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Abstract. A homology and cohomology solver for finite element meshes is represented. It is
an integrated part of the finite element mesh generator Gmsh. We demonstrate the exploitation
of the cohomology computation results in a finite element solver, and use an induction heating
problem as a working example. The homology and cohomology solver makes the use of a vector-
scalar potential formulation straightforward. This gives better overall performance than a vector
potential formulation. Cohomology computation also clarifies the lumped parameter coupling of the
problem and enables the user to obtain useful post-processing data as a part of the finite element
solution.
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1. Introduction. We present a tool for the homology and cohomology compu-
tation of domains tessellated with finite element meshes. The tool is an integrated
part of the finite element mesh generator Gmsh [17]. Homology and cohomology com-
putation can be exploited to exhaustively fix the so-called cohomology class of the
solution of a boundary value problem that is solved with the finite element method.
As a concrete application, we demonstrate how such computations greatly benefit the
modeling of an induction heating machine.

In boundary value problems that involve the Hodge-Laplace operator, one often
needs to choose the cohomology class of the solution. Such problems are usual in
electromagnetics, which is why our working example is chosen from that field. The
cohomology classes of the problem are generated by the choice of the boundary con-
ditions and by the homology of the problem domain. Informally, homology is about
the quantity and the quality of holes in an object, whether it has voids or tunnels
or both. Relative homology captures whether the object has holes when one “disre-
gards” a part of the model. In the finite element method, the disregarded part is a
subdomain where the solution is fixed by a boundary condition. Cohomology can be
characterized by saying that it assigns quantities to these holes. In boundary value
problems such assignments fix the cohomology class of the solution. For the technical
definitions of homology and cohomology spaces, see appendix A.

In the finite element method, typically only a bounded portion of the device and
the surrounding space is modeled. The modeling domain may contain holes, and
boundary conditions are assigned to confine the fields and couple them with external
phenomena outside the domain. Further, the domain can be split into many coupled
regions where different approximations and potential formulations are being employed.
These modeling aspects give rise to homology and cohomology and their relative forms
in numerical models, since one is required to assign source quantities to entities that
are absent from the model.

For electrical engineers, an evident manifestation of homology and cohomology
are Maxwell’s equations in their integral form. Classically, electromagnetic phenom-
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ena are assumed to take place in the entire 3-dimensional Euclidean space that has
no holes. However, once boundaries or holes are introduced to the modeling domain,
the coupling with the external electromagnetic phenomena can often be formalized
with cohomology. For a more detailed discussion, see [18]. To employ so-called mag-
netic field conforming method [4] in our working example, cohomology computation is
needed to make the use of an efficient vector-scalar potential formulation straightfor-
ward. Making it easy to use such a formulation instead of having to resort to a pure
vector potential formulation is the main benefit of the cohomology computation. As
other benefits, it helps to couple the problem with circuit models, provides efficient
and accurate post-processing possibilities, and in general gives a structural insight into
such problems. Methods that exploit homology and cohomology in electromagnetics
are also presented in [11, 10, 32]. As heat conduction is in many respects analogous to
electrostatics, the presented homology and cohomology solver can be exploited in heat
conduction boundary value problems as well. The role of homology and cohomology
have also been recognized in the field of linear elasticity [1, 37]. Thus, homology and
cohomology computations might also have applications in that field.

Another related application for cohomology computations is the parametrization
of surface meshes. Good quality surface meshes of objects are desirable in computer
graphics and are a prerequisite for 3D-meshes of good computational quality. To
produce a good surface mesh, a surface parametrization is often needed [17, 30]. A
closed surface cannot be parametrized with a single coordinate chart, for a discon-
tinuity is introduced at the coordinate patch boundary. To avoid this, cohomology
computation can be exploited to find a global conformal parametrization for surfaces
with an arbitrary genus [19]. For compact non-closed surfaces with boundary and
holes, relative cohomology might be exploited in a similar manner.

The presented homology and cohomology solver is an integrated part of the finite
element mesh generator Gmsh [17]. It can also be accessed through the application
programming interface (API) of Gmsh. Thus, homology and cohomology computation
can be embedded as a part of the mesh generation workflow. The working example is
solved using the finite element solver GetDP [12] which is able to fluently exploit the
results of the cohomology solver in its problem definition. However, any solver can
be programmed to exploit the results, as they are saved along with the finite element
mesh.

The design principles of the presented homology and cohomology solver are the
following. First, it operates on large, up to 3 dimensional finite element meshes
that are possibly non-simplicial. It is expected that the usual input is such that
the reduction techniques are be able to tremendously reduce the size of the algebraic
problem. Second, it produces a basis representation of the homology and cohomology
spaces in addition to Betti numbers. Such output is needed in finite element solvers
as we will demonstrate. Examples of other software that perform homology and
cohomology computation include CHomP [6], jPlex [33], and GAP homology [22]
packages. The design objectives of these popular packages are slightly different from
ours, with less emphasis on problem position in finite element modeling.

2. The homology and cohomology solver for up to 3D meshes. A fi-
nite element mesh is easily converted into a regular cell complex 1 [20] which is the

1A mesh that contains only triangles or tetrahedra can be converted into a special case called
a simplicial complex, which is often used in the introductory expositions of homology computation.
The regular cell complex is required to handle more general finite element meshes, for instance,
containing hexahedra, prisms, and pyramids.
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usual input for homology or cohomology computation. In the presented homology
and cohomology solver, the extraction of the cell complex from the finite element
mesh is the first stage of the computation. From the cell complex, integer matrix
representations of so-called boundary operators can be obtained. They are basically
the volumes-to-faces, faces-to-edges, and edges-to-vertices incidence matrices of the
mesh.

