use the ‘Recombine’
// command:
Recombine Surface{1};

// When the surface has only 3 or 4 points on its boundary the list of corners
// can be omitted in the ‘Transfinite Surface’ constraint:

Point(7) = {0.2, 0.2, 0, 1.0};

Point(8) = {0.2, 0.1, 0, 1.0};

Point(9) = {-0, 0.3, 0, 1.0};

Point(10) = {0.25, 0.2, 0, 1.0%};

Point(11) = {0.3, 0.1, 0, 1.0%};

Line(10) = {8, 11};
Line(11) = {11, 103};
Line(12) = {10, 7};
Line(13) = {7, 8};

Curve Loop(14) = {13, 10, 11, 12};
Plane Surface(15) = {14};
Transfinite Curve {10:13} = 10;
Transfinite Surface{15};

// The way triangles are generated can be controlled by appending "Left",
// "Right" or "Alternate" after the ‘Transfinite Surface’ command. Try e.g.

//
// Transfinite Surface{15} Alternate;

// Finally we apply an elliptic smoother to the grid to have a more regular
// mesh:
Mesh.Smoothing = 100;

2.7 t7: Background meshes
See t7.geo. Also available in C++ (t7.cpp), Python (t7.py), Julia (t7.j1) and Fortran (t7.f90).

// Gmsh GEO tutorial 7

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t7.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t7.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t7.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t7.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t7.f90

Chapter 2: Gmsh tutorial 33

//

// Background meshes

//

[/ mmmm T

// Mesh sizes can be specified very accurately by providing a background mesh,
// i.e., a post-processing view that contains the target mesh sizes.

// Merge a list-based post-processing view containing the target mesh sizes:
Merge "t7_bgmesh.pos";

// 1f the post-processing view was model-based instead of list-based (i.e. if it
// was based on an actual mesh), we would need to create a new model to contain
// the geometry so that meshing it does not destroy the background mesh. It’s

// not necessary here since the view is list-based, but it does no harm:
NewModel;

// Merge the first tutorial geometry:
Merge "tl.geo";

// Apply the view as the current background mesh size field:
Background Mesh View[0];

// In order to compute the mesh sizes from the background mesh only, and
// disregard any other size constraints, one can set:
Mesh.MeshSizeExtendFromBoundary = O;

Mesh.MeshSizeFromPoints = O;

Mesh.MeshSizeFromCurvature = 0;

// See ‘t10.geo’ for additional information: background meshes are actually a
// particular case of general "mesh size fields".

2.8 t8: Post-processing, image export and animations
See t8.geo. Also available in C++ (t8.cpp), Python (t8.py), Julia (t8.j1) and Fortran (t8.f90).

Test... (2)

3.89e+06
3.02e+06 /\
2.16e+06
1.3e+06
4.33e+05
-4.3e+05

-1.29e+06

-2.166+06
-3.026+06
-3.88e+06 : : v
0.05 0.15 0.25 0.35
[/ —mmm e
//
// Gmsh GEO tutorial 8
//

// Post-processing, image export and animations

//

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t8.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t8.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t8.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t8.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t8.f90

34

Gmsh 4.13.0 (development version)

// In addition to creating geometries and meshes, GEO scripts can also be used
// to manipulate post-processing datasets (called "views" in Gmsh).

// We first include ‘tl.geo’ as well as some post-processing views:

Include
Include
Include
Include

// Gmsh
// and

"t1.geo";

"viewl.pos";
"viewl.pos";
"viewd.pos";

can read post-processing views in various formats. Here the ‘viewl.pos’
viewd.pos’ files are in the Gmsh "parsed" format, which is interpreted

// directly by the GEO script parser. The parsed format should only be used for
// relatively small datasets of course: for larger datasets using e.g. MSH files
// is much more efficient.

// We then set some general options:

General.
General.
General.
General.
General.
General.

Trackball = 0;

RotationX 0; General.RotationY = 0; General.RotationZ = 0;
Color.Background = White; General.Color.Foreground = Black;
Color.Text = Black;

Orthographic = 0;

Axes = 0; General.SmallAxes = 0;

// We also set some options for each post-processing view:

vO0
vl

View[vO0]
View[vO0]

View[vO].

View[v0]
View[vO]
View[vO0]

View[v1]
View[v1]
Viewl[v1]
View[v1]

View[v2]
View[v2]

View[v2].

View[v2]
View[v2]
View[v2]
View[v2]
View[v2]

PostProcessing.NbViews-4;
vO+1; v2 = v0+2; v3 = v0+3;

.IntervalsType = 2;
.0ffsetZ = 0.05;
RaiseZ = 0;

.Light = 1;
.ShowScale = 0;
.SmoothNormals = 1;

.IntervalsType = 1;
.ColorTable = { Green, Blue };
.NbIso = 10;

.ShowScale = 0;

.Name = "Test...";
.Axes 1;
Color.Axes = Black;
.IntervalsType = 2;
.Type = 2;
.IntervalsType = 2;
.AutoPosition = O;
.PositionX = 85;

Chapter 2: Gmsh tutorial 35

View[v2] .PositionY = 50;
View[v2] .Width = 200;
View[v2] .Height = 130;

View[v3] .Visible = 0;

// You can save an MPEG movie directly by selecting ‘File->Export’ in the
// GUI. Several predefined animations are setup, for looping on all the time
// steps in views, or for looping between views.

// But a script can be used to build much more complex animations, by changing
// options at run-time and re-rendering the graphics. Each frame can then be
// saved to disk as an image, and multiple frames can be encoded to form a

// movie. Below is an example of such a custom animation.

t = 0; // Initial step

// Loop on num from 1 to 3
For num In {1:3}

View[v0] .TimeStep = t; // Set time step
View[vl] .TimeStep = t;
View[v2] .TimeStep = t;
View[v3] .TimeStep = t;

t = (View[vO].TimeStep < View[vO].NbTimeStep-1) 7 t+1 : O; // Increment
View[v0] .RaiseZ += 0.01/View[v0] .Max * t; // Raise view vO

If (num == 3)
// Resize the graphics when num == 3, to create 640x480 frames
General.GraphicsWidth = General.MenuWidth + 640;
General.GraphicsHeight = 480;

EndIf

frames = 50;

// Loop on num2 from 1 to frames
For num2 In {1:frames}

// Incrementally rotate the scene

General .RotationX += 10;

General .RotationY = General.RotationX / 3;
General .RotationZ += 0.1;

// Sleep for 0.01 second
Sleep 0.01;

// Draw the scene (one could use ‘DrawForceChanged’ instead to force the
// reconstruction of the vertex arrays, e.g. if changing element clipping)
Draw;

36

If (num 3)
// Uncomment the
//
// permits to cre
//
//
//

EndIf

Print
Print
Print

Sprintf (
Sprintf(
Sprintf(

EndFor

If (num == 3)
// Here we
// ffmpeg:

// System "ffmpeg -
EndIf

EndFor

2.

9 t9: Plugins

Gmsh 4.13.0 (development version)

following lines to save each frame to an image file (the

‘Print’ command saves the graphical window; the ‘Sprintf’ function

ate the file names on the fly):

"t8-%g.gif", num2);
"t8-%g.ppm", num2);
"t8-%g.jpg", num2);

could make a system call to generate a movie. For example, with

i t8-%d.jpg t8.mpg"

See t9.geo. Also available in C++ (t9.cpp), Python (t9.py), Julia (t9.j1) and Fortran (t9.£90).

//
//
//
//
//
//

//
//
//
//
//
//
//
//

Gmsh GEO tutorial 9
Plugins

A 3D scalar fie
-0.0179 1.01

3D scalar field_Levelset 0 Y

0.67 0.67 X

Plugins can be added to Gmsh in order to extend its capabilities. For

example, post-proces

sing plugins can modify views, or create new views based

on previously loaded views. Several default plugins are statically linked
with Gmsh, e.g. Isosurface, CutPlane, CutSphere, Skin, Transform or Smooth.

Plugins can be contr
graphical interface
the command file.

olled in the same way as other options: either from the
(right click on the view button, then ‘Plugins’), or from

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t9.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t9.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t9.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t9.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t9.f90

Chapter 2: Gmsh tutorial 37

// Let us for example include a three-dimensional scalar view:
Include "view3.pos" ;

// We then set some options for the ‘Isosurface’ plugin (which extracts an
// isosurface from a 3D scalar view), and run it:

Plugin(Isosurface).Value = 0.67 ; // Iso-value level
Plugin(Isosurface).View = 0 ; // Source view is View[0]
Plugin(Isosurface).Run ; // Run the plugin!

// We also set some options for the ‘CutPlane’ plugin (which computes a section
// of a 3D view using the plane A*x+B*y+C*z+D=0), and then run it:

Plugin(CutPlane) .
Plugin(CutPlane) .
Plugin(CutPlane) .
Plugin(CutPlane) .
Plugin(CutPlane) .View = 0 ;
Plugin(CutPlane) .Run ;

A
B =
C =
D

// Add a title (By convention, for window coordinates a value greater than 99999
// represents the center. We could also use ‘General.GraphicsWidth / 2’, but
// that would only center the string for the current window size.):

Plugin(Annotate) .Text = "A nice title" ;
Plugin(Annotate) .X = 1.e5;
Plugin(Annotate) .Y = 50 ;
Plugin(Annotate) .Font = "Times-BoldItalic"
Plugin(Annotate) .FontSize = 28 ;
Plugin(Annotate) .Align = "Center" ;
Plugin(Annotate) .View = 0 ;
Plugin(Annotate) .Run ;
Plugin(Annotate) .Text = "(and a small subtitle)" ;
Plugin(Annotate).Y = 70 ;
Plugin(Annotate) .Font = "Times-Roman" ;
Plugin(Annotate) .FontSize = 12 ;
Plugin(Annotate) .Run ;

// We finish by setting some options:

View[0] .Light = 1;
View[0] .IntervalsType = 1;
View[0] .NbIso = 6;
View[0] .SmoothNormals = 1;
View[1] .IntervalsType = 2;
View[2] .IntervalsType = 2;

38 Gmsh 4.13.0 (development version)

2.10 t10: Mesh size fields

See t10.geo. Also available in C++ (t10.cpp), Python (t10.py), Julia (t10.jl) and Fortran
(£10.£90).

//

// Gmsh GEO tutorial 10

//

// Mesh size fields

//

[/ mmmm e

// In addition to specifying target mesh sizes at the points of the geometry
// (see ‘tl.geo’) or using a background mesh (see ‘t7.geo’), you can use general

// mesh size "Fields".

// Let’s create a simple rectangular geometry

lc = .15;

Point(1) = {0.0,0.0,0,1c}; Point(2) = {1,0.0,0,1c};
Point(3) = {1,1,0,1c}; Point(4) = {0,1,0,1c};
Point(5) = {0.2,.5,0,1c};

Line(1) = {1,2}; Line(2) = {2,3}; Line(3) = {3,4}; Line(4) = {4,1};
Curve Loop(5) = {1,2,3,4}; Plane Surface(6) = {5};

// Say we would like to obtain mesh elements with size 1c/30 near curve 2 and

// point 5, and size lc elsewhere. To achieve this, we can use two fields:

// "Distance", and "Threshold". We first define a Distance field (‘Field[1]’) on
// points 5 and on curve 2. This field returns the distance to point 5 and to

// (100 equidistant points on) curve 2.

Field[1] = Distance;

Field[1] .PointsList {5%};

Field[1].CurvesList = {2};

Field[1].Sampling = 100;

// We then define a ‘Threshold’ field, which uses the return value of the
// ‘Distance’ field 1 in order to define a simple change in element size
// depending on the computed distances

//

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t10.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t10.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t10.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t10.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t10.f90

Chapter 2: Gmsh tutorial 39

// SizeMax - [
// /

// /

// /

// 8izeMin -o------—-—-—---—- /

// | | |

// Point DistMin DistMax
Field[2] = Threshold;

Field[2].InField = 1;

Field[2] .SizeMin = 1lc / 30;
Field[2].SizeMax = 1lc;

Field[2] .DistMin 0.15;

Field[2] .DistMax 0.5;

// Say we want to modulate the mesh element sizes using a mathematical function
// of the spatial coordinates. We can do this with the MathEval field:

Field[3] = MathEval;

Field[3].F = "cos(4%3.14%xx) * sin(4x3.14*y) / 10 + 0.101";

// We could also combine MathEval with values coming from other fields. For
// example, let’s define a ‘Distance’ field around point 1

Field[4] = Distance;

Field[4] .PointsList = {1};

// We can then create a ‘MathEval’ field with a function that depends on the
// return value of the ‘Distance’ field 4, i.e., depending on the distance to
// point 1 (here using a cubic law, with minimum element size = lc / 100)
Field[5] MathEval;

Field[5].F = Sprintf("F4°3 + Yg", 1lc / 100);

// We could also use a ‘Box’ field to impose a step change in element sizes
// inside a box

Field[6] = Box;

Field[6].VIn = 1c / 15;

Field[6].VOut = 1lc;
Field[6] .XMin = 0.3;
Field[6] .XMax = 0.6;
Field[6].YMin = 0.3;
Field[6].YMax = 0.6;

Field[6] .Thickness = 0.3;

// Many other types of fields are available: see the reference manual for a
// complete list. You can also create fields directly in the graphical user
// interface by selecting ‘Define->Size fields’ in the ‘Mesh’ module.

// Let’s use the minimum of all the fields as the background mesh size field
Field[7] = Min;

Field[7] .FieldsList = {2, 3, 5, 6};

Background Field = 7;

// To determine the size of mesh elements, Gmsh locally computes the minimum of

//

40 Gmsh 4.13.0 (development version)

// 1) the size of the model bounding box;
// 2) if ‘Mesh.MeshSizeFromPoints’ is set, the mesh size specified at

// geometrical points;
// 3) if ‘Mesh.MeshSizeFromCurvature’ is positive, the mesh size based on
// curvature (the value specifying the number of elements per 2 * pi rad);

// 4) the background mesh size field;

// 5) any per-entity mesh size constraint.

//

// This value is then constrained in the interval [‘Mesh.MeshSizeMin’,

// ‘Mesh.MeshSizeMax’] and multiplied by ‘Mesh.MeshSizeFactor’. In addition,

// boundary mesh sizes are interpolated inside surfaces and/or volumes depending
// on the value of ‘Mesh.MeshSizeExtendFromBoundary’ (which is set by default).
//

// When the element size is fully specified by a mesh size field (as it is in

// this example), it is thus often desirable to set

Mesh.MeshSizeExtendFromBoundary = O;
Mesh.MeshSizeFromPoints = O;
Mesh.MeshSizeFromCurvature = 0;

// This will prevent over-refinement due to small mesh sizes on the boundary.

// Finally, while the default "Frontal-Delaunay" 2D meshing algorithm

// (Mesh.Algorithm = 6) usually leads to the highest quality meshes, the

// "Delaunay" algorithm (Mesh.Algorithm = 5) will handle complex mesh size

// fields better - in particular size fields with large element size gradients:

Mesh.Algorithm = 5;

2.11 t11: Unstructured quadrangular meshes

See tll.geo. Also available in C++ (t1l.cpp), Python (t1l.py), Julia (t11.j1) and Fortran
(£11.£90).

o'
=

//
// Gmsh GEO tutorial 11

//

// Unstructured quadrangular meshes

//

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t11.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t11.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t11.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t11.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t11.f90

Chapter 2: Gmsh tutorial 41

// We have seen in tutorials ‘t3.geo’ and ‘t6.geo’ that extruded and transfinite
// meshes can be "recombined" into quads, prisms or hexahedra by using the
// "Recombine" keyword. Unstructured meshes can be recombined in the same
// way. Let’s define a simple geometry with an analytical mesh size field:

Point(1) = {-1.25, -.5, 0}; Point(2) = {1.25, -.5, 0};
Point(3) = {1.25, 1.25, 0}; Point(4) = {-1.25, 1.25, 0};
Line(1) = {1, 2}; Line(2) = {2, 3};

Line(3) = {3, 4}; Line(4) = {4, 1};

Curve Loop(4) = {1, 2, 3, 4}; Plane Surface(100) = {4};

Field[1] = MathEval;
Field[1].F = "0.01*(1.0+30.*(y-x*x) *(y-x*x) + (1-x)*(1-x))";
Background Field = 1;

// To generate quadrangles instead of triangles, we can simply add
Recombine Surface{100};

// If we’d had several surfaces, we could have used ‘Recombine Surface {:};’.
// Yet another way would be to specify the global option "Mesh.RecombineAll =
/115

// The default recombination algorithm is called "Blossom": it uses a minimum
// cost perfect matching algorithm to generate fully quadrilateral meshes from
// triangulations. More details about the algorithm can be found in the

// following paper: J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise,

// A. Johnen and C. Geuzaine, "Blossom-Quad: a non-uniform quadrilateral mesh
// generator using a minimum cost perfect matching algorithm", International
// Journal for Numerical Methods in Engineering 89, pp. 1102-1119, 2012.

