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Abstract

Dynamics of the tachyon gas is considered. It is interesting in the relation,
that dark matter phenomenon is explained freely by existence of the tachyon
gas. Tachyons have two unexpected properties: (1) a single tachyon cannot
be detected and (2) the tachyon gas can be detected by its gravitational �eld.
Although molecules (tachyons) of the tachyon gas moves with superluninal
velocities, the mean motion of these molecules appears to be less, than the
speed of the light. The tachyon gas properties di¤ers from those of usual gas.
The pressure of the tachyon gas is very high. It is not isotropic and depends on
the gravitational potential. As a result the tachyon gas may form huge halos
around galaxies. These halos have very large and almost constant density.
This circumstance can explain the law of star velocities at the periphery of
a galaxy. Properties of the tachyon gas admit one to consider it as a dark
matter.

Key words: multivariant geometry, tachyon, tachyon gas, tachyon dynamics,
dark matter

1 Introduction

The particles moving with the velocity, which is greater than the speed of the light,
are called tachyons [1]-[5]. We shall use this name for particle whose world line is
spacelike. Both de�nitions mean the same, if the world line is smooth, and one
can de�ne a derivative along the world line. This derivative is known as a velocity.
We shall show that the world line of tachyons is not smooth. This property di¤er
tachyons from tardions which are particles moving with velocity less, than the speed
of the light.
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The property of the space-time geometry called multivariance is essential for
tachyons. It means that a vector AB at the point A has many equivalent vectors
CD, CD0, CD00,...at the point C, but these vectors are not equivalent between
themselves. Contemporary theorists do not accept the property of multivariance in
geometry and try to remove it, if it appears by accident in geometry. For instance,
when it appears in the Riemannian geometry, one removes this property, connecting
any of numerous vectors CD, CD0, CD00,...at the point C with the path of their
parallel transport from the point A and asserting absence of absolute parallelism in
the Riemannian geometry.
Such a relation to multivariance is connected with the fact that beginning from

Euclid one studied only proper Euclidean geometry, assuming that the space-time
geometry cannot have any additional properties which are absent in the Euclidean
geometry. The multivariance is denied in the Riemannian geometry, because one
considers absence of absolute parallelism as a less defect of the geometry, than
multivariance of the vector equivalence. Absence of smoothness (wobbling) of the
tachyon world line is a corollary of multivariance of the spacelike vectors equality in
the geometry of Minkowski. Let us present the tachyon world line in the form of a
world chain, i.e. in the form of broken line, consisting of short straight line segment
of the same length. Each link of the chain can be represented by a short spacelike
vector. The adjacent vectors are equal for a free tachyon (or are in parallel, that is
the same for vectors of the same length). At the presence of multivariance it leads
to a wobbling of the world chain.
Multivariance is undesirable also in dynamics, but not only in geometry. It is to

the point to remember about papers of Boltzman, who explained the gas dynamics
via stochastic (multivariant) motion of its molecules. In this case the multivariant
motion of a single molecule was explained by its collisions with other molecules. It
was very di¢ cult to credit that deterministic motion of the gas volume, contain-
ing many molecules, can be explained as a statistical description of multivariant
motion of single molecules. However, some time later the dynamical multivariance
has been accepted, when the Brownian motion has been detected experimentally.
The Brownian motion can be interpreted as a motion of a gas, consisting of large
molecules which could be observed in a usual microscope.
However the preconception against the geometric multivariance remains. It is

very di¢ cult to accept the geometric multivariance, if one takes into account that
the geometric multivariance is connected with intransitivity of the equivalence rela-
tion and with nonaxiomatizability of the geometry, where equivalence of vectors is
multivariant. The preconception against the geometric multivariance reminds the
preconception against the concept of inertia, which existed in the time, when the
Aristotelian mechanics dominated. Concept of inertia was absent in the Aristotelian
mechanics. We are accomplished on the basis of the Newtonian mechanics, and now
it is very di¢ cult to imagine what was a reason of the preconception of adherents of
the Aristotelian mechanics against the concept of inertia. But such a preconception
existed certainly.
Unlikely it was accidental that the �rst law of mechanics (the law of inertia) has
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been formulated by Newton in the form of a separate law, although it is a special
case of the second law (when the force is equal to zero). It is unlikely that Newton
did not understand this. Apparently the law of inertia has been formulated as a
separate law, because the concept of inertia need a separate formulation to stress
the importance of the concept of inertia, which was not common in that time.
Rationale of the multivariance concept as a fundamental property of geometry

can be found in [6, 7]. However, the contemporary theorists prefer an experimental
test instead of rationale, and we consider such a test.
Let us consider the space-time with the geometry of Minkowski. Equality of two

vectors in such a geometry may be de�ned doubly:
(1) Conventional de�nition: Two vectors AB and CD are equal, if their compo-

nents (AB)k, and (CD)k are equal

ABeqvCD : (AB)k = (CD)k ; k = 0; 1; 2; 3 (1.1)