The general algorithm for homology and cohomology group2 computation is the
Smith normal form integer matrix decomposition, but it suffers from high worst case
computational complexity [36]. Thus, before the matrix decomposition is employed,
the problem size is reduced using a variety of methods that usually run in linearithmic
time [23, 34]. In the homology and the cohomology computation of the finite element
meshes, the problem size is reduced by removing “homologically irrelevant” parts of
the mesh and the mesh elements in the relevant parts are combined. These operations
keep the homology of the mesh invariant [23]. Heuristically, the problem size is usually
reduced by an order of 103 to 105 depending on both the geometry and the topology of
the mesh. In the represented homology and cohomology solver, reduction algorithms
described in Pellikka et al. [28] are employed. A short description on the essentials of
the solver is given in the section 2.2.

The input for the solver is a mesh that is generated by Gmsh or imported into
Gmsh. The solver only uses the connectivity information of the mesh elements, and
ignores the coordinates of the mesh vertices. Therefore, the solver can be utilized with
any data set that can be realized as an at most 3-dimensional simplicial complex,
once it is converted to a Gmsh-readable mesh format. In section 2.1, we consider
an example where a point cloud in R

3 is interpreted as a 2-dimensional simplicial
complex.

Results of the homology and cohomology solver are the bases for the relative ho-
mology spaces Hk(M,S) and the relative cohomology spaces Hk(M,S) of the domain
M and its subdomain S for each k from 0 to 3. The bases are represented by a
set of k-chains and k-cochains whose cosets3 form the actual bases. With the finite
element mesh, the bases thus have matrix representations Hk = [z1, z2, . . . , zβk

] and
Hk = [z1, z2, . . . , zβk ], respectively, where for βk = dimHk(M,S) = dimHk(M,S)
holds. 4 The sparse integer coefficient vectors zi and zi contain the information
which k-dimensional mesh cells are a part of the corresponding k-(co)chain zi or z

i.
The homology and cohomology solver produces such matrices given a finite ele-

ment mesh of a computational domain M with a designated subdomain S. The basis
representations are non-unique on two levels. First, the representative chains and
cochains can be any from the corresponding coset. Second, the basis can be trans-
formed to an another basis, with different basis cosets, by an unimodular transforma-
tion [36]. The basis representation issue is further discussed in Pellikka et al. [29].

2.1. Example: surface reconstruction from a point cloud. A technique
to construct a surface mesh based on a point cloud in R

3 is called alpha shapes [15].
They aim to approximate the “shape” of a point cloud, where the level of detail is

2Inherently, homology and cohomology have the structure of an abelian group, which is also
solved by the presented homology and cohomology solver. However, in the context of the finite
element method, we are primarily interested on the homology and cohomology vector spaces instead.
The free subgroup of an abelian group is interpreted as the vector space of interest.

3Two k-chains that are k-cycles belong to the same homology coset, if their difference is a k-
boundary. This equivalence relation generalizes to the relative k-cycles and k-cocycles.

4If S is empty, βk is called the k:th Betti number of M . Then, β0 is the number of connected
components of M , β1 is the number of tunnels through M , and β2 is the number of voids in M .
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expressed with a parameter α. As extrema, if α = ∞ holds, the resulting shape is the
convex hull of the point cloud. If α = 0 holds, the resulting shape is empty.

Fig. 2.1: A point cloud of 6000 points in R
3 whose shape is to be determined.

The usual problem is to choose such an α that a shape with desired characteristics
is recovered. The alpha shape is always a subcomplex of the Delaunay triangulation of
the point cloud. Therefore, the homology solver of Gmsh can be applied to compute
its topological features.

In this example, we use a priori knowledge of the shape to find a suitable value
of α. Namely, we insist that the shape consists of two tori. As a single torus has
Betti numbers β0 = β2 = 1 and β1 = 2, we can use the homology solver to find such
α that the Betti number criteria for the shape is met. In Fig 2.1 we have depicted
an example point cloud. Fig 2.2 depicts the shape the point cloud determined with
different values for α along with the Betti numbers of the shape. We used the program
Hull [7] for the alpha shape computation.

2.2. Homology and cohomology computation process. The homology and
cohomology solver in Gmsh relies on reduction of chain complexes [23] before the
computation of the actual homology or cohomology groups. It is due to the reduction
algorithms that the computed bases have somewhat small support. See Fig. 7.3 for
example. While the details of the employed reduction algorithms are presented in
Pellikka et al. [28], here we describe the overall strategy how the reduction algorithms
are combined together to make up the solver in Gmsh.

The first step of homology and cohomology computation is to construct a chain

complex [26, 20] from the finite element mesh. The chain groups Ck are formal sums
of the mesh cells of each dimension k. That is, to construct the chain complex from
an n-dimensional mesh, first all the n-dimensional mesh elements are enumerated.
Then, the set of their unique n − 1-faces is constructed and the faces are oriented.
Thereafter, the n− 2-faces of the n− 1-cells are processed similarly and so on, until
the 0-dimensional cells are reached. To construct the boundary operators of the chain
complex, the incidence relations of the cells are stored along the process. The chain
complex construction has computational complexity bound O(n log n), where n is the
number of most abundant k-cells.

Once the chain complex has been constructed, the chain complex reduction takes
place. The reduction algorithms for homology and cohomology computation have sub-
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(a) α = ∞, β0 = 1, β1 = 0, β2 = 1 (b) α = 20e3, β0 = 1, β1 = 0, β2 = 1

(c) α = 10e3, β0 = 1, β1 = 15, β2 = 1 (d) α = 9e3, β0 = 2, β1 = 4, β2 = 2

(e) α = 2e3, β0 = 2, β1 = 127, β2 = 1430 (f) α = 0.5e3, β0 = 296, β1 = 99, β2 = 487

Fig. 2.2: Alpha shapes with different values for α and their Betti numbers.

tle differences, but they all rely on chain equivalences [26]. A chain equivalence maps
a chain complex to a chain complex with equivalent homology and cohomology. The
reduction algorithms apply chain equivalences that reduce the number of chain group
basis elements computationally efficiently. Effectively, this makes the mesh incidence
matrices smaller in the last stage of the homology and cohomology computation.