// For even better 2D (planar) quadrilateral meshes, you can try the

// experimental "Frontal-Delaunay for quads" meshing algorithm, which is a

// triangulation algorithm that enables to create right triangles almost

// everywhere: J.-F. Remacle, F. Henrotte, T. Carrier-Baudouin, E. Bechet,

// E. Marchandise, C. Geuzaine and T. Mouton. A frontal Delaunay quad mesh

// generator using the L"inf norm. International Journal for Numerical Methods
// in Engineering, 94, pp. 494-512, 2013. Uncomment the following line to try
// the Frontal-Delaunay algorithms for quads:

//

// Mesh.Algorithm = 8;

// The default recombination algorithm might leave some triangles in the mesh,
// if recombining all the triangles leads to badly shaped quads. In such cases,
// to generate full-quad meshes, you can either subdivide the resulting hybrid
// mesh (with Mesh.SubdivisionAlgorithm = 1), or use the full-quad recombination
// algorithm, which will automatically perform a coarser mesh followed by

// recombination, smoothing and subdivision. Uncomment the following line to try
// the full-quad algorithm:

//

42 Gmsh 4.13.0 (development version)

// Mesh.RecombinationAlgorithm = 2; // or 3

// Note that you could also apply the recombination algorithm and/or the
// subdivision step explicitly after meshing, as follows:

//

// Mesh 2;

// RecombineMesh;

// Mesh.SubdivisionAlgorithm = 1;

// RefineMesh;

2.12 t12: Cross-patch meshing with compounds

See t12.geo/ Also available in C++ (t12.cpp), Python (t12.py), Julia (t12.j1) and Fortran
(£12.£90).

//

// Gmsh GEO tutorial 12

//

// Cross-patch meshing with compounds

//

/) —mmmmm T

// "Compound" meshing constraints allow to generate meshes across surface
// boundaries, which can be useful e.g. for imported CAD models (e.g. STEP) with
// undesired small features.

// When a ‘Compound Curve’ or ‘Compound Surface’ meshing constraint is given,
// at mesh generation time Gmsh

// 1. meshes the underlying elementary geometrical entities, individually
// 2. creates a discrete entity that combines all the individual meshes
// 3. computes a discrete parametrization (i.e. a piece-wise linear mapping)

// on this discrete entity

// 4. meshes the discrete entity using this discrete parametrization instead
// of the underlying geometrical description of the underlying elementary
// entities making up the compound

// 5. optionally, reclassifies the mesh elements and nodes on the original
// entities

// Step 3. above can only be performed if the mesh resulting from the
// combination of the individual meshes can be reparametrized, i.e. if the shape
// is "simple enough". If the shape is not amenable to reparametrization, you

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t12.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t12.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t12.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t12.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t12.f90

Chapter 2: Gmsh tutorial 43

// should create a full mesh of the geometry and first re-classify it to
// generate patches amenable to reparametrization (see ‘t13.geo’).

// The mesh of the individual entities performed in Step 1. should usually be
// finer than the desired final mesh; this can be controlled with the
// ‘Mesh.CompoundMeshSizeFactor’ option.

// The optional reclassification on the underlying elementary entities in Step
// 5. is governed by the ‘Mesh.CompoundClassify’ option.

lc = 0.1;

Point(1) = {0, 0, 0, 1lc}; Point(2) = {1, 0, 0, 1lc};
Point(3) = {1, 1, 0.5, 1lc}; Point(4) = {0, 1, 0.4, 1lc};
Point(5) = {0.3, 0.2, 0, 1lc}; Point(6) = {0, 0.01, 0.01, 1c};
Point(7) = {0, 0.02, 0.02, 1lc}; Point(8) = {1, 0.05, 0.02, 1lc};
Point(9) = {1, 0.32, 0.02, 1lc};

Line(1) = {1, 2}; Line(2) = {2, 8}; Line(3) = {8, 9};

Line(4) = {9, 3}; Line(5) = {3, 4}; Line(6) = {4, 7};

Line(7) = {7, 6}; Line(8) = {6, 1}; Spline(9) = {7, 5, 9};

Line(10) = {6, 8};

{5, 6, 9, 4}; Surface(1) = {11};
{-9, 3, 10, 7}; Surface(5) = {13};
{-10, 2, 1, 8}; Surface(10) = {15};

Curve Loop(11)
Curve Loop(13)
Curve Loop(15)

// Treat curves 2, 3 and 4 as a single curve when meshing (i.e. mesh across
// points 6 and 7)
Compound Curve{2, 3, 4};

// Idem with curves 6, 7 and 8
Compound Curve{6, 7, 8};

// Treat surfaces 1, 5 and 10 as a single surface when meshing (i.e. mesh across
// curves 9 and 10)
Compound Surface{l, 5, 10};

2.13 t13: Remeshing an STL file without an underlying CAD
model

See t13.geo. Also available in C++ (t13.cpp), Python (t13.py), Julia (t13.j1) and Fortran
(£13.£90).

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t13.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t13.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t13.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t13.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t13.f90

44 Gmsh 4.13.0 (development version)

AV"A
ANNANAYE S vAvAV, VAVAVAVAY”
AN NIV VAVAVAVAVAY/:”
X&ﬂﬁm%llﬁv

%

//

// Gmsh GEO tutorial 13

//

// Remeshing an STL file without an underlying CAD model

//

/) mmmm T

// Let’s merge an STL mesh that we would like to remesh.
Merge "t13_data.stl";

// We first classify ("color") the surfaces by splitting the original surface
// along sharp geometrical features. This will create new discrete surfaces,
// curves and points.

DefineConstant [
// Angle between two triangles above which an edge is considered as sharp
angle = {40, Min 20, Max 120, Step 1,
Name "Parameters/Angle for surface detection"},
// For complex geometries, patches can be too complex, too elongated or too
// large to be parametrized; setting the following option will force the
// creation of patches that are amenable to reparametrization:
forceParametrizablePatches = {0, Choices{0,1},
Name "Parameters/Create surfaces guaranteed to be parametrizable"},
// For open surfaces include the boundary edges in the classification process:
includeBoundary = 1,
// Force curves to be split on given angle:
curveAngle = 180
13
ClassifySurfaces{angle * Pi/180, includeBoundary, forceParametrizablePatches,
curveAngle * Pi / 180};

// Create a geometry for all the discrete curves and surfaces in the mesh, by
// computing a parametrization for each one
CreateGeometry;

// In batch mode the two steps above can be performed with ‘gmsh t13.stl
// -reparam 40°’, which will save ‘t13.msh’ containing the parametrizations, and
// which can thus subsequently be remeshed.

// Note that if a CAD model (e.g. as a STEP file, see ‘t20.geo’) is available
// instead of an STL mesh, it is usually better to use that CAD model instead of
// the geometry created by reparametrizing the mesh. Indeed, CAD geometries will

Chapter 2: Gmsh tutorial 45

// in general be more accurate, with smoother parametrizations, and will lead to
// more efficient and higher quality meshing. Discrete surface remeshing in Gmsh
// is optimized to handle dense STL meshes coming from e.g. imaging systems

// where no CAD is available; it is less well suited for the poor quality STL

// triangulations (optimized for size, with e.g. very elongated triangles) that
// are usually generated by CAD tools for e.g. 3D printing.

// Create a volume as usual
Surface Loop(1l) = Surface{:};
Volume (1) = {1};

// We specify element sizes imposed by a size field, just because we can :-)
funny = DefineNumber [0, Choices{0,1},

Name "Parameters/Apply funny mesh size field?"];

Field[1] = MathEval;

If (funny)

Field[1].F = "2%Sin((x+y)/5) + 3";
Else

Field[1].F = "4";
EndIf

Background Field = 1;

2.14 t14: Homology and cohomology computation

See tld.geo. Also available in C++ (tl4.cpp), Python (t14.py), Julia (t14.j1) and Fortran
(£14.£90).

//

// Gmsh GEO tutorial 14

//

// Homology and cohomology computation

//

/) mmmm T

// Homology computation in Gmsh finds representative chains of (relative)
// (co)homology space bases using a mesh of a model. The representative basis

// chains are stored in the mesh as physical groups of Gmsh, one for each chain.

// Create an example geometry

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t14.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t14.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t14.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t14.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t14.f90

46 Gmsh 4.13.0 (development version)

m
h

0.5; // mesh size
2; // height in the z-direction

Point(1) = {0, 0, 0, m}; Point (2)

{10, O’ 0’ m};

Point(3) = {10, 10, 0, m}; Point(4) = {0, 10, 0, m};
Point(5) = {4, 4, 0, m}; Point(6) = {6, 4, 0, m};
Point(7) = {6, 6, 0, m}; Point(8) = {4, 6, 0, m};
Point(9) = {2, 0, 0, m}; Point(10) = {8, 0, 0, m};

Point(11) = {2, 10, 0, m}; Point(12)

{8, 10, 0, m};

Line(1) = {1, 9}; Line(2) = {9, 10}; Line(3) = {10, 2};
Line(4) = {2, 3}; Line(5) = {3, 12}; Line(8) = {12, 11};
Line(7) = {11, 4}; Line(8) = {4, 1}; Line(9) = {5, 67};

Line(10) = {6, 7}; Line(11) = {7, 8}; Line(12) = {8, 5};

Curve Loop(13) {6, 7, 8, 1, 2, 3, 4, 5};
Curve Loop(14) {11, 12, 9, 10};
Plane Surface(15) = {13, 14};

e() = Extrude {0, 0, h}{ Surface{15}; };
// Create physical groups, which are used to define the domain of the
// (co)homology computation and the subdomain of the relative (co)homology

// computation.

// Whole domain
Physical Volume(1l) = {e(1)};

// Four "terminals" of the model

Physical Surface(70) = {e(3)};
Physical Surface(71) = {e(5)};
Physical Surface(72) = {e(7)};
Physical Surface(73) = {e(9)};

// Whole domain surface
bnd() = Abs(Boundary{ Volume{e(1)}; });
Physical Surface(80) = bnd();

// Complement of the domain surface with respect to the four terminals
bnd() -= {e(3), e(5), e(7), e(9)};
Physical Surface(75) = bnd();

// Find bases for relative homology spaces of the domain modulo the four
// terminals.
Homology {{1}, {70, 71, 72, 73}};

// Find homology space bases isomorphic to the previous bases: homology spaces
// modulo the non-terminal domain surface, a.k.a the thin cuts.

Homology {{1}, {75}};

// Find cohomology space bases isomorphic to the previous bases: cohomology

Chapter 2: Gmsh tutorial 47

// spaces of the domain modulo the four terminals, a.k.a the thick cuts.
Cohomology {{1}, {70, 71, 72, 73}};

// More examples:

// Homology {1};

// Homology;

// Homology {{1}, {80}};
// Homology {{}, {80}};

// For more information, see M. Pellikka, S. Suuriniemi, L. Kettunen and
// C. Geuzaine. Homology and cohomology computation in finite element
// modeling. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.

2.15 t15: Embedded points, lines and surfaces

See t15.geo. Also available in C++ (t15.cpp), Python (t15.py), Julia (t15.j1) and Fortran
(£15.£90).

//

// Gmsh GEO tutorial 15

//

// Embedded points, lines and surfaces

//

/) mmmm T

// By default, across geometrical dimensions meshes generated by Gmsh are only
// conformal if lower dimensional entities are on the boundary of higher

// dimensional ones (i.e. if points, curves or surfaces are part of the boundary
// of volumes).

// Embedding constraints allow to force a mesh to be conformal to other lower
// dimensional entities.

// We start one again by including the first tutorial:
Include "tl.geo";

// We change the mesh size to generate coarser mesh
lc = 1c * 4;
MeshSize {1:4} = 1c;

// We define a new point

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t15.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t15.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t15.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t15.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t15.f90

48 Gmsh 4.13.0 (development version)

Point(5) = {0.02, 0.02, 0, 1lc};

// One can force this point to be included ("embedded") in the 2D mesh, using
// the ‘Point In Surface’ command:
Point{5} In Surface{1};

// In the same way, one can force a curve to be embedded in the 2D mesh using
// the ‘Curve in Surface’ command:

Point(6) = {0.02, 0.12, 0, 1lc};

Point(7) = {0.04, 0.18, 0, 1lc};

Line(5) = {6, 7};

Curve{5} In Surface{1l};

// One can also embed points and curves in a volume using the ‘Curve/Point In
// Volume’ commands:
Extrude {0, 0, 0.1}{ Surface {1}; }

p = newp;
Point(p) = {0.07, 0.15, 0.025, 1lc};
Point{p} In Volume {1};

1 = nevc;

Point(p+1) = {0.025, 0.15, 0.025, 1lc};
Line(1) = {7, p+1};

Curve{l} In Volume {1};

// Finally, one can also embed a surface in a volume using the ‘Surface In
// Volume’ command:

Point (p+2) = {0.02, 0.12, 0.05, 1lc};
Point(p+3) = {0.04, 0.12, 0.05, 1c};
Point(p+4) = {0.04, 0.18, 0.05, 1c};
Point (p+5) = {0.02, 0.18, 0.05, 1c};
Line(1+1) = {p+2, p+3};
Line(1+2) = {p+3, p+4};
Line(1+3) = {p+4, p+5};
Line(1+4) = {p+5, p+2};

11 = newcl;

Curve Loop(1ll) = {1+1:1+4};
S = news;

Plane Surface(s) = {11};
Surface{s} In Volume {1};

// Note that with the OpenCASCADE kernel (see ‘t16.geo’), when the

// ‘BooleanFragments’ command is applied to entities of different dimensions,
// the lower dimensional entities will be autmatically embedded in the higher
// dimensional entities if necessary.

Physical Point("Embedded point") = {p};
Physical Curve("Embdded curve") = {1};
Physical Surface("Embedded surface") = {s};
Physical Volume("Volume") = {1};

Chapter 2: Gmsh tutorial 49

2.16 t16: Constructive Solid Geometry, OpenCASCADE
geometry kernel

See t16.geo. Also available in C++ (t16.cpp), C (t16.c), Python (t16.py), Julia (t16.j1) and
Fortran (t16.£90).

//

// Gmsh GEO tutorial 16

//

// Constructive Solid Geometry, OpenCASCADE geometry kernel

//
e

// Instead of constructing a model in a bottom-up fashion with Gmsh’s built-in
// geometry kernel, starting with version 3 Gmsh allows you to directly use
// alternative geometry kernels. Here we use the OpenCASCADE kernel:

SetFactory("OpenCASCADE") ;

// Let’s build the same model as in ‘t5.geo’, but using constructive solid
// geometry.

// We first create two cubes:
Box(1) = {0,0,0, 1,1,1};
Box(2) = {0,0,0, 0.5,0.5,0.5};

// We apply a boolean difference to create the '"cube minus one eigth" shape:
BooleanDifference(3) = { Volume{1}; Delete; }{ Volume{2}; Delete; };

// Boolean operations with OpenCASCADE always create new entities. Adding
// ‘Delete’ in the arguments allows to automatically delete the original
// entities.

// We then create the five spheres:
x=0;y=075;2z=0;r=0.09;
For t In {1:5%}

x += 0.166 ;

z += 0.166 ;

Sphere(3 + t) = {x,y,z,r};

Physical Volume(t) = {3 + t};
EndFor

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t16.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t16.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c/t16.c
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t16.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t16.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t16.f90

50 Gmsh 4.13.0 (development version)

// If we had wanted five empty holes we would have used ‘BooleanDifference’

// again. Here we want five spherical inclusions, whose mesh should be conformal
// with the mesh of the cube: we thus use ‘BooleanFragments’, which intersects
// all volumes in a conformal manner (without creating duplicate interfaces):
v() = BooleanFragments{ Volume{3}; Delete; }{ Volume{3 + 1 : 3 + 5}; Delete; I};

// When the boolean operation leads to simple modifications of entities, and if
// one deletes the original entities with ‘Delete’, Gmsh tries to assign the

// same tag to the new entities. (This behavior is governed by the

// ‘Geometry.0CCBooleanPreserveNumbering’ option.)

// Here the ‘Physical Volume’ definitions made above will thus still work, as
// the five spheres (volumes 4, 5, 6, 7 and 8), which will be deleted by the

// fragment operations, will be recreated identically (albeit with new surfaces)
// with the same tags.

// The tag of the cube will change though, so we need to access it
// programmatically:
Physical Volume(10) = v(#v()-1);

// Creating entities using constructive solid geometry is very powerful, but can
// lead to practical issues for e.g. setting mesh sizes at points, or
// identifying boundaries.

// To identify points or other bounding entities you can take advantage of the
// ‘Pointfs0f’ (a special case of the more general ‘Boundary’ command) and the
// ‘In BoundingBox’ commands.

lcarl = .1;
lcar2 = .0005;
lcar3 = .055;
eps = le-3;

// Assign a mesh size to all the points of all the volumes:
MeshSize{ Points0f{ Volume{:}; } } = lcari;

// Override this constraint on the points of the five spheres:
MeshSize{ PointsOf{ Volume{3 + 1 : 3 + 5}; } } = lcar3;

// Select the corner point by searching for it geometrically:
p() = Point In BoundingBox{0.5-eps, 0.5-eps, 0.5-eps,

0.5+eps, 0.5+eps, 0.5+eps};
MeshSize{ p() } = lcar2;

// Additional examples created with the OpenCASCADE geometry kernel are
// available in ‘t18.geo’, ‘t19.geo’ and ‘t20.geo’, as well as in the
// ‘examples/boolean’ directory.

2.17 t17: Anisotropic background mesh

See t17.geo. Also available in C++ (t17.cpp), Python (t17.py), Julia (t17.j1) and Fortran
(£17.£90).