(2) Coordinateless de�nition: Two vectors AB and CD are equal, if they are in
parallel (AB � CD) and their lengths jABj and jCDj are equal

(AB � CD) : (AB:CD) = jABj � jCDj (1.2)

jABj = jCDj : � (A;B) = � (C;D) (1.3)

Here � (A;B) is the world function of the space-time geometry between the points
A and B. The space-time geometry is described completely by the world function �

� : 
� 
! R; � (P;Q) = � (Q;P ) ; � (P; P ) = 0; 8P;Q 2 
 (1.4)

where 
 is the set points, where geometry is given. The world function is de�ned
by the relation � (P;Q) = 1

2
d2 (P;Q), where d (P;Q) is the space-time distance

between the points P and Q. The world function has been introduced by J.L Synge
for description of Riemannian geometry of the space-time [8]. In the Euclidean space
the scalar product (AB:CD) of two vectors is expressed by the formula

(AB:CD) = � (A;D) + � (B;C)� � (A;C)� � (B;D) (1.5)

The same formula (1.5) take place in other space-time geometries, in particular in
the geometry of Minkowski.
In the proper Euclidean geometry of any dimension both de�nitions (1.1) and

(1.2), (1.3) coincide because of special properties of the world function of the proper
Euclidean geometry. In the geometry of Minkowski the conventional de�nition con-
tains four equations and vectorCD is determined uniquely, if the vectorAB is given.
Multivariance is absent in the conventional de�nition of the two vectors equivalence.
The coordinateless de�nition (1.2), (1.3) contains only two equations, whereas

any vector is described by four coordinates. In general, equations (1.2), (1.3) admit
a multivariant solution. Nevertheless for timelike vectors four relations (1.1) are
equivalent to two equations (1.2), (1.3). It is conditioned by special properties of
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the world function in the geometry of Minkowski. But for spacelike vectors the
equivalence of the two de�nitions is absent, and equality of spacelike vectors AB
and CD is multivariant.
What of two de�nitions are true? The coordinateless de�nition (1.2), (1.3) is

true, because it does not use mathematical technique of linear vector space. The
coordinateless de�nition (1.2), (1.3) is a fundamental pure geometric de�nition,
whereas the conventional de�nition (1.1) uses properties of the linear vector space,
which cannot be introduced in arbitrary space-time geometry. In particular, the
linear vector space cannot be introduced in a multivariant geometry.
In the present paper the dynamic equations for the tachyon gas are deduced.

It appears that the tachyon gas is a substance, which can be considered as a dark
matter, which is discovered in astrophysical observations [9]. As a result these
observations may be interpreted in favour of the coordinateless de�nition (1.2),
(1.3). It follows from this circumstance that the existence of the tachyon gas may
be considered as acknowledged experimentally.

2 Dynamic equations for a single tachyon

Dynamic equations for tachyons are deduced in the framework of metric approach
to geometry, when the geometry is described completely by means of only world
function. We shall consider space-time geometry as a geometry of Minkowski with
slight gravitational �eld in the space-time. In this case the world function has the
form

� (x; x0) =
1

2

��
c2 � 2V (y)

�
(x0 � x00)

2 � (x� x0)2
�
; y =

x+ x0

2
(2.1)

where fx0;xg = fx0; x1; x2; x1g are coordinates in some inertial coordinate system,
V = V (x) is the gravitational potential (V � c2). The geometry, described com-
pletely by a world function, is called the physical geometry.
In the physical geometry the particle dynamics is described by the skeleton con-

ception [7], where instead of the continuous world line one uses the world chain C
(broken line), whose links are vectors PsPs+1 of the same length �

C =
[
s

PsPs+1; jPsPs+1j = � = const; s = :::0; 1; 2; ::: (2.2)

For free particle the adjacent vectors PsPs+1 and Ps+1Ps+2 are equivalent
(PsPs+1eqvPs+1Ps+2). Then the equivalence conditions (1.2) - (1.5) can be written
in the form

� (Ps; Ps+2) = 4� (Ps; Ps+1) ; � (Ps; Ps+1) = � (Ps+1; Ps+2) ; s = 0;�1;�2; :::
(2.3)

If there exist the limit � ! 0, the world chain (2.2) turns into a smooth world
line. Keeping in mind that world line � (Ps; Ps+1) = 1