The chain equivalences employed in Gmsh have geometric interpretations, that
are depicted in Fig. 2.3. They appear in the following works: [23, 25]. Their compu-
tational complexities range from O(n log n) to O(n2), where n is the size of a basis
of a chain group that is being modified. The algorithms are applied in succession so
that most of the work is done by algorithms with lowest computational complexities.

The reduction techniques are able to reduce the size of the problem by a large
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factor when the input is a typical finite element mesh. That is, when the Betti
numbers of the chain complex are much smaller than the size of the bases of the chain
groups, i.e. the number of mesh elements. For example, with the mesh in Fig. 2.2f,
which no longer resembles a typical finite element mesh, the reduction factor is only
94.4893 %. Compare that to the reduction factor of 99.9981 % in the computation of
the results in Fig. 7.3. In conclusion, the reduction techniques are a good heuristic
for homology computations within the finite element method.

The reduction algorithms are responsible for the somewhat geometrically smooth
appearance of the computed homology and cohomology bases. They remove mesh cells
from the same vicinity instead of in a random manner. This forces the actual homology
and cohomology computation to operate on a chain complex that is geometrically
localized. That is, the employed reduction algorithms are also a good heuristic for
the geometric appeal of the results. Except for local deformation [29] of the homology
basis representatives, we do not apply more advanced methods to attain appealing
bases with respect to some criteria. However, there is a lot of research on such methods
[8, 38, 9, 16].

Fig. 2.3: Geometric interpretations of two chain equivalences used in the homology
computation. In the upper one, a cell on the boundary of the domain is “pushed-
in.” In the lower one, two cells are combined. The chain equivalences used in the
cohomology computation have similar interpretations, but in the dual mesh.

Once the chain complex has been reduced, its homology or cohomology groups
are computed using the Smith normal form integer matrix decomposition. The com-
putation concentrates on the short exact sequence of abelian groups

0 → Bk
ik−→ Zk

jk
−→ Zk/Bk → 0. (2.1)

The group Bk is the codomain of the k + 1-cells to k-cells incidence matrix of the
mesh, i.e. the group of k-boundaries. The group Zk is the kernel of the k-cells to
k−1-cells incidence matrix of the mesh, i.e. the group of k-cycles. The quotient group
Zk/Bk is by definition the k:th homology group Hk of the chain complex: the group
of equivalence classes of non-bounding k-cycles.
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The Smith normal form is then used in three steps. First, to find out the kernels
and the codomains of the incidence matrices. Second, to construct the matrix repre-
sentation of the map ik. Third, the matrix representation of ik is decomposed to solve
the structure of the k:th homology group Hk = Zk/Bk ≃ Zk/ im ik, where the last
isomorphism results from the algebra of groups [26]. The procedure for cohomology
computation is analogous.

3. Working example: induction heating with magnetic field oriented

formulation. To introduce and motivate the homology and cohomology computa-
tions in the finite element method, we take an eddy current problem that models an
induction heating machine as an example. We use magnetic field oriented formulation
and consider both current- and voltage-driven variants.

We start the problem definition with the problem domain. Our primary interest
in modeling sense are the eddy currents in the workpiece, while the model also needs
to take the inductor coil configuration in the surrounding air into account. Due to
a large non-conducting air region, a magnetic field oriented formulation that treats
most of the air with a scalar potential only is likely more efficient than a magnetic flux
density oriented one, where a vector potential is employed throughout the domain [13].

The topological aspects of the 3D modeling domain M ⊂ R
3 in the Euclidean

space5 are the main challenge of using a h-oriented formulation. The domain is divided
into conducting and non-conducting subdomains Mc and Ma, respectively, depicted
in Fig. 3.1, left.

Ma

Mc2 Se

Mc1

Sj

Σ

ζj

ζe

Fig. 3.1: Topology of the induction heating problem.

Topologically interesting aspects of the domain M are described as follows. The
conducting domain Mc = Mc1 ∪Mc2 consists of two parts, the inductor Mc1 and the
workpiece Mc2. The workpiece has a tunnel through it, and the inductor pierces the
non-conducting domain. Therefore, the non-conducting domain Ma has two tunnels
through it. These features are captured by the homology and cohomology of the
domains.

For clear and uniform notation, we use differential forms in this treatment. See
the appendix B for a crash course on differential forms on the Euclidean space R3. Let
Fk(M) denote the space of differential k-forms onM . Moreover, let h, e ∈ F1(M) and
j, b ∈ F2(M) denote the magnetic field, electric field, current density, and magnetic
flux density, respectively. The tensor fields µ and ρ are maps F1(M) → F1(M) called

5More generally, M is a compact oriented 3-dimensional Riemannian manifold (M, g) with bound-
ary that can be covered with a single chart. That is, the notation and the treatment in this paper
remain valid under the change of the metric tensor g and under the change of charts of M .
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permeability and resistivity, respectively. The operators d, t, and ⋆ are the exterior
derivative, trace, and Hodge operators, respectively; see the appendix B for their
definitions.

Our problem statement on M reads: find the fields h, e ∈ F1(M) and j, b ∈
F2(M) that satisfy the magnetoquasistatic approximation to the Maxwell’s equations
and material relations

de = −∂tb, db = 0, (3.1)

dh = j, (3.2)

b = ⋆µh, e = ρ ⋆ j. (3.3)

In addition, we require the following local constraints and boundary conditions to
hold:

dh = 0 on Ma, tj = 0 on (∂M ∪ ∂Mc)/Sj , (3.4)

tb = 0 on ∂M. te = 0 on Sj , (3.5)

where Sj = ∂M ∩ ∂Mc and Se = ∂M ∩ ∂Ma hold, that is ∂M = Se ∪ Sj holds. With
such boundary conditions, the problem qualifies as a circuit element [35].

To couple the problem with a driving circuit, we need to pose a non-local con-
straint to take the source current or source voltage into account. Such constraints fix
the cohomology class of the problem. For the source current Is driven problem we
require

∫

ζj

h = Is, [ζj ] ∈ H1(Se) (3.6)

It follows from the long exact homology sequence [26] that ζj is a boundary of any
surface Σ in M that isolates the two terminals on Sj . The coset [Σ] of such surface
belongs to the homology space H2(M,Se). For example in Fig. 3.1, right, ∂Σ qualifies
as such ζj . Then, Is =

∫

ζj
h =

∫

∂Σ
h =

∫

Σ
dh =

∫

Σ
j holds by Stokes’ theorem.