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t17.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t17.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t17.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t17.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t17.f90

Chapter 2: Gmsh tutorial 51

Y

z
ag9eras |~ X
-

//

// Gmsh GEO tutorial 17

//

// Anisotropic background mesh

//

[/ T

// As seen in ‘t7.geo’, mesh sizes can be specified very accurately by providing
// a background mesh, i.e., a post-processing view that contains the target mesh
// sizes.

// Here, the background mesh is represented as a metric tensor field defined on
// a square. One should use bamg as 2d mesh generator to enable anisotropic
// meshes in 2D.

SetFactory ("OpenCASCADE") ;

// Create a square
Rectangle(1) = {-2, -2, 0, 4, 4};

// Merge a post-processing view containing the target anisotropic mesh sizes
Merge "t17_bgmesh.pos";

// Apply the view as the current background mesh
Background Mesh View[0];

// Use bamg
Mesh.SmoothRatio = 3;
Mesh.AnisoMax = 1000;
Mesh.Algorithm = 7;

2.18 t18: Periodic meshes

See t18.geo. Also available in C++ (t18.cpp), Python (t18.py), Julia (t18.jl) and Fortran
(£18.£90).

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t18.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t18.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t18.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t18.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t18.f90

52 Gmsh 4.13.0 (development version)

[
YAV
Vawy
VAN

Vavay)
—
avs

"A e
e
ied

“

// Gmsh GEO tutorial 18

// Periodic meshes

// Periodic meshing constraints can be imposed on surfaces and curves.
// Let’s use the OpenCASCADE geometry kernel to build two geometries.
SetFactory("OpenCASCADE") ;

// The first geometry is very simple: a unit cube with a non-uniform mesh size
// constraint (set on purpose to be able to verify visually that the periodicity
// constraint works!):

Box(1) = {0, 0, 0, 1, 1, 1};
MeshSize {:} = 0.1;
MeshSize {1}

]
o
(@]
N

// To impose that the mesh on surface 2 (the right side of the cube) should
// match the mesh from surface 1 (the left side), the following periodicity
// constraint is set:

Periodic Surface {2} = {1} Tramnslate {1, 0, 0};

// During mesh generation, the mesh on surface 2 will be created by copying the
// mesh from surface 1. Periodicity constraints can be specified with a
// ‘Translation’, a ‘Rotation’ or a general ‘Affine’ transform.

// Multiple periodicities can be imposed in the same way:
Periodic Surface {6} = {5} Translate {0, 0, 1};
Periodic Surface {4} = {3} Translate {0, 1, 0};

// For more complicated cases, finding the corresponding surfaces by hand can be
// tedious, especially when geometries are created through solid
// modelling. Let’s construct a slightly more complicated geometry.

// We start with a cube and some spheres:
Box(10) = {2, 0, 0, 1, 1, 1};

x =2-0.3; y=0; z=0;

Sphere(11) = {x, y, z, 0.35};

Chapter 2: Gmsh tutorial 53

Sphere(12) = {x+1, y, z, 0.35};
Sphere(13) = {x, y+1, z, 0.35};
Sphere(14) = {x, y, z+1, 0.35};
Sphere(15) = {x+1, y+1, z, 0.35};
Sphere(16) = {x, y+1, z+1, 0.35};
Sphere(17) = {x+1, y, z+1, 0.35};
Sphere(18) = {x+1, y+1, z+1, 0.35};

// We first fragment all the volumes, which will leave parts of spheres
// protruding outside the cube:
v() = BooleanFragments { Volume{10}; Delete; }{ Volume{11:18}; Delete; };

// Ask OpenCASCADE to compute more accurate bounding boxes of entities using the
// STL mesh:
Geometry.0CCBoundsUseStl = 1;

// We then retrieve all the volumes in the bounding box of the original cube,
// and delete all the parts outside it:

eps = le-3;

vin() = Volume In BoundingBox {2-eps,-eps,-eps, 2+1+eps,l+eps,l+epsl};

v() -= vin(Q);

Recursive Delete{ Volume{v()}; }

// We now set a non-uniform mesh size constraint (again to check results
// visually):

MeshSize { PointsOf{ Volume{vin()}; }} = 0.1;

p() = Point In BoundingBox{2-eps, -eps, -eps, 2+eps, eps, epsl};

MeshSize {p()} = 0.001;

// We now identify corresponding surfaces on the left and right sides of the
// geometry automatically.

// First we get all surfaces on the left:
Sxmin() = Surface In BoundingBox{2-eps, -eps, -eps, 2+eps, l+eps, l+eps};

For i In {0:#Sxmin()-1}
// Then we get the bounding box of each left surface
bb() = BoundingBox Surface { Sxmin(i) };
// We translate the bounding box to the right and look for surfaces inside it:
Sxmax() = Surface In BoundingBox { bb(0)-eps+1, bb(1)-eps, bb(2)-eps,
bb(3)+eps+1l, bb(4)+eps, bb(5)+eps };
// For all the matches, we compare the corresponding bounding boxes...
For j In {0:#Sxmax()-1}
bb2() = BoundingBox Surface { Sxmax(j) };
bb2(0) -= 1;
bb2(3) -= 1;
// ...and if they match, we apply the periodicity constraint
If (Fabs(bb2(0)-bb(0)) < eps && Fabs(bb2(1)-bb(1)) < eps &&
Fabs (bb2(2)-bb(2)) < eps && Fabs(bb2(3)-bb(3)) < eps &&
Fabs(bb2(4)-bb(4)) < eps && Fabs(bb2(5)-bb(5)) < eps)
Periodic Surface {Sxmax(j)} = {Sxmin(i)} Translate {1,0,0};
EndIf

54 Gmsh 4.13.0 (development version)

EndFor
EndFor

2.19 t19: Thrusections, fillets, pipes, mesh size from curvature

See t19.geo. Also available in C++ (t19.cpp), Python (t19.py), Julia (t19.j1) and Fortran
(£19.£90).

//

// Gmsh GEO tutorial 19

//

// Thrusections, fillets, pipes, mesh size from curvature

//

[/ mmmm e o

// The OpenCASCADE geometry kernel supports several useful features for solid
// modelling.

SetFactory ("OpenCASCADE") ;

// Volumes can be constructed from (closed) curve loops thanks to the
// ‘ThruSections’ command

Circle(1) = {0,0,0, 0.5%}; Curve Loop(1) = 1;

Circle(2) = {0.1,0.05,1, 0.1}; Curve Loop(2) =
Circle(3) {-0.1,-0.1,2, 0.3}; Curve Loop(3)
ThruSections(1) = {1:3};

|
N

Il
w

// With ‘Ruled ThruSections’ you can force the use of ruled surfaces:

Circle(11) = {2+0,0,0, 0.5%}; Curve Loop(11) = 11;
Circle(12) = {2+0.1,0.05,1, 0.1}; Curve Loop(12) = 12;
Circle(13) = {2-0.1,-0.1,2, 0.3}; Curve Loop(13) = 13;

Ruled ThruSections(11) = {11:13%};

// We copy the first volume, and fillet all its edges:
v() = Translate{4, 0, 0} { Duplicata{ Volume{1}; } };
f() = Abs(Boundary{ Volume{v(0)}; });

e() Unique (Abs (Boundary{ Surface{f(}; }));
Fillet{v(0)}{e(0}{0.1}

// OpenCASCADE also allows general extrusions along a smooth path. Let’s first
// define a spline curve:

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t19.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t19.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t19.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t19.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t19.f90

Chapter 2: Gmsh tutorial 55

nturns = 1;
npts = 20;
r =1;
h = 1 *x nturns;
For i In {0 : npts - 1}
theta = i * 2*Pi*nturns/npts;
Point (1000 + i) = {r * Cos(theta), r * Sin(theta), i * h/npts};
EndFor
Spline(1000) = {1000 : 1000 + npts - 1};

// A wire is like a curve loop, but open:
Wire(1000) = {1000};

// We define the shape we would like to extrude along the spline (a disk):
Disk(1000) = {1,0,0, 0.2};
Rotate {{1, 0, 0}, {0, 0, 0}, Pi/2} { Surface{1000}; }

// We extrude the disk along the spline to create a pipe:
Extrude { Surface{1000}; } Using Wire {1000}

// We delete the source surface, and increase the number of sub-edges for a
// nicer display of the geometry:

Delete{ Surface{1000}; }

Geometry.NumSubEdges = 1000;

// We can activate the calculation of mesh element sizes based on curvature
// (here with a target of 20 elements per 2#Pi radians):
Mesh.MeshSizeFromCurvature = 20;

// We can constraint the min and max element sizes to stay within reasonnable
// values (see ‘t10.geo’ for more details):

Mesh.MeshSizeMin = 0.001;

Mesh.MeshSizeMax = 0.3;

2.20 t20: STEP import and manipulation, geometry
partitioning

See t20.geo. Also available in C++ (t20.cpp), Python (t20.py), Julia (t20.j1) and Fortran
(620.£90).

)

gl
Z7
"’VJ"

7

77
L7

)
77

$Z
=

RS
9

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t20.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t20.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t20.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t20.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t20.f90

56 Gmsh 4.13.0 (development version)

// Gmsh GEO tutorial 20

//

// STEP import and manipulation, geometry partitioning

//

[/ T

// The OpenCASCADE geometry kernel allows to import STEP files and to modify
// them. In this tutorial we will load a STEP geometry and partition it into
// slices.

SetFactory ("OpenCASCADE") ;

// Load a STEP file (using ‘ShapeFromFile’ instead of ‘Merge’ allows to directly
// retrieve the tags of the highest dimensional imported entities):
v() = ShapeFromFile("t20_data.step");

// If we had specified

//

// Geometry.0CCTargetUnit = "M";

//

// before merging the STEP file, OpenCASCADE would have converted the units to
// meters (instead of the default, which is millimeters).

// Get the bounding box of the volume:
bbox() = BoundingBox Volume{v()};
xmin = bbox(0);

ymin = bbox(1);

zmin = bbox(2);

xmax = bbox(3);

ymax = bbox(4);

zmax = bbox(5);

// We want to slice the model into N slices, and either keep the volume slices
// or just the surfaces obtained by the cutting:
DefineConstant [

N = {5, Min 2, Max 100, Step 1, Name "Parameters/ONumber of slices"}

dir = {0, Choices{0="X", 1="Y", 2="Z"}, Name "Parameters/1Direction"}

surf = {0, Choices{0O, 1}, Name "Parameters/2Keep only surfaces?"}

1;

dx = (xmax - xmin);
dy = (ymax - ymin);
dz (zmax - zmin);
L = (dir == 0) ? dz : dx;
H = (dir == 1) 7 dz : dy;

// Create the first cutting plane:
sO = {news};
Rectangle(s(0)) = {xmin, ymin, zmin, L, H};
If(dir == 0)
Rotate{ {0, 1, 0}, {xmin, ymin, zmin}, -Pi/2 } { Surface{s(0)}; }
ElseIf(dir == 1)

Chapter 2: Gmsh tutorial 57

Rotate{ {1, 0, 0}, {xmin, ymin, zmin}, Pi/2 } { Surface{s(0)}; }
EndIf
tx = (dir == 0) 27 dx / N : 0O;
ty = (dir == 1) ?7dy / N : 0;
tz (dir ==2) 2dz /N : 0
Translate{tx, ty, tz} { Surface{s(0)}; }

b

// Create the other cutting planes:
For i In {1:N-2}

s() += Translate{i * tx, i * ty, i * tz} { Duplicata{ Surface{s(0)}; } };
EndFor

// Fragment (i.e. intersect) the volume with all the cutting planes:
BooleanFragments{ Volume{v()}; Delete; }{ Surface{s()}; Delete; }

// Now remove all the surfaces (and their bounding entities) that are not on the
// boundary of a volume, i.e. the parts of the cutting planes that "stick out"
// of the volume:

Recursive Delete { Surface{:}; }

If (surf)
// If we want to only keep the surfaces, retrieve the surfaces in bounding
// boxes around the cutting planes...

eps = le-4;
sO = {3};
For i In {1:N-1}
xx = (dir == 0) ? xmin : xmax;

yy = (dir == 1) 7 ymin : ymax;
zZ (dir == 2) ? zmin : zmax;
s() += Surface In BoundingBox
{xmin - eps + i * tx, ymin - eps + i * ty, zmin - eps + i * tz,
XX + eps + 1 % tx, yy + eps + 1 *x ty, zz + eps + 1 * tzl};
EndFor

// ...and remove all the other entities:

dels = Surface{:};

dels -= s();

Delete { Volume{:}; Surface{dels()}; Curve{:}; Point{:}; }
EndIf

// Finally, let’s specify a global mesh size:
Mesh.MeshSizeMin = 3;
Mesh.MeshSizeMax = 3;

// To partition the mesh instead of the geometry, see ‘t21.geo’.

2.21 t21: Mesh partitioning

See t21.geo. Also available in C++ (t21.cpp), Python (t21.py), Julia (t21.jl) and Fortran
(£21.£90).

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t21.geo
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/t21.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/t21.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/t21.jl
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/fortran/t21.f90

58 Gmsh 4.13.0 (development version)

]
<EOSEREK
KR SRR
X ORISR
5 S iAo

[
52

ST
B

VAV
VAVaY o
VAYAVAVAV,
s

LV
Vi

//

// Gmsh GEO tutorial 21

//

// Mesh partitioning

//

/) mmmm T

// Gmsh can partition meshes using different algorithms, e.g. the graph

// partitioner Metis or the ‘SimplePartition’ plugin. For all the partitioning
// algorithms, the relationship between mesh elements and mesh partitions is
// encoded through the creation of new (discrete) elementary entities, called
// "partition entities".

//

// Partition entities behave exactly like other discrete elementary entities;
// the only difference is that they keep track of both a mesh partition index
// and their parent elementary entity.

//

// The major advantage of this approach is that it allows to maintain a full
// boundary representation of the partition entities, which Gmsh creates

// automatically if ‘Mesh.PartitionCreateTopology’ is set.

// Let us start by creating a simple geometry with two adjacent squares sharing
// an edge:

SetFactory ("OpenCASCADE") ;

Rectangle(1) = {0, 0, 0, 1, 1};

Rectangle(2) {1, 0, 0, 1, 13};

BooleanFragments{ Surface{1}; Delete; }{ Surface{2}; Delete; }

MeshSize {:} = 0.05;

// We create one physical group for each square, and we mesh the resulting
// geometry:

Physical Surface("Left", 100) = 1;

Physical Surface("Right", 200) = 2;

Mesh 2;

// We now define several constants to fine-tune how the mesh will be partitioned
DefineConstant [
partitioner = {0, Choices{0="Metis", 1="SimplePartition"},
Name "Parameters/OMesh partitioner"}
N = {3, Min 1, Max 256, Step 1,
Name "Parameters/1Number of partitions"}
topology = {1, Choices{0, 1},

Chapter 2: Gmsh tutorial

Name "Parameters/2Create partition topology (BRep)?"}
ghosts = {0, Choices{0, 1},
Name "Parameters/3Create ghost cells?"}
physicals = {0, Choices{0, 1},
Name "Parameters/3Create new physical groups?"}
write = {1, Choices {0, 1},
Name "Parameters/3Write file to disk?"}
split = {0, Choices {0, 1},
Name "Parameters/4Write one file per partition?"}

1;

// Should we create the boundary representation of the partition entities?
Mesh.PartitionCreateTopology = topology;

// Should we create ghost cells?
Mesh.PartitionCreateGhostCells = ghosts;

99

// Should we automatically create new physical groups on the partition entities?

Mesh.PartitionCreatePhysicals = physicals;

// Should we keep backward compatibility with pre-Gmsh 4, e.g. to save the mesh

// in MSH2 format?
Mesh.Partition0ldStyleMsh2 = O;

// Should we save one mesh file per partition?
Mesh.PartitionSplitMeshFiles = split;

If (partitioner == 0)
// Use Metis to create N partitions
PartitionMesh N;

// Several options can be set to control Metis: ‘Mesh.MetisAlgorithm’ (1:

// Recursive, 2: K-way), ‘Mesh.MetisObjective’ (1: min. edge-cut, 2:
// min. communication volume), ‘Mesh.PartitionTriWeight’ (weight of
// triangles), ‘Mesh.PartitionQuadWeight’ (weight of quads),
Else
// Use the ‘SimplePartition’ plugin to create chessboard-like partitions
Plugin(SimplePartition) .NumSlicesX = N;
Plugin(SimplePartition) .NumSlicesY = 1;
Plugin(SimplePartition) .NumSlicesZ = 1;
Plugin(SimplePartition) .Run;
EndIf

// Save mesh file (or files, if ‘Mesh.PartitionSplitMeshFiles’ is set):
If (write)

Save "t21.msh";
EndIf

2.22 x1: Geometry and mesh data
See x1.py. Also available in C++ (x1.cpp) and Julia (x1.j1).

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/x1.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/x1.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/x1.jl

60 Gmsh 4.13.0 (development version)

SR
VAVAVANAN S o)
SNAAAA
VA

/)
s

Gmsh Python extended tutorial 1

Geometry and mesh data

H OH HF H R

+H+

The Python API allows to do much more than what can be done in .geo
files. These additional features are introduced gradually in the extended
tutorials, starting with ‘x1.py’.