2
d2 (Ps; Ps+1), where d is the
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distance between the points Ps and Ps+1, one can see, that in the proper Euclidian
geometry the relation (2.3) describes the rule of straight line construction by means
of only compasses.
In the case of tachyon � (Ps; Ps+1) < 0 and � is imaginary �2 = � j�2j. We

consider three adjacent points P0, P1, P2 of the world chain

P0 = fx0;xg ; P1 = fx0 + p0;x+ pg ; P2 = fx0 + 2p0 + �0;x+2p+�g (2.4)

The 4-vector � = f�0;�g is a discrete analog of the acceleration vector. We write
equations (2.3) for the points (2.4). The quantities x = fx0;xg and fx0 + p0;x+ pg
are supposed to be given, and the four components of the 4-vector � = f�0;�g are
to be determined from two equations (2.3)
One obtains for tachyon�

c2 � 2V
�
(p0 + �0)

2 � (p+�)2 =
�
c2 � 2V

�
p20 � p2 = �2; (2.5)�

c2 � 2V
�
(2p0 + �0)

2 � (2p+�)2 = 4
��
c2 � 2V

�
p20 � p2

�
; (2.6)

It follows from (2.5) that

p0 =

s
p2 � j�j2

c2 � 2V =
p

c

vuut1� j�j2
p2

1� 2 V
c2

(2.7)

We consider separately two di¤erent cases: (1) p0 6= 0 and (2) p0 = 0

2.1 The case p0 6= 0
After transformation of equations (2.5), (2.6) one obtains two relations

�0 =
�p

p0 (c2 � 2V )
; v =

p

p0
(2.8)

�
c2 � 2V � v2
c2 � 2V

�
�2k +�

2
? = 0; v =

p

p0
(2.9)

where

�k = p
(�p)

p2
; �? = ���k; �2k =

(�p)2

p2
; �k =

�p

p
; p = jpj (2.10)

Here �k is the component of 3-vector � which is in parallel with the 3-vector p,
whereas �? is the component of 3-vector �, which is perpendicular to the 3-vector
p.
Solution of equation (2.9) is nonunique

�k =
r
p
c2 � 2Vp

(v2 � c2 + 2V )
; v =

p

p0
(2.11)
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�?1 = r cos�; �?2 = r sin� v =
p

p0
=
p
p
(c2 � 2V )q
p2 � j�j2

(2.12)

�0 =
�p

p0 (c2 � 2V )
=
p

p0

 
rp

(v2 � c2 + 2V ) (c2 � 2V )

!
(2.13)

Here r; � are arbitrary real numbers r � 0. The length j�j of multivariant 3-vector
� is of the order r

j�j2 = r2 v2

(v2 � c2 + 2V ) (2.14)

Components of the multivariant particle velocity u are de�ned by relations

u =
p+�

p0 + �0
; u0 = 1 (2.15)

In the orthogonal coordinate system these components have the form

uk =
p+ �k
p0 + �0

=

 
p+

r
p
c2 � 2Vp

(v2 � c2 + 2V )

! 
p0 +

pr

p0
p
(v2 � c2 + 2V ) (c2 � 2V )

!�1
=

p0 (c
2 � 2V )
p

+O
�
r�1
�

(2.16)

u?1 =
�?1

p0 + �0
=
p0
p
(v2 � c2 + 2V ) (c2 � 2V ) cos�

p
+O

�
r�1
�

(2.17)

u?2 =
�?2

p0 + �0
=
p0
p
(v2 � c2 + 2V ) (c2 � 2V ) sin�

p
+O

�
r�1
�

(2.18)

The components of the 3-vector u do not depend on parameters r at r !1. As far
as the components of u do not depend practically on r, we may average components
of u with any weight function. We choose the weight function in such a way, as if
the integration is produced over in�nite volume in the spherical coordinate system
(r; �; �). Components of 3-vector u do not depend on r; �. The mean values hui and
hu2i of variables u and u2 are obtained as a result of averaging

hui = lim
R!1

1

N

Z R

0

r2dr

Z �

0

sin �d�

Z 2�

0

u (r; �) d�; N =
4�R3

3
(2.19)

The variables u are represented by formulas (2.16) - (2.18) in the form

u (r; �) = u (�) +O
�
r�1
�

(2.20)