Alternatively, we can drive the problem by a source voltage Vs and require

∫

ζe

e = Vs, [ζ] ∈ H1(Se, ∂Se) (3.7)

That is, ζe is any path along Se between the two inductor terminals on Sj , for example
the one in Fig. 3.1, right.

Remark: By the Lefschetz duality theorem the spaces H1(Se) and H1(Se, ∂Se)
are isomorphic [26, 18]. This induces a duality between current driven and voltage
driven problems.

4. Vector-scalar potential formulation of the eddy current problem.

In boundary value problems in 3-dimensional domains, the unknown field is often a
vector field. The computational burden of such problem is relieved if the unknown
vector field can be expressed as a gradient of a scalar potential. Such a potential is
known to exists, but only locally, if the vector field is curl-free [3]. In the terminology
of differential forms, one seeks for a potential 0-form of a closed 1-form. In the eddy
current problem, the magnetic field 1-form h is closed in the non-conducting domain
Ma. Thus, h can be locally expressed as an exterior derivative of a potential 0-form
in Ma. However, in the conducting domain Mc, one still needs to solve for a 1-form.
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Such formulation in eddy current problems is called T −Ω formulation, which we will
now employ.

The T -Ω potential formulation in magnetodynamics draws its name from the
mixed use of the electric current vector potential T and the magnetic scalar potential
Ω [31]. For a better insight, instead of writing the formulation in terms of T and
Ω, we first write it in terms of magnetic field h. This prevents the structure of the
problem from being obscured by the excess of notation. Later, we describe a basis of
the function space from which an approximate solution for h is sought. The basis will
have terms resembling the potentials T and Ω, and terms arising from the homology
of the non-conducting subdomain Ma.

In our example problem, the function space from which we look for the solution
h is

h ∈ H(M) = { h ∈ F1(M) | dh = 0 on Ma, tdh = 0 on (∂M ∪ ∂Mc)/Sj ,

t(⋆µh) = 0 on ∂M, t(ρ ⋆ dh) = 0 on Sj } (4.1)

together with (3.6) or (3.7) depending on the source quantity. The following weak for-
mulation for the equations (3.1) to find h ∈ H(M) is obtained by using the equations
(3.2) and (3.3) and by taking the b-side constraints (3.5) in (4.1) into account:

∫

M

∂t ⋆ µh ∧ h′ +

∫

Mc

ρ ⋆ dh ∧ dh′ +

∫

Se

t(e ∧ h′) = 0 ∀ h′ ∈ H(M), (4.2)

−

∫

M

⋆µh ∧ h′ = 0 ∀ h′ ∈ H(M). (4.3)

As dh = 0 holds inMa, we wished to express h exhaustively in terms of a magnetic
scalar potential φ in Ma, so that h = dφ holds. This would be computationally
efficient. However, we cannot, which we know from de Rham’s first theorem [18]:

(dh = 0 =⇒ h = dφ) ⇐⇒

∫

z

h = 0 ∀ z ∈ H1(Ma). (4.4)

In our case the integral condition fails to hold at two places. First, integrals of h over
1-cycles around the inductor should equal to the net current in the inductor. Second,
integrals of h over 1-cycles that go through the tunnel in Mc2 should equal the net
current in the workpiece around the tunnel, see Fig. 5.1, left. Two cosets of such
1-cycles are a basis for the homology space H1(Ma).

With the aid of the homology and cohomology solver, one can automatically
construct the missing part of an approximate subspace of H(M) in Ma: the edge-
based cohomology basis functions that are often called “thick-cuts” [24, 21]. The
approximate subspace of H(M) is still mainly spanned by the nodal finite element
shape functions in the non-conducting domain Ma, but the two cohomology basis
functions enables one to have non-zero circulations of the magnetic field h around
the inductor and the workpiece. Typically, the computed cohomology basis functions
have a small support, and thus do not excessively populate the system matrix.

Let us have a finite element mesh on the domain M . Let N(M) denote the set of
mesh nodes on M , and let E(Ma) denote set of mesh edges on Ma and let E(Mc/Ma)
denote the set of mesh edges on Mc that are not on Ma. For each node and edge
we associate a Whitney 0-form n

i and Whitney 1-form e
i, respectively. These form a

basis for Whitney spaces W0(M) and W1(M) [4].
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Then, a field that will suffice to represent the approximate solution is of the form

h =
∑

i∈N(M)

φidn
i +

∑

i∈E(Mc/Ma)

tie
i + I1

∑

i∈E(Ma)

z1i e
i + I2

∑

i∈E(Ma)

z2i e
i ∈ W1(M) ∩H(M), (4.5)

where the coefficients I1 and I2 of the cohomology basis functions correspond to the
values of the integrals of h over two linearly independent 1-cycle cosets in H1(Ma),
and W1(M) ∩ H(M) is the approximate subspace of H(M). The sparse coefficient
vectors z1 and z2 represent the 1-cochains that represent a computed basis {z1, z2}
of the space H1(Ma). Note that the interpretation of the unknown coefficients I1 and
I2 depends on the basis of H1(Ma).

Remark: The h-oriented constraints in (4.1) are satisfied by the choice of ba-
sis for the function space H(M). The b-oriented constraints are satisfied “weakly”
by the absence of boundary integrals over Sj and ∂M in equations (4.2) and (4.3),
respectively [5].

5. Choosing a useful basis for the cohomology space H1(Ma). In the
example problem, we would like that the coefficients I1 and I2 have an evident in-
terpretation for the engineer. For example, in order make it easy to fix the source
current or the source voltage, the coefficient I1 should correspond to the net current
through the inductor Mc1. Also, if the coefficient I2 would correspond to the net
current through the workpiece, one could read off useful post-processing information
right from the solution, without any actual post-processing! For example, if our appa-
ratus was a transformer, the coefficient I2 would indicate the net short-circuit current
in the secondary winding. In order to make such connotations, the engineer needs to
be involved in the choice of the cohomology basis.