H OH

+*

In this first extended tutorial, we start by using the API to access basic
geometrical and mesh data.

+H+

import gmsh
import sys

gmsh.initialize()

if len(sys.argv) > 1 and sys.argv[1][0] != ’-’:
If an argument is provided, handle it as a file that Gmsh can read, e.g. a
mesh file in the MSH format (‘python x1.py file.msh’)
gmsh.open(sys.argv[1])

else:
Otherwise, create and mesh a simple geometry
gmsh.model.occ.addCone(1, 0, 0, 1, O, 0, 0.5, 0.1)
gmsh.model.occ.synchronize ()
gmsh.model .mesh.generate ()

Print the model name and dimension:
print (’Model ’ + gmsh.model.getCurrent() + > (’ +
str(gmsh.model.getDimension()) + ’D)’)

Geometrical data is made of elementary model ‘entities’, called ‘points’
(entities of dimension 0), ‘curves’ (entities of dimension 1), ‘surfaces’
(entities of dimension 2) and ‘volumes’ (entities of dimension 3). As we have
seen in the other Python tutorials, elementary model entities are identified
by their dimension and by a ‘tag’: a strictly positive identification

number. Model entities can be either CAD entities (from the built-in ‘geo’
kernel or from the OpenCASCADE ‘occ’ kernel) or ‘discrete’ entities (defined
by a mesh). ‘Physical groups’ are collections of model entities and are also
identified by their dimension and by a tag.

H OHF HF H H H H H H

Chapter 2: Gmsh tutorial 61

Get

all the elementary entities in the model, as a vector of (dimension, tag)

pairs:
entities = gmsh.model.getEntities()

for e in entities:
Dimension and tag of the entity:
dim = e[0]
tag = e[1]
Mesh data is made of ‘elements’ (points, lines, triangles, ...), defined
by an ordered list of their ‘nodes’. Elements and nodes are identified by
‘tags’ as well (strictly positive identification numbers), and are stored
("classified") in the model entity they discretize. Tags for elements and
nodes are globally unique (and not only per dimension, like entities).

H OH H H HF H H R

#

A model entity of dimension O (a geometrical point) will contain a mesh
element of type point, as well as a mesh node. A model curve will contain
line elements as well as its interior nodes, while its boundary nodes will
be stored in the bounding model points. A model surface will contain
triangular and/or quadrangular elements and all the nodes not classified
on its boundary or on its embedded entities. A model volume will contain
tetrahedra, hexahedra, etc. and all the nodes not classified on its
boundary or on its embedded entities.

Get the mesh nodes for the entity (dim, tag):

nodeTags, nodeCoords, nodeParams = gmsh.model.mesh.getNodes(dim, tag)

#

Get the mesh elements for the entity (dim, tag):

elemTypes, elemTags, elemNodeTags = gmsh.model.mesh.getElements(dim, tag)

#
#

#
#

#

Elements can also be obtained by type, by using ‘getElementTypes()’
followed by ‘getElementsByType()’.

Let’s print a summary of the information available on the entity and its
mesh.

* Type and name of the entity:

type = gmsh.model.getType(dim, tag)

name = gmsh.model.getEntityName(dim, tag)

if len(name): name += ’> °’

print("Entity " + name + str(e) + " of type " + type)

#

* Number of mesh nodes and elements:

numElem = sum(len(i) for i in elemTags)
print(" - Mesh has " + str(len(nodeTags)) + " nodes and " + str(numElem) +

#

" elements")

* Upward and downward adjacencies:

up, down = gmsh.model.getAdjacencies(dim, tag)
if len(up):

print (" - Upward adjacencies: " + str(up))

Gmsh 4.13.0 (development version)

62

if len(down):

" + str(down))

print(" - Downward adjacencies:

* Does the entity belong to physical groups?

gmsh.model .getPhysicalGroupsForEntity(dim, tag)

if len(physicalTags):

physicalTags

)

s
for p in physicalTags:

gmsh.model.getPhysicalName(dim, p)

n=
if n: n +

n+ °C + str(dim) + ’, > + str(p) +) °’

s +=

n + S)

print(" - Physical groups:

* Is the entity a partition entity? If so, what is its parent entity?

gmsh.model.getPartitions(dim, tag)

if len(partitions):

partitions

" + str(partitions) + " - parent entity " +

print(" - Partition tags:

str(gmsh.model.getParent(dim, tag)))

* List all types of elements making up the mesh of the entity:

for t in elemTypes:

gmsh.model.mesh.getElementProperties(

name, dim, order, numv, parv,

t)
print(" - Element type:

" + name + ", order " + str(order) + " (" +

"4 str(parv) + ll)ll)

str(numv) + " nodes in param coord:

Launch the GUI to see the model:
if ’-nopopup’ not in sys.argv:

gmsh.fltk.run()

We can use this to clear all the model data:

gmsh.clear()

gmsh.finalize()

k=
2]
—
—
Q
-
-
)
L
=
@)
& x
e N
o p >
ks
v
= <
AN
TR
- = R
o ~ RO
Ly Vsl ATAYAVAN Va1
~+ N v ravaviva gy i
g e RRAKN
- % B AIAAVAVAYAAVY
S it
o = OO
2 3
-~
O <
~ —
C o VAV A
VAVLV. e AT
/2] = KR
o= © »MWAWVAVAV
< Y
NeJ
-
+ +
— +
(@) (@)
Q. =
or—
g 3
o p— b
< =
—
n oo S
Q m =
M = 3
N =
e @ <
Q] .
w 8 2
o
~
(] b
Om S
N n

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/x2.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/x2.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/x2.jl

Chapter 2: Gmsh tutorial 63

Gmsh Python extended tutorial 2

#
#
Mesh import, discrete entities, hybrid models, terrain meshing
#

import gmsh
import sys
import math

The API can be used to import a mesh without reading it from a file, by
creating nodes and elements on the fly and storing them in model
entities. These model entities can be existing CAD entities, or can be
discrete entities, entirely defined by the mesh.

Discrete entities can be reparametrized (see ‘t13.py’) so that they can be
remeshed later on; and they can also be combined with built-in CAD entities to
produce hybrid models.

We combine all these features in this tutorial to perform terrain meshing,
where the terrain is described by a discrete surface (that we then
reparametrize) combined with a CAD representation of the underground.

H OHF H H OH H H H H H HH

gmsh.initialize()
gmsh.model.add ("x2")

We will create the terrain surface mesh from N x N input data points:
N = 100

Helper function to return a node tag given two indices i and j:
def tag(i, j):
return (N + 1) * i + j + 1

The x, y, z coordinates of all the nodes:
coords = []

The tags of the corresponding nodes:
nodes = []

The connectivities of the triangle elements (3 node tags per triangle) on the
terrain surface:
tris = []

The connectivities of the line elements on the 4 boundaries (2 node tags
for each line element):

lin = ({1, (1, (1, [1]

The connectivities of the point elements on the 4 corners (1 node tag for each
point element):

64 Gmsh 4.13.0 (development version)

pnt = [tag(0, 0), tag(N, 0), tag(N, N), tag(0, N)]

for i in range(N + 1):
for j in range(N + 1):

nodes.append (tag(i, j))

coords.extend ([
float(i) / N,
float(j) / N, 0.05 * math.sin(10 * float(i + j) / N)

D

if i > 0 and j > O:
tris.extend([tag(i - 1, j - 1), tag(i, j - 1), tag(i - 1, 1)
tris.extend([tag(i, j - 1), tag(i, j), tag(i - 1, jH1)

if (i == 0 or i == N) and j > O:
lin[3 if i == 0 else 1].extend([tag(i, j - 1), tag(i, jO1)

if (j ==0or j==N) and i > O:
1in[0 if j == 0 else 2].extend([tag(i - 1, j), tag(i, j)1)

Create 4 discrete points for the 4 corners of the terrain surface:
for i in range(4):
gmsh.model.addDiscreteEntity (0, i + 1)

gmsh.model.setCoordinates(1, 0, 0, coords[3 * tag(0, 0) - 11)
gmsh.model.setCoordinates(2, 1, 0, coords[3 * tag(N, 0) - 1]1)
gmsh.model.setCoordinates(3, 1, 1, coords[3 * tag(N, N) - 11)
gmsh.model.setCoordinates(4, 0, 1, coords[3 * tag(0, N) - 1])

Create 4 discrete bounding curves, with their boundary points:
for i in range(4):
gmsh.model.addDiscreteEntity(1, i + 1, [i + 1, i + 2 if i < 3 else 1])

Create one discrete surface, with its bounding curves:
gmsh.model.addDiscreteEntity(2, 1, [1, 2, -3, -4])

Add all the nodes on the surface (for simplicity... see below):
gmsh.model .mesh.addNodes(2, 1, nodes, coords)

Add point elements on the 4 points, line elements on the 4 curves, and
triangle elements on the surface:
for i in range(4):
Type 15 for point elements:
gmsh.model .mesh.addElementsByType(i + 1, 15, [1, [pnt[il])
Type 1 for 2-node line elements:
gmsh.model.mesh.addElementsByType(i + 1, 1, []1, 1in[il)
Type 2 for 3-node triangle elements:
gmsh.model .mesh.addElementsByType(1, 2, [], tris)

Reclassify the nodes on the curves and the points (since we put them all on
the surface before with ‘addNodes’ for simplicity)
gmsh.model .mesh.reclassifyNodes ()

Create a geometry for the discrete curves and surfaces, so that we can remesh
them later on:
gmsh.model .mesh.createGeometry ()

Chapter 2: Gmsh tutorial 65

Note that for more complicated meshes, e.g. for on input unstructured STL

mesh, we could use ‘classifySurfaces()’ to automatically create the discrete
entities and the topology; but we would then have to extract the boundaries
afterwards.

Create other build-in CAD entities to form one volume below the terrain

surface. Beware that only built-in CAD entities can be hybrid, i.e. have

discrete entities on their boundary: OpenCASCADE does not support this

feature.

pl = gmsh.model.geo.addPoint(0, 0, -0.5)

p2 = gmsh.model.geo.addPoint(1, 0, -0.5)
p3 = gmsh.model.geo.addPoint(1, 1, -0.5)
p4 = gmsh.model.geo.addPoint(0, 1, -0.5)
cl = gmsh.model.geo.addLine(pl, p2)
c2 = gmsh.model.geo.addLine(p2, p3)
c¢3 = gmsh.model.geo.addLine(p3, p4)
c4 = gmsh.model.geo.addLine(p4, pl)
c10 = gmsh.model.geo.addLine(pl, 1)

c1l = gmsh.model.geo.addLine(p2, 2)
c12 = gmsh.model.geo.addLine(p3, 3)
c13 = gmsh.model.geo.addLine(p4, 4)
111 = gmsh.model.geo.addCurveLoop([cl, c2, c3, c4l)

sl = gmsh.model.geo.addPlaneSurface([111])

113 = gmsh.model.geo.addCurveLoop([cl, c11, -1, -c10])
s3 = gmsh.model.geo.addPlaneSurface([113])

114 = gmsh.model.geo.addCurveLoop([c2, c12, -2, -c11])
s4 = gmsh.model.geo.addPlaneSurface([114])

115 = gmsh.model.geo.addCurveLoop([c3, c13, 3, -c12])
sb = gmsh.model.geo.addPlaneSurface([115])

116 = gmsh.model.geo.addCurveLoop([c4, c10, 4, -c13])
s6 = gmsh.model.geo.addPlaneSurface([116])

sl1l = gmsh.model.geo.addSurfaceLoop([sl, s3, s4, s5, s6, 1])
vl = gmsh.model.geo.addVolume([s11])

gmsh.model .geo.synchronize ()

Set this to True to build a fully hex mesh:
#transfinite = True

transfinite = False

transfiniteAuto = False

if transfinite:
NN = 30
for ¢ in gmsh.model.getEntities(1):
gmsh.model .mesh.setTransfiniteCurve(c[1], NN)
for s in gmsh.model.getEntities(2):
gmsh.model .mesh.setTransfiniteSurface(s[1])
gmsh.model.mesh.setRecombine(s[0], s[1])
gmsh.model .mesh.setSmoothing(s[0], s[1], 100)
gmsh.model .mesh.setTransfiniteVolume (v1)
elif transfiniteAuto:
gmsh.option.setNumber (’Mesh.MeshSizeMin’, 0.5)

66 Gmsh 4.13.0 (development version)

gmsh.option.setNumber (’Mesh.MeshSizeMax’, 0.5)
setTransfiniteAutomatic() uses the sizing constraints to set the number
of points
gmsh.model .mesh.setTransfiniteAutomatic()
else:
gmsh.option.setNumber (’Mesh.MeshSizeMin’, 0.05)
gmsh.option.setNumber (’Mesh.MeshSizeMax’, 0.05)

gmsh.model .mesh.generate (3)
gmsh.write(’x2.msh’)

Launch the GUI to see the results:
if ’-nopopup’ not in sys.argv:

gmsh.fltk.run()

gmsh.finalize()

2.24 x3: Post-processing data import: list-based
See x3.py. Also available in C++ (x3.cpp) and Julia (x3.j1).

A multi-step list-based view
A

\4

A list-based view - step 5 in [0,9] nd order quad Y

b
(O

2 12 22 0 3 2 X

Created witr- - - -

#
Gmsh Python extended tutorial 3
#
Post-processing data import: list-based
#

import gmsh
import sys

gmsh.initialize(sys.argv)

Gmsh supports two types of post-processing data: "list-based" and
"model-based". Both types of data are handled through the ‘view’ interface.

+*

List-based views are completely independent from any model and any mesh: they
are self-contained and simply contain lists of coordinates and values, element
by element, for 3 types of fields (scalar "S", vector "V" and tensor "T") and
several types of element shapes (point "P", line "L", triangle "T", quadrangle
"Q", tetrahedron "S", hexahedron "H", prism "I" and pyramid "Y"). (See ‘x4.py’

H OH H O H R

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/x3.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/x3.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/x3.jl

Chapter 2: Gmsh tutorial 67

for a tutorial on model-based views.)

To create a list-based view one should first create a view:
tl = gmsh.view.add("A list-based view")

List-based data is then added by specifying the type as a 2 character string
that combines a field type and an element shape (e.g. "ST" for a scalar field
on triangles), the number of elements to be added, and the concatenated list
of coordinates (e.g. 3 "x" coordinates, 3 "y" coordinates, 3 "z" coordinates
for first order triangles) and values for each element (e.g. 3 values for
first order scalar triangles, repeated for each step if there are several time
steps) .

H OHF H H H H H

Let’s create two triangles...

trianglel = [0., 1., 1., # x coordinates of the 3 triangle nodes
0., 0., 1., # y coordinates of the 3 triangle nodes
0., 0., 0.] # z coordinates of the 3 triangle nodes

triangle2 = [0., 1., 0., O., 1., 1., 0., 0., 0.]

... and append values for 10 time steps

for step in range(0, 10):
trianglel.extend([10., 11. - step, 12.]) # 3 node values for each step
triangle2.extend([11., 12., 13. + stepl)

List-based data is just added by concatenating the data for all the triangles:
gmsh.view.addListData(tl, "ST", 2, trianglel + triangle2)

Internally, post-processing views parsed by the .geo file parser create such
list-based data (see e.g. ‘t7.py’, ‘t8.py’ and ‘t9.py’), independently of any
mesh.

=+

Vector or tensor fields can be imported in the same way, the only difference
beeing the type (starting with "V" for vector fields and "T" for tensor

fields) and the number of components. For example a vector field on a line

element can be added as follows:

line = [
0., 1., # x coordinate of the 2 line nodes
1.2, 1.2, # y coordinate of the 2 line nodes
0., 0. # z coordinate of the 2 line nodes
]

for step in range(0, 10):
3 vector components for each node (2 nodes here), for each step
line.extend([10. + step, 0., O.,
10. + step, 0., 0.]1)
gmsh.view.addListData(tl, "VL", 1, line)

List-based data can also hold 2D (in window coordinates) and 3D (in model

coordinates) strings (see ‘t4.py’). Here we add a 2D string located on the
bottom-left of the window (with a 20 pixels offset), as well as a 3D string
located at model coordinates (0.5, 0.5. 0):

gmsh.view.addListDataString(tl, [20., -20.], ["Created with Gmsh"])
gmsh.view.addListDataString(tl, [0.5, 1.5, 0.],

68 Gmsh 4.13.0 (development version)

["A multi-step list-based view"],
["Align", "Center", "Font", "Helvetica"])

The various attributes of the view can be queried and changed using the option
interface:

gmsh.view.option.setNumber(tl, "TimeStep", 5)

gmsh.view.option.setNumber(tl, "IntervalsType", 3)

ns = gmsh.view.option.getNumber(tl, "NbTimeStep")

print("View " + str(tl) + " has " + str(mns) + " time steps")

Views can be queried and modified in various ways using plugins (see ‘t9.py’),
or probed directly using ‘gmsh.view.probe()’ - here at point (0.9, 0.1, 0):
print("Value at (0.9, 0.1, 0)", gmsh.view.probe(tl, 0.9, 0.1, 0))

Views can be saved to disk using ‘gmsh.view.write()’:
gmsh.view.write(t1l, "x3.pos")

High-order datasets can be provided by setting the interpolation matrices
explicitly. Let’s create a second view with second order interpolation on
a 4-node quadrangle.

Add a new view:
t2 = gmsh.view.add("Second order quad")

Set the node coordinates:

quad = [0., 1., 1., 0., # x coordinates of the 4 quadrangle nodes
-1.2, -1.2, -0.2, -0.2, # y coordinates of the 4 quadrangle nodes
0., 0., 0., 0.] # z coordinates of the 4 quadrangle nodes

Add nine values that will be interpolated by second order basis functions
quad.extend([1., 1., 1., 1., 3., 3., 3., 3., -3.1)

Set the two interpolation matrices c[i] [j] and e[i][j] defining the d = 9
basis functions: f[i]l(u, v, w) = sum_(j =0, ..., d - 1) c[il[j] u~e[j][0]
viel[jl[1] woeljl[2], i =0, ..., d-1, with u, v, w the coordinates in the
reference element:

gmsh.view.setInterpolationMatrices(t2, "Quadrangle", 9,

(o, o, 0.25, 0, 0, -0.25, -0.25, 0, 0.25,
0, 0, 0.25, 0, 0, -0.25, 0.25, 0, -0.25,
0, 0, 0.25, 0, 0, 0.25, 0.25, 0, 0.25,
0, 0, 0.25, 0, 0, 0.25, -0.25, 0, -0.25,
o0, 0, -0.5, 0.5, 0, 0.5, 0, -0.5, O,

0, 0.5, -0.5, 0, 0.5, 0, -0.5, 0O, O,

o0, o, -0.5, 0.5, 0, -0.5, 0, 0.5, O,

0, 0.5, -0.5, 0, -0.5, 0, 0.5, 0, O,

i, -1, 1, -1, 0, 0, 0, O, O],

(o, o, O,

2, 0, 0,

2, 2, 0,

0, 2, 0,

1, 0, 0O,

2,1, 0

-

Chapter 2: Gmsh tutorial 69

1, 2, 0,
0, 1, 0,
1, 1, 01D

Note that two additional interpolation matrices could also be provided to
interpolate the geometry, i.e. to interpolate curved elements.

Add the data to the view:
gmsh.view.addListData(t2, "SQ", 1, quad)

In order to visualize the high-order field, one must activate adaptive

visualization, set a visualization error threshold and a maximum subdivision
level (Gmsh does automatic mesh refinement to visualize the high-order field
with the requested accuracy):

gmsh.view.option.setNumber(t2, "AdaptVisualizationGrid", 1)
gmsh.view.option.setNumber(t2, "TargetError", le-2)
gmsh.view.option.setNumber(t2, "MaxRecursionLevel", 5)

Note that the adapted visualization data can be retrived by setting the
‘returnAdaptive’ argument to the ‘gmsh.view.getListData()’ function.

Launch the GUI to see the results:
if ’-nopopup’ not in sys.argv:
gmsh.fltk.run()

gmsh.finalize()

2.25 x4: Post-processing data import: model-based

3 /| 5
Continuous - ste| tgp 0in [0,9]Y
! Z x
0 1 6 = 22

r =

#
Gmsh Python extended tutorial 4
#
Post-processing data import: model-based
#

import gmsh
import sys

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/x4.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/x4.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/x4.jl

70 Gmsh 4.13.0 (development version)

gmsh.initialize(sys.argv)

Contrary to list-based view (see ‘x3.py’), model-based views are based on one
or more meshes. Compared to list-based views, they are thus linked to one
model (per step). Post-processing data stored in MSH files create such
model-based views.

H O H H H

Let’s create a first model-based view using a simple mesh constructed by
hand. We create a model with a discrete surface

gmsh.model.add("simple model")

surf = gmsh.model.addDiscreteEntity(2)

We add 4 nodes and 2 3-node triangles (element type "2")
gmsh.model .mesh.addNodes (2, surf, [1, 2, 3, 4],

(0., 0., 0., 1., 0., 0., 1., 1., 0., 0., 1., 0.1)
gmsh.model .mesh.addElementsByType(surf, 2, [1, 2], [1, 2, 3, 1, 3, 4])

We can now create a new model-based view, to which we add 10 steps of
node-based data:
tl = gmsh.view.add("Continuous")
for step in range(0, 10):
gmsh.view.addHomogeneousModelData(
tl, step, "simple model", "NodeData",
[1, 2, 3, 4], # tags of nodes
[10., 10., 12. + step, 13. + step]) # data, per node

Besided node-based data, which result in continuous fields, one can also add
general discontinous fields defined at the nodes of each element, using
"ElementNodeData':
t2 = gmsh.view.add("Discontinuous")
for step in range(0, 10):
gmnsh.view.addHomogeneousModelData(
t2, step, "simple model", "ElementNodeData",
[1, 2], # tags of elements
[10., 10., 12. + step, 14., 15., 13. + step]) # data per element nodes

Constant per element datasets can also be created using "ElementData". Note
that a more general function ‘addModelData’ to add data for hybrid meshes
(when data is not homogeneous, i.e. when the number of nodes changes between
elements) is also available.

H O H H H

Each step of a model-based view can be defined on a different model, i.e. on a
different mesh. Let’s define a second model and mesh it
gmsh.model.add("another model")

gmsh.model.occ.addBox(0, 0, 0, 1, 1, 1)

gmsh.model.occ.synchronize ()

gmsh.model .mesh.generate(3)

We can add other steps to view "t" based on this new mesh:

nodes, coord, _ = gmsh.model.mesh.getNodes()

for step in range(11l, 20):
gmsh.view.addHomogeneousModelData(

Chapter 2: Gmsh tutorial 71

tl, step, "another model", "NodeData", nodes,
[step * coord[i] for i in range(0, len(coord), 3)]1)

This feature allows to create seamless animations for time-dependent datasets
on deforming or remeshed models.

+H+

High-order node-based datasets are supported without needing to supply the
interpolation matrices (iso-parametric Lagrange elements). Arbitrary
high-order datasets can be specified as "ElementNodeData", with the
interpolation matrices specified in the same as as for list-based views (see
‘x3.py’).

H OH HF H R

Model-based views can be saved to disk using ‘gmsh.view.write()’; note that

saving a view based on multiple meshes (like the view ‘tl1’) will automatically
create several files. If the ‘PostProcessing.SaveMesh’ option is not set,

‘gmsh.view.write()’ will only save the view data, without the mesh (which

could be saved independently with ‘gmsh.write()’).

gmsh.view.write(tl, "x4_t1.msh")

gmsh.view.write(t2, "x4_t2.msh")

Launch the GUI to see the results:
if ’-nopopup’ not in sys.argv:
gmsh.fltk.run()

gmsh.finalize()

2.26 x5: Additional geometrical data: parametrizations,
normals, curvatures

See x5.py. Also available in C++ (x5.cpp) and Julia (x5.j1).
M et 1

A
1

= N K

e
kg

LT 7 Z X
o
L
T R

Pha
S
DA

Gmsh Python extended tutorial 5

Additional geometrical data: parametrizations, normals, curvatures

H OH H H R

import gmsh
import sys
import math

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/x5.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/x5.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/x5.jl

72 Gmsh 4.13.0 (development version)

gmsh.initialize(sys.argv)
The API provides access to geometrical data in a CAD kernel agnostic manner.

Let’s create a simple CAD model by fusing a sphere and a cube, then mesh the
surfaces:

gmsh.model.add("x5")

s = gmsh.model.occ.addSphere(0, 0, 0, 1)

b = gmsh.model.occ.addBox(0.5, 0, 0, 1.3, 2, 3)

gmsh.model.occ.fuse([(3, s)], [(3, b)])

gmsh.model.occ.synchronize ()

gmsh.model .mesh.generate(2)

We can for example retrieve the exact normals and the curvature at all the
mesh nodes (i.e. not normals and curvatures computed from the mesh, but

directly evaluated on the geometry), by querying the CAD kernels at the

corresponding parametric coordinates.

normals = []

curvatures = []

For each surface in the model:
for e in gmsh.model.getEntities(2):
Retrieve the surface tag

s = e[1]

Get the mesh nodes on the surface, including those on the boundary
(contrary to internal nodes, which store their parametric coordinates,
boundary nodes will be reparametrized on the surface in order to compute
their parametric coordinates, the result being different when
reparametrized on another adjacent surface)

tags, coord, param = gmsh.model.mesh.getNodes(2, s, True)

H OB H HH

Get the surface normals on all the points on the surface corresponding to
the parametric coordinates of the nodes
norm = gmsh.model.getNormal(s, param)

In the same way, get the curvature
curv = gmsh.model.getCurvature(2, s, param)

Store the normals and the curvatures so that we can display them as

list-based post-processing views

for i in range(0, len(coord), 3):
normals.append (coord[i])
normals.append(coord[i + 1])
normals.append(coord[i + 2])
normals.append(norm[i])
normals.append(norm[i + 1])
normals.append(norm[i + 2])
curvatures.append(coord[i])
curvatures.append(coord[i + 1])
curvatures.append(coord[i + 2])

Chapter 2: Gmsh tutorial 73

curvatures.append(curv[i // 3])

Create a list-based vector view on points to display the normals, and a scalar
view on points to display the curvatures

vn = gmsh.view.add("normals")

gmsh.view.addListData(vn, "VP", len(normals) // 6, normals)
gmsh.view.option.setNumber(vn, ’ShowScale’, 0)

gmsh.view.option.setNumber(vn, ’ArrowSizeMax’, 30)
gmsh.view.option.setNumber(vn, ’ColormapNumber’, 19)

vc = gmsh.view.add("curvatures")

gmsh.view.addListData(vc, "SP", len(curvatures) // 4, curvatures)
gmsh.view.option.setNumber(vc, ’ShowScale’, 0)

We can also retrieve the parametrization bounds of model entities, e.g. of
curve 5, and evaluate the parametrization for several parameter values:
bounds = gmsh.model.getParametrizationBounds(1, 5)

N = 20

t [bounds [0] [0] + i * (bounds[1] [0] - bounds[0][0]) / N for i in range(N)]
xyzl = gmsh.model.getValue(l, 5, t)

We can also reparametrize curve 5 on surface 1, and evaluate the points in the
parametric plane of the surface:

uv = gmsh.model.reparametrizeOnSurface(1l, 5, t, 1)

xyz2 = gmsh.model.getValue(2, 1, uv)

Hopefully we get the same x, y, z coordinates!

if max([abs(a - b) for (a, b) in zip(xyzl, xyz2)]) < le-12:
gmsh.logger.write(’Evaluation on curve and surface match!’)

else:
gmsh.logger.write(’Evaluation on curve and surface do not match!’, ’error’)

Launch the GUI to see the results:
if ’-nopopup’ not in sys.argv:
gmsh.fltk.run()

gmsh.finalize()

2.27 x6: Additional mesh data: integration points, Jacobians
and basis functions

See x6.py. Also available in C++ (x6.cpp) and Julia (x6.j1).

#

Gmsh Python extended tutorial 6

#

Additional mesh data: integration points, Jacobians and basis functions

#

import gmsh
import sys

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/x6.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/x6.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/x6.jl

74 Gmsh 4.13.0 (development version)

gmsh.initialize(sys.argv)
gmsh.model.add("x6")

The API provides access to all the elementary building blocks required to
implement finite-element-type numerical methods. Let’s create a simple 2D
model and mesh it:

gmsh.model.occ.addRectangle(0, 0, 0, 1, 0.1)

gmsh.model.occ.synchronize ()

gmsh.model .mesh.setTransfiniteAutomatic()

gmsh.model .mesh.generate (2)

Set the element order and the desired interpolation order:
elementOrder = 1

interpolationOrder = 2

gmsh.model .mesh.setOrder (elementOrder)

def pp(label, v, mult):
print(" * " + str(len(v) / mult) + " " + label + ": " + str(v))

Iterate over all the element types present in the mesh:
elementTypes = gmsh.model.mesh.getElementTypes()

for t in elementTypes:
Retrieve properties for the given element type
elementName, dim, order, numNodes, localNodeCoord, numPrimNodes =\
gmsh.model.mesh.getElementProperties(t)
print ("\n** " + elementName + " *x*\n")

Retrieve integration points for that element type, enabling exact
integration of polynomials of order "interpolationOrder". The "Gauss"

integration family returns the "economical" Gauss points if available, and

defaults to the "CompositeGauss" (tensor product) rule if not.
localCoords, weights =\

gmsh.model.mesh.getIntegrationPoints(t, "Gauss" + str(interpolationOrder))

pp("integration points to integrate order " +
str(interpolationOrder) + " polynomials", localCoords, 3)

Return the basis functions evaluated at the integration points. Selecting
"Lagrange" and "GradLagrange" returns the isoparamtric basis functions and

specific interpolation order can be requested using "LagrangeN" and

"GradLagrangeN" with N =1, 2, ... Other supported function spaces include
"HlLegendreN", "GradHlLegendreN", "HcurlLegendreN", "CurlHcurlLegendreN".

#
#
their gradient (in the reference space of the given element type). A
#
#
#

numComponents, basisFunctions, numOrientations =\
gmsh.model.mesh.getBasisFunctions(t, localCoords, "Lagrange")

pp("basis functions at integration points", basisFunctions, 1)
numComponents, basisFunctions, numOrientations =\

gmsh.model .mesh.getBasisFunctions(t, localCoords, "GradLagrange")
pp("basis function gradients at integration points", basisFunctions, 3)

Compute the Jacobians (and their determinants) at the integration points

Chapter 2: Gmsh tutorial 75

for all the elements of the given type in the mesh. Beware that the

Jacobians are returned "by column": see the API documentation for details.
jacobians, determinants, coords =\

gmsh.model.mesh.getJacobians(t, localCoords)

pp("Jacobian determinants at integration points", determinants, 1)

gmsh.finalize()

2.28 x7: Additional mesh data: internal edges and faces

See x7.py. Also available in C++ (x7.cpp) and Julia (x7.j1).

#

#

Gmsh Python extended tutorial 7

#

Additional mesh data: internal edges and faces

#

import sys
import gmsh

gmsh.initialize(sys.argv)
gmsh.model.add ("x7")

Meshes are fully described in Gmsh by nodes and elements, both associated to
model entities. The API can be used to generate and handle other mesh
entities, i.e. mesh edges and faces, which are not stored by default.

Let’s create a simple model and mesh it:
gmsh.model.occ.addBox(0, 0, 0, 1, 1, 1)
gmsh.model.occ.synchronize ()
gmsh.option.setNumber ("Mesh.MeshSizeMin", 2.)
gmsh.model .mesh.generate(3)

Like elements, mesh edges and faces are described by (an ordered list of)

their nodes. Let us retrieve the edges and the (triangular) faces of all the
first order tetrahedra in the mesh:

elementType = gmsh.model.mesh.getElementType("tetrahedron", 1)

edgeNodes = gmsh.model.mesh.getElementEdgeNodes (elementType)

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/python/x7.py
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/c++/x7.cpp
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/julia/x7.jl

76

Gmsh 4.13.0 (development version)

faceNodes = gmsh.model.mesh.getElementFaceNodes(elementType, 3)

+H+

Edges and faces are returned for each element as a list of nodes corresponding
to the canonical orientation of the edges and faces for a given element type.

Gmsh can also identify unique edges and faces (a single edge or face whatever
the ordering of their nodes) and assign them a unique tag. This identification

#
#
can be done internally by Gmsh (e.g. when generating keys for basis
functions), or requested explicitly as follows:

gmsh.model .mesh.createEdges ()

gmsh.model .mesh.createFaces()

Edge and face tags can then be retrieved by providing their nodes:
edgeTags, edgeOrientations = gmsh.model.mesh.getEdges(edgeNodes)
faceTags, faceOrientations = gmsh.model.mesh.getFaces(3, faceNodes)

Since element edge and face nodes are returned in the same order as the
elements, one can easily keep track of which element(s) each edge or face is
connected to:
elementTags, elementNodeTags = gmsh.model.mesh.getElementsByType (elementType)
edges2Elements = {}
faces2Elements = {}
for i in range(len(edgeTags)): # 6 edges per tetrahedron
if not edgeTags[i] in edges2Elements:
edges2Elements [edgeTags[i]] = [elementTags[i // 6]]
else:
edges2Elements [edgeTags[i]] . append(elementTags[i // 6])
for i in range(len(faceTags)): # 4 faces per tetrahedron
if not faceTags[i] in faces2Elements:
faces2Elements[faceTags[i]] = [elementTags[i // 4]]
else:
faces2Elements[faceTags[i]] .append(elementTags[i // 41)

New unique lower dimensional elements can also be easily created given the

edge or face nodes. This is especially useful for numerical methods that

require integrating or interpolating on internal edges or faces (like

e.g. Discontinuous Galerkin techniques), since creating elements for the

internal entities will make this additional mesh data readily available (see
‘x6.py’). For example, we can create a new discrete surface...
s = gmsh.model.addDiscreteEntity(2)

... and fill it with unique triangles corresponding to the faces of the

tetrahedra:

maxElementTag = gmsh.model.mesh.getMaxElementTag()

uniqueFaceTags = set()

tagsForTriangles = []

faceNodesForTriangles = []

for i in range(len(faceTags)):

if faceTags[i] not in uniqueFaceTags:

uniqueFaceTags.add(faceTags[i])
tagsForTriangles.append(faceTags[i] + maxElementTag)
faceNodesForTriangles.append(faceNodes[3 * i])

Chapter 2: Gmsh tutorial 7

faceNodesForTriangles.append(faceNodes[3 * i + 1])
faceNodesForTriangles.append(faceNodes[3 * i + 2])
elementType2D = gmsh.model.mesh.getElementType("triangle", 1)
gmsh.model .mesh.addElementsByType(s, elementType2D, tagsForTriangles,
faceNodesForTriangles)

Since the tags for the triangles have been created based on the face tags,
the information about neighboring elements can also be readily created,
useful e.g. in Finite Volume or Discontinuous Galerkin techniques:
for t in tagsForTriangles:
print("triangle " + str(int(t)) + " is connected to tetrahedra " +
str(faces2Elements[t - maxElementTag]))

If all you need is the list of all edges or faces in terms of their nodes, you
can also directly call:

edgeTags, edgeNodes = gmsh.model.mesh.getAl1Edges ()

faceTags, faceNodes = gmsh.model.mesh.getAllFaces(3)

Launch the GUI to see the results:
if ’-nopopup’ not in sys.argv:

gmsh.fltk.run()

gmsh.finalize ()

Chapter 3: Gmsh graphical user interface 79

3 Gmsh graphical user interface

Once you have the Gmsh application installed (see Section 1.7 [Installing and running Gmsh on
your computer|, page 14), to launch the graphical interface just double-click on the Gmsh icon,
or type
> gmsh

at the shell prompt in a terminal. This will open the main window of the Gmsh GUI, with
a menu bar on top (except on macOS, where by default the menu bar is on the top of the
screen — this can be changed with the General.SystemMenuBar option, see Section 7.1 [General
options|, page 225), a tree menu on the left (which by default contains a ‘Modules’ entry with
three children: ‘Geometry’, ‘Mesh’ and ‘Solver’), a graphic area on the right, and a status bar
with some shortcut buttons at the bottom. (You can detach the tree menu using ‘Window-
>Attach/Detach Menu’.)