However, in practice it is actually easier to choose the homology basis of the
representative 1-chains and then adjust the cohomology basis accordingly. Let the
matrix H1 =

[

z1 z2 . . . zβ1

]

, β1 = dimH1(Ma), represent a computed basis for
H1(Ma), where zi are coefficient vectors of the representatives of the basis 1-chains zi.
For any unimodular matrix U, the matrix H1U also represents a basis for the space
H1(Ma). The intuitive basis representation for H1(Ma) would be the one where the
representatives zi only loop around a single tunnel in Ma once, and loop around no
other tunnels. Then, one can directly relate the circulation of the magnetic field
h over the representative zi to the net current Ii in the tunnel. That is, the basis
would correspond to the source current Is and net current Ii in the workpiece. Such
a basis is represented in the Fig. 5.1, left. Unfortunately, the homology solver cannot
distinguish such loops without help from the user: Effectively, the user needs to feed
in a unimodular matrix U to produce such a desired basis from the computed one.
For example, if the homology solver produced the basis representation on the right
in Fig. 5.1, the basis representation on the left can be attained by the (2× 2)-matrix
U =

[

1 −1; 0 −1
]

.
Since H2(M) = H1(M) = 0 holds in our example problem, an automated method

to obtain such clear basis for the space H1(Ma) does exist. We can infer from the
long exact homology sequence [26]

0 = H2(M)
j∗
−→ H2(M,Ma)

∂∗−→ H1(Ma)
i∗−→ H1(M) = 0 (5.1)

that the spaces H2(M,Ma) and H1(Ma) are isomorphic6. Therefore, we obtain
a basis representation for the space H1(Ma) by applying the boundary operator

6Furthermore, H2(M,Ma) ≃ H2(Mc, ∂Mc ∩ ∂Ma) holds and moreover
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z1

z2

z1

z2

Fig. 5.1: Two basis representations for the homology space H1(Ma).

to the computed representative basis 2-chains of the space H2(M,Ma). That is,
H1 = D2H2 =

[

D2z
1 D2z

2 . . . D2z
β2

]

holds, where H2 is the basis representa-
tion matrix for the space H2(M,Ma) produced by the homology solver, and D2 is
the faces-to-edges incidence matrix of the mesh. Such a basis is guaranteed to be
equivalent to the one in Fig. 5.1, left.

Once we have obtained a desired basis representation H̃1 := H1U for the space
H1(Ma), it is possible to have a compatible cohomology space basis in the following
sense. Let the matrix H1 =

[

z1 z2 . . . zβ1

]

be a basis representation for the space
H1(Ma) produced by the cohomology solver. Then one can automatically obtain a
basis representation H̃1 = H1V for the space H1(Ma) that satisfies

I = H̃T
1 H̃

1 = H̃T
1 H

1V ⇐⇒ V = (H̃T
1 H

1)−1 = ((H1U)
TH1)−1 (5.2)

once the β1×β1 -matrix H̃T
1 H

1 is known. Then, H̃1 is the cobasis of the basis H̃1, since

zTi z
j =

∫

[zi]

[zj ] = δij , 1 ≤ i, j ≤ β1 (5.3)

holds for the bases. In Gmsh, one can request a cohomology cobasis for a computed
homology basis at the post-processing stage of the (co)homology computation.

6. Realization of the non-local constraints and the linear system. So
far, we have left the boundary term in equation (4.2) unspecified. It turns out that
it can be related to the non-local constraints of the example problem. Consequently,
we can write down the linear system that is either constrained by the source voltage
or by the source current. The other will be a part of the solution to the system.

Let {z1, z2} represent the basis of the space H1(Ma) in Fig. 5.1, left, and let
{z1, z2} represent the cobasis of the space H1(Ma). Then, the cohomology basis
functions E1 =

∑

i∈E(Ma)
z1i e

i and E
2 =

∑

i∈E(Ma)
z2i e

i of the function spaceW1(M)∩

H(M) correspond to the source current Is and the net current Ii in the workpiece,
respectively.

Let us take a closer look to the boundary term in (4.2). On the boundary ∂M ,
the field te can be expressed by a scalar potential. As dte = −∂ttb = 0 holds by

H2(Mc, ∂Mc ∩ ∂Ma) ≃ H2(Mc1, ∂Mc1 ∩ ∂Ma)⊕H2(Mc2, ∂Mc2 ∩ ∂Ma) holds. The first iso-
morphism holds by the excision theorem [26], and the second since Mc1 and Mc2 are not
connected.
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the boundary condition (3.5) and dimH1(∂M) = 0 holds, it follows from de Rham’s
first theorem (4.4) that dϕ = te holds for a scalar field ϕ ∈ F0(∂M). Then for
e, h′ ∈ F1(M),

∫

Se

t(e ∧ h′) =

∫

Se

dϕ ∧ th′ (6.1)

=

∫

Se

ϕ ∧ tdh′ −

∫

Se

d(ϕ ∧ th′) (6.2)

holds. The first term vanishes, since for any h′ ∈ H(M) it holds that tdh′ = tj = 0 on
Se. The voltage ϕ is a constant on each connected component of Sj , with a voltage
difference V1 = ϕ1 − ϕ2.

Let the boundary ∂Sj = ∂Se be represented by a 1-chain c1 − c2, where c1 and
c2 are homologous in the subdomain Ma, and

∫

c1
h = −

∫

c2
h′ = I1 hold for any

h′ ∈ H(M). That is, c1 and c2 belong to the same homology class of H1(Ma),
represented by z1. Because zT1 z

1 = 1 and zT1 z
2 = 0 hold, we obtain as the boundary

term of the equation (4.2)

∫

Se

t(e ∧ h′) = −

∫

∂Se

ϕ ∧ th′ = −
(

ϕ1

∫

c1

h′ − ϕ2

∫

c2

h′

)

=

{

−V1 when h′ = E
1

0 when h′ 6= E
1
.