File Tools Window Help

¥ Modules
» Geometry
» Mesh
» Solver

=
S0XYZQ1:18 Kb Perspective projection

To create a new geometrical model, use the ‘File->New’ menu to create a new model file, and
choose for example ‘mymodel.geo’ as file name. Then in the tree menu, successively open the
‘Geometry’, ‘Elementary entities’ and ‘Add’ submenus, and click for example on ‘Rectangle’. A
context window with parameters will pop up: you can enter some parameters in this window
(e.g. the width and height of the rectangle) and move the mouse to place it on the canvas. If you
don’t want to place the rectangle with the mouse, select ‘X’, ‘Y’ and ‘Z freeze’ in the window
and enter the coordinates manually in the context window. Once you are done, either press e
(see the status message on the top of the graphic window) or click on the ‘Add’ button in the
context window.

File Tools Window Help

'y Modules 5 L Move mouse and/or enter coordinates
VVGEET;"::LW enities [Press 'Shift' to hold position, ‘e’ to add rectangle or 'q' to abort]
» Set geometry kemnel
v Add
Parameter 0.
Point ‘
Line
Spline
Bezier

B-Spline 0
Circle \
Circle arc
Ellipse >arameter | Poi ‘ Circle ‘ Ellig ‘ v‘ Rectangle‘ =
Ellipse arc L
Rectangle -0.5 0
Disk 0 v
Plane surface u e
Surface filling 0 z
Sphere P
Cylinder 1 A 2%
Box -1 -0.5 |05 DY
T ~-
orus 0 Rounded radius
Cone
Wedge
Volume = Add
* \ —
0.1 X 0.1 Y 0.1 Z snap "X [Y[Zfreeze

Z0XYZQ 118 K4 D> Orthographic projection

80 Gmsh 4.13.0 (development version)

There is no need to save your geometrical model: when the rectangle was added, scripting
commands were automatically appended to your model file ‘mymodel.geo’:

//+

SetFactory ("OpenCASCADE") ;

Rectangle(1) = {0, 0, 0, 1, 0.5, 0};
You can edit this script with any text editor; clicking on ‘Edit script’ in the tree menu will
launch the default text editor specified by the General.Editor option (see Section 7.1 [General
options]|, page 225). If you edit the script, you should click on ‘Reload script’ in the tree menu
to reload the modifications in the GUI. The //+ line in the script is a comment that is used as
a placemark between commands added by the GUI; see Chapter 5 [Gmsh scripting language],
page 91 for the scripting language reference.

Combining GUI actions and script file editing is a classical way of working with the Gmsh app.
For example, it is often faster to define variables and points directly in the script file, and then
use the GUI to define the curves, the surfaces and the volumes interactively.

To load an existing model instead of creating a model from scratch, use the ‘File->Open’ menu.
For example, to open the first tutorial (see Chapter 2 [Gmsh tutorial], page 15), choose t1.geo.
On the terminal, you can also specify the file name directly on the command line, i.e.:

> gmsh tl.geo

To generate a mesh, open ‘Mesh’ in the tree menu and choose the desired dimension: ‘1D’
will mesh all the curves; ‘2D’ will mesh all the surfaces—as well as all the curves if ‘1D’ was
not called before; ‘3D’ will mesh all the volumes—and all the surfaces if ‘2D’ was not called
before. To save the resulting mesh in the current mesh format click on ‘Save’ in the tree menu,
or select the appropriate format and file name with the ‘File->Export’” menu. The default
mesh file name is based on the name of the current active model, with an appended extension
depending on the mesh format. Note that most interactive commands have keyboard shortcuts:
see Section 3.2 [Keyboard shortcuts|, page 82, or select ‘Help->Keyboard and Mouse Usage’ in
the menu. For example, to quickly generate the 2D mesh and save a mesh, you can first press
2, then Ctrl+Shift+s.

A double-click in the graphic window will pop up a quick shortcut menu, which can be used
e.g. to quickly toggle the visibility of mesh entities (like surface faces), reset the viewport, select
the rotation center, display axes, or access the full module options (from the ‘Tools->Options’
menu). The shortcut buttons on the bottom left of the status bar can be used to quickly adjust
the viewport: ‘X7, ‘°Y’, ‘Z’ set viewports with the corresponding axis perpendicular to graphic
plane; the rotation button rotates the view by 90 degrees; and ‘1:1” resets the scale.

File Tools Window Help L

v Modules

b Geometry Reset viewport
Y Mesh Select rotation center
» ?;ﬁ"e Split window ,
2 [Axes XA
D [Mouse hover over meshes
Optimize 3D Projection mode » I
Optimize 3D (Netgen) Allgeneral options...
Setorder 1 Geometry visibility ,
Set order 2 All geometry options...
Sot ondor 3 [Moshvabiny ———— JRITE or
High-order tools Toggle mesh display M|/ 1D elements oL
Refine by splitting Global mesh size factor [v 2D element edges X 'S
Partition All mesh options....
Unpartition v 3Delementedges XV
Smooth 2D [3D element faces 0B
Recombine 2D
Reclassify 2D
» Experimental
» Reverse
» Delete
Inspect
Save
» Solver
X
%3]

=0XYZQ 1118 K4 b > Done meshing 2D (Wall 0.0137288s, CPU 0.01353s)

Several files can be loaded simultaneously. When specified on the command line, the first one
defines the active model (in the same way as using the ‘File->Open’ menu) and the others are

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/t1.geo

Chapter 3: Gmsh graphical user interface 81

‘merged’ into this model (in the same way as using the the ‘File->Merge’ menu). For example,
to merge the post-processing views contained in the files viewl.pos and view5.msh together with
the geometry of the first tutorial Section 2.1 [t1], page 15, you can type the following command:

> gmsh tl.geo viewl.pos viewb.msh

When one or more more post-processing views are loaded, a ‘Post-Processing’ entry in the
tree menu appears. With the previous command, three views will appear in the tree menu
under ‘Post-processing’, respectively labeled ‘A scalar map’, ‘Nodal scalar map’ and ‘Element 1
vector’. In this example the views contain several time steps: you can loop through them with
the shortcuts icons on the left of the status bar. A mouse click on the view name will toggle the
visibility of the selected view, while a click on the arrow button on the right will provide access
to the view’s options.

Note that all the options specified interactively can also be directly specified in the script files.
You can save the current options of the current active model with the ‘File->Save Model Options’.
This will create a new option file with the same filename as the active model, but with an extra
‘.opt’ extension added. The next time you open this model, the associated options will be
automatically loaded, too. To save the current options as your default preferences for all future
Gmsh sessions, use the ‘File->Save Options As Default’” menu instead. You can also save the
current options in an arbitrary file by choosing the ‘Gmsh options’ format in ‘File->Export’.
For more information about available options (and how to reset them to their default values),
see Chapter 7 [Gmsh options|, page 225. A full list of options with their current values is also
available using the ‘Help->Current Options’ menu.

Finally, note that the GUI can also be run (and modified) using the API: see Section 6.14
[Namespace gmsh/fltk], page 214 for details.

The two next sections describe the mouse actions in the GUI, as well as all the predefined
keyboard shortcuts. Screencasts explaining how to use the Gmsh GUI are available online at
the following address: https://gmsh.info/screencasts/.

3.1 Mouse actions

Move Highlight the entity under the mouse pointer and display its properties / Resize a
lasso zoom or a lasso (un)selection

Left button
Rotate / Select an entity / Accept a lasso zoom or a lasso selection

Ctri+Left button
Start a lasso zoom or a lasso (un)selection

Middle button
Zoom / Unselect an entity / Accept a lasso zoom or a lasso unselection

Ctrl+Middle button
Orthogonalize display

Right button
Pan / Cancel a lasso zoom or a lasso (un)selection / Pop-up menu on post-processing
view button

Ctri+Right button
Reset to default viewpoint

For a 2 button mouse, Middle button = Shift+Left button.
For a 1 button mouse, Middle button = Shift+Left button, Right button = Alt+Left button.

https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/view1.pos
https://gitlab.onelab.info/gmsh/gmsh/blob/master/tutorials/view5.msh
https://gmsh.info/screencasts/

82 Gmsh 4.13.0 (development version)

3.2 Keyboard shortcuts
(On macOS, Ctrl is replaced by Cmd in the shortcuts below.)

Left arrow
Go to previous time step

Right arrow
Go to next time step

Up arrow Make previous view visible

Down arrow
Make next view visible

0 Reload geometry

Ctri+0 or 9
Reload full project

1 or F1 Mesh lines
2 or F2 Mesh surfaces

3orF3 Mesh volumes
Escape Cancel lasso zoom/selection, toggle mouse selection ON/OFF
e End/accept selection in geometry creation mode

Go to geometry module

m Go to mesh module

P Go to post-processing module

q Abort selection in geometry creation mode

s Go to solver module

b'd Toggle x coordinate freeze in geometry creation mode
v Toggle y coordinate freeze in geometry creation mode
z Toggle z coordinate freeze in geometry creation mode

Shift+a Bring all windows to front

Shift+g Show geometry options

Shift+m Show mesh options

Shift+o Show general options

Shift+p Show post-processing options

Shift+s Show solver options

Shift+u Show post-processing view plugins

Shift+w Show post-processing view options

Shift+x Move only along x coordinate in geometry creation mode
Shift+y Move only along y coordinate in geometry creation mode
Shift+z Move only along z coordinate in geometry creation mode

Shift+Escape
Enable full mouse selection

Chapter 3: Gmsh graphical user interface

Ctrl+d Attach/detach menu

Ctrl+te Export project

Ctrl+f Enter full screen
Ctrl+i Show statistics window
Ctri+j Save model options
Ctri+l Show message console
Ctrl+m Minimize window
Ctrl+n Create new project file

Ctrl+o Open project file
Ctrl+q Quit

Ctrl+r Rename project file
Ctrl+s Save mesh in default format
Shift+Ctrl+c

Show clipping plane window
Shift+Ctrl+h

Show current options and workspace window
Shift+Ctrl+j

Save options as default
Shift+Ctrl+m

Show manipulator window
Shift+Ctrl+n

Show option window
Shift+Ctrl+o

Merge file(s)
Shift+Ctrl+r

Open next-to-last opened file
Shift+Ctrl+u

Show plugin window
Shift+Ctrl+v

Show visibility window
Alt+a Loop through axes modes
Alt+b Hide/show bounding boxes
Alt+c Loop through predefined color schemes
Alt+e Hide/Show element outlines for visible post-pro views
Alt+f Change redraw mode (fast/full)
Alt+h Hide/show all post-processing views
Alt+i Hide/show all post-processing view scales
Alt+1 Hide/show geometry lines

Alt+m Toggle visibility of all mesh entities

83

84 Gmsh 4.13.0 (development version)

Alt+n Hide/show all post-processing view annotations

Alt+o Change projection mode (orthographic/perspective)
Alt+p Hide/show geometry points

Alt+r Loop through range modes for visible post-pro views
Alt+s Hide/show geometry surfaces

Alt+t Loop through interval modes for visible post-pro views
Alt+v Hide/show geometry volumes

Alt+w Enable/disable all lighting

Alt+x Set X view
Alt+y Set Y view
Alt+z Set 7 view
Alt+1 Set 1:1 view
Alt+Shift+a

Hide/show small axes
Alt+Shift+b

Hide/show mesh volume faces
Alt+Shift+c

Loop through predefined colormaps
Alt+Shift+d

Hide/show mesh surface faces
Alt+Shift+l

Hide/show mesh lines
Alt+Shift+p

Hide/show mesh nodes
Alt+Shift+s

Hide/show mesh surface edges
Alt+Shift+t

Same as Alt+t, but with numeric mode included
Alt+Shift+v

Hide/show mesh volume edges
Alt+Shift+x

Set -X view
Alt+Shift+y

Set -Y view
Alt+Shift+z

Set -Z view

Alt+Shift+1
Reset bounding box around visible entities

Alt+Ctrl++1
Sync scale between viewports

Chapter 4: Gmsh command-line interface 85

4 Gmsh command-line interface

Gmsh defines a number of commands-line switches that can be used to control Gmsh in “batch”
mode from the command line, and pass options without resorting to a script (see Chapter 5
[Gmsh scripting language], page 91) or the API (see Chapter 6 [Gmsh application programming
interface], page 125).

For example, meshing the first tutorial in batch mode can be done in a terminal by passing the
-2 command-line switch:

> gmsh tl.geo -2
The same effect could be achieved by adding the Mesh 2; command at the end of ‘t1.geo’ and
running
> gmsh tl.geo -parse_and_exit
or further adding the Exit; command at the end of the script and simply opening this new file:
> gmsh tl.geo

Note that all numeric and string options (see Chapter 7 [Gmsh options], page 225) can be set
from the command line with the -setnumber and -setstring switches

> gmsh tl.geo -setnumber Mesh.Nodes 1 -setnumber Geometry.Surfacelabels 1

The list of all command-line switches is given hereafter.
(Related option names, if any, are given between parentheses)
Geometry:

-0 Output model, then exit

-tol value
Set geometrical tolerance (Geometry.Tolerance)

-match Match geometries and meshes
Mesh:

-1, -2, -3
Perform 1D, 2D or 3D mesh generation, then exit

-format string
Select output mesh format: auto, mshl, msh2, msh22, msh3, msh4, msh40, msh41,
msh, unv, vtk, wrl, mail, stl, p3d, mesh, bdf, cgns, med, diff, ir3, inp, ply2, celum,
su2, x3d, dat, neu, m, key, off, rad (Mesh.Format)

-bin Create binary files when possible (Mesh.Binary)
-refine Perform uniform mesh refinement, then exit

-barycentric_refine
Perform barycentric mesh refinement, then exit

-reclassify angle
Reclassify surface mesh, then exit

-reparam angle
Reparametrize surface mesh, then exit

-hybrid generate a hybrid hex-tet mesh with trihedron for transitions
-part int Partition after batch mesh generation (Mesh.NbPartitions)

-part_weight [tri,quad,tet,hex,pri,pyr,trih] int
Weight of a triangle/quad/etc. during partitioning
(Mesh.Partition[Tri,Quad,...| Weight)

86 Gmsh 4.13.0 (development version)

-part_split
Save mesh partitions in separate files (Mesh.PartitionSplitMeshFiles)

-part_[no_]topo
Create the partition topology (Mesh.PartitionCreateTopology)

-part_[no_Jghosts
Create ghost cells (Mesh.PartitionCreateGhostCells)

-part_[no_lphysicals
Create physical groups for partitions (Mesh.PartitionCreatePhysicals)

-part_topo_pro
Save the partition topology .pro file (Mesh.PartitionTopologyFile)

-preserve_numbering_msh2
Preserve element numbering in MSH2 format (Mesh.PreserveNumberingMsh2)

-save_all
Save all elements (Mesh.SaveAll)

-save_parametric
Save nodes with their parametric coordinates (Mesh.SaveParametric)

-save_topology
Save model topology (Mesh.SaveTopology)

-algo string
Select mesh algorithm: auto, meshadapt, del2d, front2d, delquad, quadgs, initial2d,
del3d, front3d, mmg3d, hxt, initial3d (Mesh.Algorithm and Mesh.Algorithm3D)

-smooth int
Set number of mesh smoothing steps (Mesh.Smoothing)

-order int
Set mesh order (Mesh.ElementOrder)

-optimize[_netgen]
Optimize quality of tetrahedral elements (Mesh.Optimize[Netgen])

-optimize_threshold
Optimize tetrahedral elements that have a quality less than a threshold
(Mesh.OptimizeThreshold)

-optimize_ho
Optimize high order meshes (Mesh.HighOrderOptimize)

-ho_[min,max,nlayers]
High-order optimization parameters (Mesh.HighOrderThreshold[Min,Max],
Mesh.HighOrderNumLayers)

—-clscale value
Set mesh element size factor (Mesh.MeshSizeFactor)

—-clmin value
Set minimum mesh element size (Mesh.MeshSizeMin)

-clmax value
Set maximum mesh element size (Mesh.MeshSizeMax)

—-clextend value
Extend mesh element sizes from boundaries (Mesh.MeshSizeExtendFromBoundary)

Chapter 4: Gmsh command-line interface 87

-clcurv value
Compute mesh element size from curvature, with value the target number of ele-
ments per 2*pi radians (Mesh.MeshSizeFromCurvature)

—aniso_max value
Set maximum anisotropy for bamg (Mesh.AnisoMax)

-smooth_ratio value
Set smoothing ration between mesh sizes at nodes of a same edge for bamg
(Mesh.SmoothRatio)

-epslcld value
Set accuracy of evaluation of mesh size field for 1D mesh
(Mesh.LcIntegrationPrecision)

-swapangle value
Set the threshold angle (in degrees) between two adjacent faces below which a swap
is allowed (Mesh.AllowSwapAngle)

-rand value
Set random perturbation factor (Mesh.RandomFactor)

-bgm file Load background mesh from file
-check Perform various consistency checks on mesh

—-ignore_periocity
Ignore periodic boundaries (Mesh.IgnorePeriodicity)

Post-processing;:

-link int Select link mode between views (PostProcessing.Link)

-combine Combine views having identical names into multi-time-step views
Solver:

-listen string
Always listen to incoming connection requests (Solver.AlwaysListen) on the given
socket (uses Solver.SocketName if not specified)

-minterpreter string
Name of Octave interpreter (Solver.Octavelnterpreter)

-pyinterpreter string
Name of Python interpreter (Solver.Octavelnterpreter)

-run Run ONELAB solver(s)
Display:
-n Hide all meshes and post-processing views on startup (View.Visible,

Mesh.[Points,Lines,SurfaceEdges,...])
-nodb Disable double buffering (General.DoubleBuffer)

-numsubedges
Set num of subdivisions for high order element display (Mesh.NumSubEdges)

-fontsize int
Specify the font size for the GUI (General.FontSize)

-theme string
Specify FLTK GUI theme (General. FltkTheme)

88 Gmsh 4.13.0 (development version)

-display string
Specify display (General.Display)

-camera Use camera mode view (General.CameraMode)

-stereo OpenGL quad-buffered stereo rendering (General.Stereo)
-gamepad Use gamepad controller if available

Other:

-, —“parse_and_exit
Parse input files, then exit

-save Save output file, then exit

-o file Specify output file name

-new Create new model before merge next file
-merge Merge next files
-open Open next files

-log filename
Log all messages to filename

-a, -g, -m, -8, p
Start in automatic, geometry, mesh, solver or post-processing mode
(General.InitialModule)

-pid Print process id on stdout

-watch pattern
Pattern of files to merge as they become available (General. WatchFilePattern)

-bg file Load background (image or PDF) file (General. BackgroundImageFileName)
-v int Set verbosity level (General.Verbosity)

-string "string"
Parse command string at startup

-setnumber name value
Set constant, ONELAB or option number name=value

-setstring name value
Set constant, ONELAB or option string name=value

-nopopup Don’t popup dialog windows in scripts (General.NoPopup)
-noenv Don’t modify the environment at startup

-nolocale
Don’t modify the locale at startup

-option file
Parse option file at startup

-convert files
Convert files into latest binary formats, then exit

-nt int Set number of threads (General. NumThreads)
-cpu Report CPU times for all operations

-version Show version number

Chapter 4: Gmsh command-line interface

-info Show detailed version information
-help Show command line usage

-help_options
Show all options

89

Chapter 5: Gmsh scripting language 91

5 Gmsh scripting language

The Gmsh scripting language is interpreted at runtime by Gmsh’s parser. Scripts are written
in ASCII files and are usually given the ‘.geo’ extension, but any extension (or no extension
at all) can also be used. For example Gmsh often uses the ‘.pos’ extension for scripts that
contain post-processing commands, in particular parsed post-processing views (see Section 5.4
[Post-processing scripting commands], page 119).

Historically, ‘.geo’ scripts have been the primary way to perform complex tasks with Gmsh,
and they are indeed quite powerful: they can handle (lists of) floating point (see Section 5.1.2
[Floating point expressions|, page 91) and string (see Section 5.1.3 [String expressions|, page 94)
variables, loops and tests (see Section 5.1.8 [Loops and conditionals|, page 98), macros (see
Section 5.1.7 [User-defined macros|, page 98), etc. However Gmsh’s scripting language is still
quite limited compared to actual programming languages: for example there are no private vari-
ables, macros don’t take arguments, and the runtime interpretation by the parser can penalize
performance on large models. Depending on the workflow and the application, using the Gmsh
API (see Chapter 6 [Gmsh application programming interface|, page 125) can thus sometimes be
preferable. The downside of the API is that, while the scripting language is baked into Gmsh and
is thus available directly in the standalone Gmsh app, the API requires external dependencies
(a C++, C or Fortran compiler; or a Python or Julia interpreter).

This chapter describes the scripting language by detailing general commands first (see Section 5.1
[General scripting commands|, page 91), before detailing the scripting commands specific to the
geometry (see Section 5.2 [Geometry scripting commands], page 104), mesh (see Section 5.3
[Mesh scripting commands], page 113) and post-processing (see Section 5.4 [Post-processing
scripting commands|, page 119) modules.
The following rules are used when describing the scripting language in the rest of this chapter
(note that metasyntactic variable definitions stay valid throughout the chapter, not only in the
section where the definitions appear):

1. Keywords and literal symbols are printed like this.

2. Metasyntactic variables (i.e., text bits that are not part of the syntax, but stand for other
text bits) are printed like this.
A colon (:) after a metasyntactic variable separates the variable from its definition.
Optional rules are enclosed in < > pairs.

Multiple choices are separated by |.

S Ot W

Three dots (.. .) indicate a possible (multiple) repetition of the preceding rule.
5.1 General scripting commands

5.1.1 Comments

Gmsh script files support both C and C++ style comments:
1. any text comprised between /* and */ pairs is ignored;
2. the rest of a line after a double slash // is ignored.

These commands won’t have the described effects inside double quotes or inside keywords. Also
note that ‘white space’ (spaces, tabs, new line characters) is ignored inside all expressions.

5.1.2 Floating point expressions
The two constant types used in Gmsh scripts are real and string (there is no integer type).
These types have the same meaning and syntax as in the C or C++ programming languages.

Floating point expressions (or, more simply, “expressions”) are denoted by the metasyntactic
variable expression, and are evaluated during the parsing of the script file:

92 Gmsh 4.13.0 (development version)

expression:
real |
string |
string ~ { expression }
string [expression] |
string [] |
(expression) |
operator-unary-left expression |
expression operator-unary-right |
expression operator-binary expression |
expression operator-ternary-left expression

operator-ternary-right expression |

built-in-function |
number-option |
Find(expression-list-item, expression-list-item) |
StrFind(string-expression, string-expression) |
StrCmp(string-expression, string-expression) |
StrLen(string-expression) |
TextAttributes(string-expression<,string-expression...>) |
Exists(string) | Exists(string~{ expression }) |
FileExists(string-expression) |
StringToName (string-expression) | S2N(string-expression) |
GetNumber (string-expression <,expression>) |
GetValue("string", expression) |
DefineNumber (expression, onelab-options)

Such expressions are used in most of Gmsh’s scripting commands. When “{expression} is
appended to a string string, the result is a new string formed by the concatenation of string, _
(an underscore) and the value of the expression. This is most useful in loops (see Section 5.1.8
[Loops and conditionals], page 98), where it permits to define unique strings automatically. For
example,

For i In {1:3}

x“{i} = i;

EndFor
is the same as

x_1=1;

X_2 = 2;

x_3 = 3;
The brackets [] permit to extract one item from a list (parentheses can also be used instead of
brackets). The # permits to get the size of a list. The operators operator-unary-left, operator-
unary-right, operator-binary, operator-ternary-left and operator-ternary-right are defined in
Section 5.1.5 [Operators|, page 95. For the definition of built-in-functions, see Section 5.1.6
[Built-in functions|, page 97. The various number-options are listed in Chapter 7 [Gmsh op-
tions|, page 225. Find searches for occurrences of the first expression in the second (both of
which can be lists). StrFind searches the first string-expression for any occurrence of the second
string-expression. StrCmp compares the two strings (returns an integer greater than, equal to, or
less than 0, according as the first string is greater than, equal to, or less than the second string).
StrLen returns the length of the string. TextAttributes creates attributes for text strings.
Exists checks if a variable with the given name exists (i.e., has been defined previously), and
FileExists checks if the file with the given name exists. StringToName creates a name from the
provided string. GetNumber allows to get the value of a ONELAB variable (the optional second
argument is the default value returned if the variable does not exist). GetValue allows to ask

Chapter 5: Gmsh scripting language 93

the user for a value interactively (the second argument is the value returned in non-interactive
mode). For example, inserting GetValue("Value of parameter alpha?", 5.76) in an input
file will query the user for the value of a certain parameter alpha, assuming the default value
is 5.76. If the option General.NoPopup is set (see Section 7.1 [General options|, page 225), no
question is asked and the default value is automatically used.

DefineNumber allows to define a ONELAB variable in-line. The expression given as the first
argument, is the default value; this is followed by the various ONELAB options. See the ONELAB
tutorial wiki for more information.
List of expressions are also widely used, and are defined as:
expression-list:

expression—-list-item <, expression-list-item>

with
expression-list-item:

expression |

expression : expression |

expression : expression : expression |

string [1 | string () |

List [string] |

List [expression-list-item] |

List [{ expression-list }] |

Unique [expression-list-item] |

Abs [expression-list-item] |

ListFromFile [expression-char] |

LinSpace[expression, expression, expression] |

LogSpacel expression, expression, expression] |

string [{ expression-list } 1 |

Point { expression } |

transform |

extrude |

boolean |

Point|Curve|Surface|Volume In BoundingBox { expression-list } |

BoundingBox Point|Curve|Surface|Volume { expression-list } |

Mass Curve|Surface|Volume { expression } |

CenterOfMass Curve|Surface|Volume { expression } |

MatrixOfInertia Curve|Surface|Volume { expression } |

Point { expression } |

Physical Point|Curve|Surface|Volume { expression-list } |

<Physical> Point|Curve|Surface|Volume { : } |

The second case in this last definition permits to create a list containing the range of numbers
comprised between two expressions, with a unit incrementation step. The third case also per-
mits to create a list containing the range of numbers comprised between two expressions, but
with a positive or negative incrementation step equal to the third expression. The fourth, fifth
and sixth cases permit to reference an expression list (parentheses can also be used instead of
brackets). Unique sorts the entries in the list and removes all duplicates. Abs takes the absolute
value of all entries in the list. ListFromFile reads a list of numbers from a file. LinSpace
and LogSpace construct lists using linear or logarithmic spacing. The next two cases permit to
reference an expression sublist (whose elements are those corresponding to the indices provided
by the expression-list). The next cases permit to retrieve the indices of entities created through
geometrical transformations, extrusions and boolean operations (see Section 5.2.7 [Transforma-
tions], page 110, Section 5.2.5 [Extrusions], page 108 and Section 5.2.6 [Boolean operations],
page 109).

https://gitlab.onelab.info/doc/tutorials/wikis/ONELAB-syntax-for-Gmsh-and-GetDP
https://gitlab.onelab.info/doc/tutorials/wikis/ONELAB-syntax-for-Gmsh-and-GetDP

94 Gmsh 4.13.0 (development version)

The next two cases allow to retrieve entities in a given bounding box, or get the bounding box
of a given entity, with the bounding box specified as (X min, Y min, Z min, X max, Y max,
Z max). Beware that the order of coordinates is different than in the BoundingBox command
for the scene: see Section 5.1.9 [Other general commands], page 99. The last cases permit to
retrieve the mass, the center of mass or the matrix of inertia of an entity, the coordinates of a
given geometry point (see Section 5.2.1 [Points], page 104), the elementary entities making up
physical groups, and the tags of all (physical or elementary) points, curves, surfaces or volumes
in the model. These operations all trigger a synchronization of the CAD model with the internal
Gmsh model.

To see the practical use of such expressions, have a look at the first couple of examples in
Chapter 2 [Gmsh tutorial], page 15. Note that, in order to lighten the syntax, you can omit
the braces {} enclosing an expression-list if this expression-list only contains a single item. Also
note that a braced expression-list can be preceded by a minus sign in order to change the sign
of all the expression-list-items.

For some commands it makes sense to specify all the possible expressions in a list. This is
achieved with expression-list-or-all, defined as:
expression-list-or-all:
expression-list |
The meaning of “all” (:) depends on context. For example, Curve { : } will get the ids of all
the existing curves in the model, while Surface { : } will get the ids of all existing surfaces.

5.1.3 String expressions
String expressions are defined as:

string-expression:
"string" |
string | string[expression] |
Today | OnelabAction | GmshExecutableName |
CurrentDirectory | CurrentDir | CurrentFileName
StrPrefix (string-expression) |
StrRelative (string-expression) |
StrCat (string-expression <,...>) |
Str (string-expression <,...>) |
StrChoice (expression, string-expression, string-expression) |
StrSub(string-expression, expression, expression) |
StrSub(string-expression, expression) |
UpperCase (string-expression) |
AbsolutePath (string-expression) |
DirName (string-expression) |
Sprintf (string-expression , expression-list) |
Sprintf (string-expression) |
Sprintf (string-option) |
GetEnv (string-expression) |
GetString (string-expression <,string-expression>) |
GetStringValue (string-expression , string-expression) |
StrReplace (string-expression , string-expression , string-expression)
NameToString (string) | N2S (string) |
<Physical> Point|Curve|Surface|Volume { expression } |
DefineString(string-expression, onelab-options)

Today returns the current date. OnelabAction returns the current ONELAB action (e.g.
check or compute). GmshExecutableName returns the full path of the Gmsh executable.

Chapter 5: Gmsh scripting language 95

CurrentDirectory (or CurrentDir) and CurrentFileName return the directory and file name
of the script being parsed. StrPrefix and StrRelative take the prefix (e.g. to remove the ex-
tension) or the relative path of a given file name. StrCat and Str concatenate string expressions
(Str adds a newline character after each string except the last). StrChoice returns the first
or second string-expression depending on the value of expression. StrSub returns the portion
of the string that starts at the character position given by the first expression and spans the
number of characters given by the second expression or until the end of the string (whichever
comes first; or always if the second expression is not provided). UpperCase converts the string-
expression to upper case. AbsolutePath returns the absolute path of a file. DirName returns the
directory of a file. Sprintf is equivalent to the sprintf C function (where string-expression is
a format string that can contain floating point formatting characters: %e, %g, etc.) The various
string-options are listed in Chapter 7 [Gmsh options|, page 225. GetEnvThe gets the value of an
environment variable from the operating system. GetString allows to get a ONELAB string
value (the second optional argument is the default value returned if the variable does not ex-
ist). GetStringValue asks the user for a value interactively (the second argument is the value
used in non-interactive mode). StrReplace’s arguments are: input string, old substring, new
substring (brackets can be used instead of parentheses in Str and Sprintf). Physical Point,
etc., or Point, etc., retrieve the name of the physical or elementary entity, if any. NameToString
converts a variable name into a string.

DefineString allows to define a ONELAB variable in-line. The string-expression given as the
first argument is the default value; this is followed by the various ONELAB options. See the
ONELAB tutorial wiki for more information.

String expressions are mostly used to specify non-numeric options and input/output file names.
See Section 2.8 [t8], page 33, for an interesting usage of string-expressions in an animation script.

List of string expressions are defined as:
string-expression-1ist:
string-expression <,...>

5.1.4 Color expressions
Colors expressions are hybrids between fixed-length braced expression-lists and strings:

color-expression:
string-expression |
{ expression, expression, expression } |
{ expression, expression, expression, expression } |
color-option

The first case permits to use the X Windows names to refer to colors, e.g., Red, SpringGreen,
LavenderBlush3, ... (see src/common/Colors.h in the source code for a complete list). The
second case permits to define colors by using three expressions to specify their red, green and blue
components (with values comprised between 0 and 255). The third case permits to define colors
by using their red, green and blue color components as well as their alpha channel. The last
case permits to use the value of a color-option as a color-expression. The various color-options
are listed in Chapter 7 [Gmsh options|, page 225.

See Section 2.3 [t3], page 21, for an example of the use of color expressions.

5.1.5 Operators

Gmsh’s operators are similar to the corresponding operators in C and C++. Here is the list of
available unary, binary and ternary operators.

operator-unary-left:

- Unary minus.

https://gitlab.onelab.info/doc/tutorials/wikis/ONELAB-syntax-for-Gmsh-and-GetDP
https://gitlab.onelab.info/gmsh/gmsh/blob/master/src/common/Colors.h

96 Gmsh 4.13.0 (development version)

! Logical not.
operator-unary-right:

++ Post-incrementation.
- Post-decrementation.

operator-binary:

- Exponentiation.
* Multiplication.
/ Division.

b Modulo.