(6.3)

Similar developments without the connection to the (co)homology were made in [14,
13].

Now, by plugging in the approximation in equation (4.5) to the equations (4.2)
and (4.3) and treating the problem as time harmonic, we obtain the following block
linear system:









Adn,dn Ae,dn AE1,dn AE2,dn

Adn,e Ae,e AE1,e AE2,e

Adn,E1 Ae,E1 AE1,E1 AE2,E1

Adn,E2 Ae,E2 AE1,E2 AE2,E2

















φ

t

I1
I2









=









0
0
V1

0









, (6.4)

where the blocks of the complex matrix correspond to the different kinds of basis
functions of the space W1(M) ∩H(M).

Since z1 is homologous to ζj , which was the boundary of a surface Σj that isolates
the terminals on Sj , the current-driven problem is obtained by fixing I1 equal to the
known source current Is. Then, the equation involving V1 plays no role in the solution
of the problem. However, once the problem has been solved, one can obtain the value
of V1 by substitution. Analogously, since the 0-chain ∂ζe lies on the distinct terminals
on Sj , the voltage-driven problem is obtained by fixing V1 equal to the known source
voltage Vs. Then, the net current I1 will be a part of the solution. Note that in
both current- and voltage-driven problems, the net current I2 through the workpiece
is obtained as a part of the solution.

Remark : The linear system (6.4) is actually an affine relation between the current
I1 and the voltage V1.

Remark : If the workpiece is interpreted as the secondary winding of a transformer,
one could also drive the problem with either net current I2 through the winding or
voltage V2 across the winding in addition to either I1 or V1. This is done by insisting
that there are two electrodes very close to each other in the workpiece Mc2, that
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creates a void in the domain M . The electrodes would belong to Sj , while the sides
of the void would belong to Se, see Fig. 6.1. Then again since zTi z

j = δij holds, the
boundary term of the equation (4.2) would be

∫

Se

t(e ∧ h′) = −

∫

∂Se

ϕ ∧ th′ =











−V1 when h′ = E
1

−V2 when h′ = E
2

0 when h′ 6= E
1 and h′ 6= E

2

(6.5)

However, then the current leads from the electrodes to the circuit are excluded from
the model. Thus, the model assumes that negligible electromotive force is induced
to the current leads and the contribution to the magnetic field by the current in the
leads is negligible [35].

Ma

Mc2 Se

Mc1

Sj

Sj

Se

Fig. 6.1: A void in the workpiece Mc2 that is excluded from the actual model. The
electrodes are part of Sj while the insulating boundary of the void is a part of Se.

7. Numerical example. We consider an example problem whose geometry is
depicted in Fig. 7.1. For such a geometry, to imagine a suitable basis representation
for the space H1(Ma) with mind’s eye is a difficult task. Thus, having a proven
algorithm for the task is a considerable advantage. Note that from a topological point
of view, the problem is still equivalent to the Fig. 3.1.

In our numerical example, the workpiece is made of aluminum, and the conductor
is copper. AC current of 1 A at 50 Hz frequency is led to the conductor. The thickness
of the workpiece is a bit larger than the skin depth at that frequency.

This example is available at a website [27] together with Gmsh and GetDP script
files. They demonstrate how to perform the required homology and cohomology
computations in Gmsh and how to input the approximation in the equation (4.5) of
the function space H(M) and the equations (4.2) and (4.3) to the finite element solver
GetDP.

In Figures 7.2 and 7.3 are computed representations for the basis {z1, z2} of the
space H1(Ma) and for the cobasis {z1, z2} of the space H1(Ma). The bases are such
that z1 and z1 correspond to the net current in the inductor, and z2 and z2 correspond
to the net current through the workpiece. Therefore, the coefficients I1 and I2 in the
equation (4.5) will be equal to them. Note how the coefficients of z1 equal 6 inside
the workpiece to ensure that the incidence matrix of the bases is an identity matrix.

In Table 7.1 we compare the homology and the cohomology computation time
for various meshes of the geometry. The computation time overhead added by the
homology and cohomology computations are of the order of magnitude of the mesh
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Fig. 7.1: Induction heating geometry and surface mesh of Mc.

Fig. 7.2: A representation of the basis of the homology space H1(Ma).

Fig. 7.3: A representation of the basis of the cohomology space H1(Ma).
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Table 7.1: Comparing computation times with different meshes. Number of tetrahe-
dra in the mesh; Time to generate the mesh; Number of tetrahedra in Ma and Mc

which are the cohomology and homology computation domains, respectively; Time to
compute the cohomology H1(Ma) and the homology H2(Mc, ∂Mc ∩∂Ma); Degrees of
freedom in the T −Ω-formulation and in the A−V -formulation for the same problem;
Solution time for the problems using a direct solver; Impedance Z = U1/I1 of the
T − Ω solution.

T − Ω A− V
#Tet. M #Tet. Ma #Tet. Mc #DoF’s #DoF’s Re(Z)
Mesh time H1 time H2 time time time Im(Z)

Mesh 1
106 141 88 849 17 292 61 568 257 148 0.532 mΩ

2.2 s 5.9 s 2.0 s 301 s 3 823 s 1.01 mΩ

Mesh 2
148 962 123 977 24 985 88 406 366 252 0.485 mΩ

3.4 s 8.2 s 3.2 s 666 s – 0.962 mΩ

Mesh 3
268 238 232 227 36 011 179 514 649 332 0.494 mΩ

8.1 s 17.9 s 9.2 s 2 126 s – 0.932 mΩ

Mesh 4
392 218 299 328 84 534 279 490 949 848 0.494 mΩ
13.8 s 26.7 s 15.3 4 920 s – 0.918 mΩ

generation. Note that the cohomology computation domain is not the full mesh,
but just the air subdomain Ma, and the homology computation domain is just the
conducting subdomain Mc.