+ Addition.

- Subtraction.

== Equality.

I= Inequality.

> Greater.

>= Greater or equality.
< Less.

<= Less or equality.
&& Logical ‘and’.

'l Logical ‘or’. (Warning: the logical ‘or’ always implies the evaluation of both argu-
ments. That is, unlike in C or C++, the second operand of || is evaluated even if
the first one is true).

operator-ternary-left:
?
operator-ternary-right:

The only ternary operator, formed by operator-ternary-left and operator-ternary-
right, returns the value of its second argument if the first argument is non-zero;
otherwise it returns the value of its third argument.

The evaluation priorities are summarized below! (from stronger to weaker, i.e., * has a highest
evaluation priority than +). Parentheses () may be used anywhere to change the order of
evaluation:

1. O, [, ., #

© 0N N
A
v
A
I
v
Il

—_
e
~

11‘ =’ +=7 —=’ >|<=7 /=

I The affectation operators are introduced in Section 5.1.9 [Other general commands], page 99.

Chapter 5: Gmsh scripting language 97

5.1.6 Built-in functions

A built-in function is composed of an identifier followed by a pair of parentheses containing an
expression-list, the list of its arguments. This list of arguments can also be provided in between
brackets, instead of parentheses. Here is the list of the built-in functions currently implemented:

build-in-function:

Acos (expression)
Arc cosine (inverse cosine) of an expression in [-1,1]. Returns a value in [0,P1i].

Asin (expression)
Arc sine (inverse sine) of an expression in [-1,1]. Returns a value in [-Pi/2,Pi/2].

Atan (expression)
Arc tangent (inverse tangent) of expression. Returns a value in [-Pi/2,Pi/2].

Atan?2 (expression, expression)
Arc tangent (inverse tangent) of the first expression divided by the second. Returns
a value in [-Pi,Pi].

Ceil (expression)
Rounds expression up to the nearest integer.

Cos (expression)
Cosine of expression.

Cosh (expression)
Hyperbolic cosine of expression.

Exp (expression)
Returns the value of e (the base of natural logarithms) raised to the power of ex-
pression.

Fabs (expression)
Absolute value of expression.

Fmod (expression, expression)
Remainder of the division of the first expression by the second, with the sign of the
first.

Floor (expression)
Rounds expression down to the nearest integer.

Hypot (expression, expression)
Returns the square root of the sum of the square of its two arguments.

Log (expression)
Natural logarithm of expression (expression > 0).

Logl0 (expression)
Base 10 logarithm of expression (expression > 0).

Max (expression, expression)
Maximum of the two arguments.

Min (expression, expression)
Minimum of the two arguments.

Modulo (expression, expression)
see Fmod (expression, expression).

Rand (expression)
Random number between zero and expression.

98 Gmsh 4.13.0 (development version)

Round (expression)
Rounds expression to the nearest integer.

Sqrt (expression)
Square root of expression (expression >= 0).

Sin (expression)
Sine of expression.

Sinh (expression)
Hyperbolic sine of expression.

Tan (expression)
Tangent of expression.

Tanh (expression)
Hyperbolic tangent of expression.

5.1.7 User-defined macros

User-defined macros take no arguments, and are evaluated as if a file containing the macro body
was included at the location of the Call statement.

Macro string | string-expression
Begin the declaration of a user-defined macro named string. The body of the macro
starts on the line after ‘Macro string’, and can contain any Gmsh command. A
synonym for Macro is Function.

Return End the body of the current user-defined macro. Macro declarations cannot be
imbricated.

Call string | string-expression ;
Execute the body of a (previously defined) macro named string.

See Section 2.5 [t5], page 26, for an example of a user-defined macro. A shortcoming of Gmsh’s
scripting language is that all variables are “public”. Variables defined inside the body of a macro
will thus be available outside, too!

5.1.8 Loops and conditionals
Loops and conditionals are defined as follows, and can be imbricated:

For (expression : expression)
Iterate from the value of the first expression to the value of the second expression,
with a unit incrementation step. At each iteration, the commands comprised be-
tween ‘For (expression : expression)’ and the matching EndFor are executed.

For (expression : expression : expression)
Iterate from the value of the first expression to the value of the second expression,
with a positive or negative incrementation step equal to the third expression. At
each iteration, the commands comprised between ‘For (expression : expression
: expression)’ and the matching EndFor are executed.

For string In { expression : expression }
Iterate from the value of the first expression to the value of the second expression,
with a unit incrementation step. At each iteration, the value of the iterate is affected
to an expression named string, and the commands comprised between ‘For string
In { expression : expression }’ and the matching EndFor are executed.

For string In { expression : expression : expression }
Iterate from the value of the first expression to the value of the second expression,
with a positive or negative incrementation step equal to the third expression. At

Chapter 5: Gmsh scripting language 99

each iteration, the value of the iterate is affected to an expression named string, and
the commands comprised between ‘For string In { expression : expression :
expression }’ and the matching EndFor are executed.

EndFor End a matching For command.

If (expression)
The body enclosed between ‘If (expression)’ and the matching ElseIf, Else
or EndIf, is evaluated if expression is non-zero.

Elself (expression)
The body enclosed between ‘Elself (expression)’ and the next matching
Elself, Else or EndIf, is evaluated if expression is non-zero and none of the ex-
pression of the previous matching codes If and ElseIf were non-zero.

Else The body enclosed between Else and the matching EndIf is evaluated if none of
the expression of the previous matching codes If and ElseIf were non-zero.

EndIf End a matching If command.

5.1.9 Other general commands
The following commands can be used anywhere in a Gmsh script:
string = expression;
Create a new expression identifier string, or affects expression to an existing ex-

pression identifier. The following expression identifiers are predefined (hardcoded in
Gmsh’s parser):

Pi Return 3.1415926535897932.

GMSH_MAJOR_VERSION
Return Gmsh’s major version number.

GMSH_MINOR_VERSION
Return Gmsh’s minor version number.

GMSH_PATCH_VERSION
Return Gmsh’s patch version number.

MPI_Size Return the number of processors on which Gmsh is running. It is always
1, except if you compiled Gmsh with ENABLE_MPI (see Appendix A
[Compiling the source code], page 377).

MPI_Rank Return the rank of the current processor.

Cpu Return the current CPU time (in seconds).
Memory Return the current memory usage (in Mb).
TotalMemory

Return the total memory available (in Mb).

newp Return the next available point tag. As explained in Section 1.1 [Ge-
ometry module], page 7, a unique tag must be associated with every
geometrical point: newp permits to know the highest tag already at-
tributed (plus one). This is mostly useful when writing user-defined
macros (see Section 5.1.7 [User-defined macros|, page 98) or general ge-
ometric primitives, when one does not know a prior: which tags are
already attributed, and which ones are still available.

newc Return the next available curve tag.

100 Gmsh 4.13.0 (development version)

news Return the next available surface tag.

newv Return the next available volume tag.

newcl Return the next available curve loop tag.

newsl Return the next available surface loop tag.

newreg Return the next available region tag. That is, newreg returns the max-
imum of newp, newl, news, newv, newll, newsl and all physical group
tags?.

string ={ };

Create a new expression list identifier string with an empty list.

string[] = { expression-list };
Create a new expression list identifier string with the list expression-list, or affects
expression-list to an existing expression list identifier. Parentheses are also allowed
instead of square brackets; although not recommended, brackets and parentheses
can also be completely ommitted.

string [{ expression-list }] = { expression-list };
Affect each item in the right hand side expression-list to the elements (indexed by
the left hand side expression-list) of an existing expression list identifier. The two
expression-lists must contain the same number of items. Parentheses can also be
used instead of brackets.

string += expression;
Add and affect expression to an existing expression identifier.

string —= expression;
Subtract and affect expression to an existing expression identifier.

string *= expression;
Multiply and affect expression to an existing expression identifier.

string /= expression;
Divide and affect expression to an existing expression identifier.

string += { expression-list };
Append expression-list to an existing expression list or creates a new expression list
with expression-list.

string -= { expression-list };
Remove the items in expression-list from the existing expression list.

string [{ expression-list }] += { expression-list };
Add and affect, item per item, the right hand side expression-list to an existing
expression list identifier. Parentheses can also be used instead of brackets.

string [{ expression-list }] -={ expression-list };
Subtract and affect, item per item, the right hand side expression-list to an existing
expression list identifier. Parentheses can also be used instead of brackets.

string [{ expression-list }] *={ expression-list };
Multiply and affect, item per item, the right hand side expression-list to an existing
expression list identifier. Parentheses can also be used instead of brackets.

For compatibility purposes, the behavior of newl, news, newv and newreg can be modified with the
Geometry.0ldNewReg option (see Section 7.3 [Geometry options|, page 252).

Chapter 5: Gmsh scripting language 101

string [{ expression-list }] /= { expression-list };
Divide and affect, item per item, the right hand side expression-list to an existing
expression list identifier. Parentheses can also be used instead of brackets.

string = string-expression;
Create a new string expression identifier string with a given string-expression.

string [] = Str(string-expression-1list) ;
Create a new string expression list identifier string with a given string-expression-
list. Parentheses can also be used instead of brackets.

string [] += Str(string-expression-list) ;
Append a string expression list to an existing list. Parentheses can also be used
instead of brackets.

DefineConstant[string = expression|string-expression <, ...>];
Create a new expression identifier string, with value expression, only if has not been
defined before.

DefineConstant [string = { expression|string-expression, onelab-options } <,
S I
Same as the previous case, except that the variable is also exchanged with the

ONELAB database if it has not been defined before. See the ONELAB tutorial
wiki for more information.

SetNumber (string-expression , expression) ;
Set the value a numeric ONELAB variable string-expression.

SetString(string-expression , string-expression) ;
Set the value a string ONELAB variable string-expression.
number-option = expression;
Affect expression to a real option.
string-option = string-expression;
Affect string-expression to a string option.
color-option = color-expression;
Affect color-expression to a color option.

number-option += expression;
Add and affect expression to a real option.

number-option —-= expression;
Subtract and affect expression to a real option.

number-option *= expression;
Multiply and affect expression to a real option.

number-option /= expression;
Divide and affect expression to a real option.

Abort; Abort the current script.

Exit < expression >;
Exit Gmsh (optionally with level expression instead of 0).

CreateDir string-expression;
Create the directory string-expression.

Printf (string-expression <, expression-list>);
Print a string expression in the information window and/or on the terminal. Printf
is equivalent to the printf C function: string-expression is a format string that can

https://gitlab.onelab.info/doc/tutorials/wikis/ONELAB-syntax-for-Gmsh-and-GetDP
https://gitlab.onelab.info/doc/tutorials/wikis/ONELAB-syntax-for-Gmsh-and-GetDP

102 Gmsh 4.13.0 (development version)

contain formatting characters (%£, %e, etc.). Note that all expressions are evaluated
as floating point values in Gmsh (see Section 5.1.2 [Floating point expressions],
page 91), so that only valid floating point formatting characters make sense in
string-expression. See Section 2.5 [t5], page 26, for an example of the use of Printf.

Printf (string-expression , expression-list) > string-expression;
Same as Printf above, but output the expression in a file.

Printf (string-expression , expression-list) >> string-expression;
Same as Printf above, but appends the expression at the end of the file.

Warning|Error (string-expression <, expression-list>);
Same as Printf, but raises a warning or an error.

Merge string-expression;
Merge a file named string-expression. This command is equivalent to the ‘File-
>Merge’ menu in the GUI. If the path in string-expression is not absolute, string-
expression is appended to the path of the current file. This operation triggers a
synchronization of the CAD model with the internal Gmsh model.

ShapeFromFile(string-expression) ;
Merge a BREP, STEP or IGES file and returns the tags of the highest-dimensional
entities. Only available with the OpenCASCADE geometry kernel.

Draw; Redraw the scene.

SplitCurrentWindowHorizontal expression;
Split the current window horizontally, with the ratio given by expression.

SplitCurrentWindowVertical expression;
Split the current window vertically, with the ratio given by expression.

SetCurrentWindow expression;
Set the current window by speficying its index (starting at 0) in the list of all
windows. When new windows are created by splits, new windows are appended at
the end of the list.

UnsplitWindow;
Restore a single window.

SetChanged;
Force the mesh and post-processing vertex arrays to be regenerated. Useful e.g. for
creating animations with changing clipping planes, etc.

BoundingBox;
Recompute the bounding box of the scene (which is normally computed only after
new model entities are added or after files are included or merged). The bounding
box is computed as follows:

1. If there is a mesh (i.e., at least one mesh node), the bounding box is taken as
the box enclosing all the mesh nodes;

2. If there is no mesh but there is a geometry (i.e., at least one geometrical point),
the bounding box is taken as the box enclosing all the geometrical points;

3. If there is no mesh and no geometry, but there are some post-processing views,
the bounding box is taken as the box enclosing all the primitives in the views.

This operation triggers a synchronization of the CAD model with the internal Gmsh
model.

Chapter 5: Gmsh scripting language 103

BoundingBox { expression, expression, expression, expression, expression,
expression };
Force the bounding box of the scene to the given expressions (X min, X max, Y
min, Y max, Z min, Z max). Beware that order of the coordinates is different than
in the BoundingBox commands for model entities: see Section 5.1.2 [Floating point
expressions|, page 91.

Delete Model;
Delete the current model (all model entities and their associated meshes).

Delete Meshes;
Delete all the meshes in the current model.

Delete Physicals;
Delete all physical groups.

Delete Variables;
Delete all the expressions.

Delete Options;
Delete the current options and revert to the default values.

Delete string;
Delete the expression string.

Print string-expression;
Print the graphic window in a file named string-expression, using the current
Print.Format (see Section 7.1 [General options|, page 225). If the path in string-
expression is not absolute, string-expression is appended to the path of the current
file. This operation triggers a synchronization of the CAD model with the internal
Gmsh model.

Sleep expression;
Suspend the execution of Gmsh during expression seconds.

SystemCall string-expression;
Executes a (blocking) system call.

NonBlockingSystemCall string-expression;
Execute a (non-blocking) system call.

OnelabRun (string-expression <, string-expression >)
Run a ONELAB client (first argument is the client name, second optional argument
is the command line).

SetName string-expression;
Change the name of the current model.

SetFactory(string-expression) ;
Change the current geometry kernel (i.e. determines the CAD kernel that is used
for all subsequent geometrical commands). Currently available kernels: "Built-in"
and "OpenCASCADE".

SyncModel;
Force an immediate transfer from the old geometrical database into the new one
(this transfer normally occurs right after a file is read).

NewModel;
Create a new current model.

104 Gmsh 4.13.0 (development version)

Include string-expression;
Include the file named string-expression at the current position in the input file.
The include command should be given on a line of its own. If the path in string-
expression is not absolute, string-expression is appended to the path of the current
file.

5.2 Geometry scripting commands

Both the built-in and the OpenCASCADE CAD kernels can be used in the scripting language,
by specifying SetFactory("Built-in") or SetFactory ("0OpenCASCADE"), respectively, before
geometrical scripting commands. If SetFactory is not specified, the built-in kernel is used.

A bottom-up boundary representation approach can be used by first defining points (using the
Point command), then curves (using Line, Circle, Spline, ..., commands or by extruding
points), then surfaces (using for example the Plane Surface or Surface commands, or by
extruding curves), and finally volumes (using the Volume command or by extruding surfaces).
Entities can then be manipulated in various ways, for example using the Translate, Rotate,
Scale or Symmetry commands. They can be deleted with the Delete command, provided
that no higher-dimension entity references them. With the OpenCASCADE kernel, additional
boolean operations are available: BooleanIntersection, BooleanUnion, BooleanDifference
and BooleanFragments.

The next subsections describe all the available geometry commands in the scripting language.
Note that the following general rule is followed for the definition of model entities: if an ex-
pression defines a new entity, it is enclosed between parentheses. If an expression refers to a
previously defined entity, it is enclosed between braces.

5.2.1 Points

Point (expression) = { expression, expression, expression <, expression > };
Create a point. The expression inside the parentheses is the point’s tag; the three
first expressions inside the braces on the right hand side give the three X, Y and Z
coordinates of the point in the three-dimensional Euclidean space; the optional last
expression sets the prescribed mesh element size at that point. See Section 1.2.2
[Specifying mesh element sizes|, page 10, for more information about how this value
is used in the meshing process.

Physical Point (expression | string-expression <, expression>) <+|->={

expression-list };
Create a physical point. The expression inside the parentheses is the physical point’s
tag; the expression-list on the right hand side should contain the tags of all the
elementary points that need to be grouped inside the physical point. If a string-
expression is given instead instead of expression inside the parentheses, a string label
is associated with the physical tag, which can be either provided explicitly (after
the comma) or not (in which case a unique tag is automatically created).

5.2.2 Curves

Line (expression) = { expression, expression };
Create a straight line segment. The expression inside the parentheses is the line
segment’s tag; the two expressions inside the braces on the right hand side give tags
of the start and end points of the segment.

Bezier (expression) = { expression-list };
Create a Bezier curve. The expression-list contains the tags of the control points.

Chapter 5: Gmsh scripting language 105

BSpline (expression) ={ expression-list };
Create a cubic BSpline. The expression-list contains the tags of the control points.
Creates a periodi