We also compare the number of degrees of freedom between the T−Ω-formulation
and the A−V -formulation [13] of the entire problem. In the A−V -formulation of the
eddy current problem, one seeks for a vector field in the whole domain M : There’s
one DoF for each edge in the mesh of M , and one DoF for each node in the mesh of
the conducting subdomain Mc. When the A − V -formulation is used, (co)homology
computation typically isn’t needed.7

As a conclusion of the results in Table 7.1, the benefits of being able to use
T − Ω-formulation outweigh the additional cost of the homology and cohomology
computation.

In Fig. 7.4 we demonstrate the effect of the cohomology basis functions E
1 and

E
2 to the scalar part

∑

i∈N φini of the function space. The values of the scalar part
have a jump equal to I1z

1
i and I2z

2
i across the edges i ∈ E(Ma). In Fig. 7.5 is the

computed current density j = dh of the problem, where h ∈ W1(M) ∩H(M).

8. Conclusions. A tool for the homology and the cohomology computation for
finite element meshes and exploitation of its results in computational electromagnetics
was presented. The solver is an integrated part of the finite element mesh generator
Gmsh. As such, the homology and cohomology computation step can be seamlessly
incorporated to the finite element modeling workflow. The performance of the solver
is found to be good when the input is a typical finite element mesh. The output of

7However, if we interpreted the workpiece as the secondary winding of a transformer, one could
use cohomology basis functions arising from the space H1(Mc, Sj) to drive it with voltage or net
current.
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Fig. 7.4: Real and imaginary parts of the computed magnetic field h ∈ H(M).

Fig. 7.5: Real and imaginary parts of the computed current density j = dh, where
h ∈ H(M).

the solver is associated with the input mesh, and thus can be easily exploited within
a finite element solver.

The cohomology solver can be used to produce cohomology basis functions for the
finite element method. Such basis functions make the use of vector-scalar formulations
of boundary value problems straightforward. The degrees of freedom associated with
the cohomology basis functions provide useful post-processing information, as they
can be related to the lumped parameter model of the problem.

In this paper, the exploitation of homology and cohomology computation was
demonstrated by a T − Ω-formulation of an eddy current problem, which provides a
considerable performance increase when compared to the A − V -formulation of the
problem. Without the cohomology computation, the usage of the T − Ω-formulation
is more cumbersome in many cases. Homology and cohomology computation also
clarified the circuit coupling of the problem.
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Appendix A. Homology and cohomology spaces. Briefly, the homology
and the cohomology of a finite element mesh is described as follows. Based on a mesh
on a domain M , vector spaces Ck(M) of k-chains ck are defined to be formal sums of
k-dimensional mesh cells σk. For example 1-chain c1 =

∑

σ1

i
∈M ciσ

1
i , where ci ∈ R, is

a formal sum of the edges in the mesh of M . Thus, on a given mesh a k-chain ck can

be represented by its coefficient vector c =
[

c1 c2 . . . cNk

]T
. Boundary operator ∂k

maps k-chains to (k − 1)-chains. They can be represented as the incidence matrices
Dk of the mesh. Then for example ∂1c1 =

∑

σ0

i
∈M (D1c)iσ

0
i is a sum of nodes σ0

i that

constitute the endpoints of the 1-chain c1.
A k-chain whose boundary is the zero element of Ck−1(M) is called a k-cycle and

often denoted by zk. A k-chain that is a boundary of a k + 1-chain is called a k-
boundary. That is, k-cycles constitute the space ker(∂k) and k-boundaries constitute
the space im(∂k+1). Two k-cycles are called homologous if their difference is a k-
boundary. Such relation on k-cycles is an equivalence relation and thus can be used
to construct a quotient space whose elements are cosets: equivalence classes of k-
cycles.

Cochains are linear maps from chains to real (or complex) numbers. That is, they
assign a scalar quantity to the given chain. Integration of a field over a domain is an
example of a cochain when the field is fixed, but the integration domain varies.

A k-cochain ck can be represented as a complex or real coefficient vector ck such
that for a given k-chain ck, c

k(ck) = (ck)T ck holds. The coboundary operator δk
maps k-cochains to k + 1-cochains and it is defined by δkc

k(ck+1) = ck(∂k+1ck+1).
Therefore, their matrix representations are DT

k+1. The elements of the spaces ker(δk)
and im(δk−1) are called k-cocycles and k-coboundaries, respectively.

Homology and cohomology spaces Hk(M) and Hk(M) are the quotient spaces

Hk(M) = ker(∂k)/im(∂k+1) = {ck + im(∂k+1) | ck ∈ ker(∂k)}, (A.1)

Hk(M) = ker(δk)/im(δk−1) = {ck + im(δk−1) | c
k ∈ ker(δk)}. (A.2)

For example, the elements of Hk(M) are represented by k-chains that are non-
bounding k-cycles, such as loops around tunnels, or surfaces that enclose voids. One
can add to such k-chain any bounding k-chain, and it still represents the same element
of Hk(M).

Cosets Ck(M,S) = {c + Ck(S) | c ∈ Ck(M)} are called k-chains relative to a

subdomain S ⊂ M . Usually, a choice of representative is made which zeroes the
part of the chain that lies in S. 8 With such choice, the representations of the
relative boundary operator matrices are obtained by removing rows and columns of the
boundary operator matrices Dk that correspond to mesh cells lying on the subdomain
S. From the definition of relative k-chains, spaces of relative k-cochains, relative
homology spaces, and relative cohomology spaces can be induced. For example, a
relative non-bounding 1-cycle would draw from S to S so that it wouldn’t enclose a
surface, part of whose boundary might lie in S.

Appendix B. Differential forms on M ⊂ R
3. In the Euclidean space R

3,
the algebra and the analysis of the differential forms is very similar to the classical

8Such choice disregards torsion in the relative chain groups Ck(M,S). In the finite element
context, this is not a loss since boundary conditions are not typically assigned to a multiple of a
boundary.
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vector analysis. The main difference is the different point of view: Differential forms
are functionals on vectors rather than vectors. However, once these functionals are
given a component representation, the operations on the component vectors resemble
the operations on the vector fields in the vector analysis. Due to this similarity, it
may seem that the differential forms are just glorified vector fields. However, even
in the Euclidean 3-space, differential forms have some virtues: While the 0-, 1-, 2-,
and 3-forms have clearly different geometric nature, the operators acting on them
are uniform and have a uniform notation. Therefore, differential forms make a good
companion to the concepts of the homology and the cohomology.

A differential 0-form ω0 ∈ F0(M) on a subset M of the Euclidean space R
3 is a

differentiable map ω0 : M → F to a scalar field F of real or complex numbers.

A tangent vector vp of M ⊂ R
3 is a vector v ∈ R

3 = TpM that is “bound” to
a point p ∈ M . The vector space TpM is actually just R

3, but denoted in such a
way to emphasize that it is a vector space that is bound to a point p of M . Such
tangent vector is often denoted vp =

∑3
i=1 vi∂/∂x

i, where {∂/∂x1, ∂/∂x2, ∂/∂x3}
is the standard basis of R3 with Cartesian coordinates x1, x2, and x3. Informally, a
tangent vector can be considered as a “line element” at a point p of a curve lying in R

3.
A pair of tangent vectors up, vp can be considered to form a “surface element” that
has the coefficients of a vector normal to the surface they span: n = u×v. Similarly,
three tangent vectors up, vp, wp form a “volume element” that is represented by a
scalar volume V = u× v ·w of their span.

A differential 1-form ω1 ∈ F1(M) is a differentiable linear map ω1 : TpM → F.
That is, it takes a tangent vector as an argument and produces a scalar. A differential
1-form can be defined by providing three scalar functions ω1

i : M → F that are the

“components” the 1-form: ω1 =
∑3

i=1 ω
1
i (p)dx

i at p, where informally, the notation
dxi denotes that 1-forms are integrands of a line integral. The evaluation is then given
by ω1(vp) =

∑3
i=1 ω

1
i (p)vi = ω1(p) ·v ∈ F. Here and in the following paragraphs, we

use the symbols · and × merely to express the computation rules of the components
of the differential forms. That is, they do not denote any binary operators that have
representation independent meaning.

A differential 2- and 3-forms are similar maps but they take as arguments two
and three tangent vectors, respectively. Or informally, the arguments are surface and
volume elements, respectively. A 2-form has three components: ω2 = ω2

1(p)dx
2dx3 +

ω2
2(p)dx

3dx1+ω2
3(p)dx

1dx2. It is evaluated by feeding in a surface element: ω2(up, vp) =
∑3

i=1 ω
2
i (p)ni = ω2(p) · n. A 3-form has just one component ω3 = ω3(p)dx1dx2dx3.

It is evaluated for a volume element: ω3(up, vp, wp) = ω3
1(p)V .

The wedge product ∧ of a k-form and an l-form produces a k + l-form when
k + l ≤ 3, otherwise it produces zero. The components of ω0 ∧ ηk are ω0(p)η(p) for
any k, for 1-forms the components of ω1 ∧ η1 are ω1(p) × η1(p), for a 1-form and a
2-form the component of ω1 ∧ η2 is ω1(p) · η2(p).

The exterior derivative d maps a k-form to a k+1-form. The components of dωk

for k = 0, 1, 2 are ∇ω0(p), ∇× ω1(p), and ∇ · ω2(p), respectively.

The Hodge operator ⋆ maps a 1-form ω1 to a 2-form η2 = ⋆ω1. The components
of η2 are η2(p) = A(p)ω1(p), where A(p) is the identity 3× 3-matrix in the Euclidean
3-space. However, if the space was not Euclidean but a more general Riemannian
manifold (M, g), the expression for the positive definite matrix A(p) would be obtained
from the metric tensor g.

The trace operator t “restricts” a differential form to a subdomain of the Euclidean
space. Given a set of one or two tangent vectors at a point p ∈ M , the trace operator
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picks the tangential part of a 1-form with respect to the line element or the surface
element spanned by the tangent vectors. That is, the components of tω1 are (ω1(p) ·
û)û or ω1(p) − (ω1(p) · n̂)n̂, respectively, where the vectors û and n̂ are normalized
with respect to the Euclidean norm. For 2-forms, the trace operator picks the normal
part with respect to the surface element spanned by two tangent vectors: tω2 has
the components (ω2(p) · n̂)n̂. For a 0-form, tω0 is the ordinary restriction of a scalar
function.

Finally, the integration of a differential k-form ωk is defined over a k-chain ck =
∑

i ciσ
k
i . It is given by

∫

ck
ωk =

∑

i ci
∫

σk
i

tωk, where each k-dimensional cell σk
i is a k-

dimensional bounded set in the Euclidean space R3. The Stokes’ theorem is stated as
∫

ck
dωk =

∫

∂ck
ωk. This reveals that the exterior derivative d can be considered as the

coboundary operator δ. Indeed, the cohomology where the cochains are differential
forms is called de Rham cohomology. Together with the Hodge operator and the wedge
product, integration provides an inner product space structure for the function spaces
Fk(M) of differential k-forms. The inner product is defined by 〈ωk, ηk〉 =

∫

M
⋆ωk∧ηk.

Thus, one can construct various Hilbert spaces of differential forms needed for a
rigorous treatment of differential forms in the finite element method [2].

A tensor field C that maps a 1-form ω1 to a 1-form η1 can be represented as a
(3 × 3)-matrix C(p). The components of η1 are η1(p) = C(p)ω1(p). In the possible
non-linear case, the elements of the matrix C(p) depend on the components of ω1(p).
Then, the matrix C(p,ω1(p)) represents a linear approximation to the non-linear map
C : F1 → F1 near ω1(p) (in the sense of the inner product of the space F1). To use
such a (possibly non-linear) map in the finite element method, the map C is required
to be strictly monotonous and symmetric with respect to the inner product of the
differential 1-forms [18].
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