Representation (2.20) does not mean that the term O (r�1) has a singularity at
r = 0. According to (2.16) - (2.18), (2.13) all components of u are regular at r = 0.
Integration of the term O (r�1) gives term of the order R2=N , which vanishes at
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R!1, because of normalizing factor 1=N , which is proportional R�3. It is valid
for all positive powers of u. At such an averaging one obtains



uk
�
=

p
c2 � 2V
p

p
p2 � j�2j = c

r
1� 2V

c2

s
1� j�

2j
p2

(2.21)

hu?i = 0 (2.22)

u2k
�
=


uk
�2
= hui2 = c2

�
1� 2V

c2

��
1� j�

2j
p2

�
< c2 (2.23)

Using expressions (2.12), (2.13), (2.7) one obtains



u2?
�
=

p20 (v
2 � c2 + 2V ) (c2 � 2V )

p2
=
�
c2 � 2V

��
1� p

2
0 (c

2 � 2V )
p2

�
=

j�j2

p2
�
c2 � 2V

�
= c2 � 2V �



u2k
�

(2.24)



u2
�
=


u2k
�
+


u2?
�
= c2 � 2V (2.25)

2.2 The case p0 = 0

This case corresponds to the special case p2 = j�2j. In this case according to (2.7)
p0 = 0, and equations (2.5), (2.6) take the form�

c2 � 2V
�
�20 � (p+�)

2 = �p2 = � j�j2 ; (2.26)�
c2 � 2V

�
�20 � (2p+�)

2 = �4p2; (2.27)

p2 =
���2��

These equations are reduced to the form

�p = �kp = 0;
�
c2 � 2V

�
�20��2? � �2k = 0 (2.28)

Solution of equations (2.28) has the form

�0 =
rp

c2 � 2V
; �k = 0; �?1 = r cos�; �?2 = r sin�; (2.29)

Averaging by means of the formula (2.19), one obtains



uk
�
=

�
p
p
c2 � 2V
r

�
= 0; hu?i = 0 (2.30)



u2?
�
=

*�����?�0
����2
+
=

�
r2

r2
�
c2 � 2V

��
= c2 � 2V (2.31)



u2k
�
=


uk
�2
= 0;



u2
�
=


u2k
�
+


u2?
�
= c2 � 2V (2.32)
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One can see from (2.30) - (2.32) that results for


uk
�
, hu?i,

D
u2k

E
, hu2?i, taken for

p2 = j�2j, that corresponds to the case p0 = 0, coincide with results (2.21) - (2.24) .
It means, that the case p0 = 0 is a special case of the case p0 6= 0. The case p0 = 0
can be obtained from the general case p0 6= 0, setting p2 = j�2j. We shall consider
farther only the general case p0 6= 0.

3 Dynamic equations for tachyon gas

Motion of a single tachyon is multivariant (stochastic). This multivariance is a
geometric one. Let us consider a statistical ensemble of many tachyons. Such a
statistical ensemble form a tachyon gas, where the pressure tensor P�� has the form

P�� = �
1

2

�
l�(1)l

�
(1) + l

�
(2)l

�
(2)

� �

u2
�
� hui2

�
= �

1

2

�
l�(1)l

�
(1) + l

�
(2)l

�
(2)

� 

u2?
�

(3.1)

where � is the mass density of the gas and 3-vectors l�(1), l
�
(2) are unit 3-vectors, which

are orthogonal to 3-vector p and between themselves. Anisotropy of the pressure is
connected with the fact that the vector

u? =
�?

p0 + �0

which is responsible for pressure, is orthogonal to the vector p. Using relations
(2.23) - (2.25), one obtains from (3.1)

P�� =
1

2
�
�
l�(1)l

�
(1) + l

�
(2)l

�
(2)

� �
c2 � 2V � hui2

�
(3.2)

Anisotropy of the pressure is explained by the fact that the state of the tachyon gas
is described by its density �, velocity u = hui and polarization 3-vector p= jpj. Ac-
cording to (2.21), (2.22) the tachyon gas velocity hui is in parallel with polarization
3-vector p= jpj.

hui = p

p
c

r
1� 2V

c2

s
1� j�

2j
p2
; hu?i = 0 (3.3)

In the case, when p2 = j�2j and hui = 0, the unit polarization 3-vector p= jpj does
not vanish. General-covariant description of the polarization is realized by means
of bivector li(1)l

k
(2) � lk(1)li(2), where 4-vectors li(1), lk(2), k = 0; 1; 2; 3 are unit 4-vectors

which are orthogonal to 4-vectors (p0;0) and (0;p) and between themselves

l0(a)p0 = 0; l�(a)p� = 0; a = 1; 2; gikl
i
(1)l

k
(2) = 0 (3.4)

In the case, when hui 6= 0�
l�(1)l

�
(1) + l

�
(2)l

�
(2)

�
= ��� �

hu�i


u�
�

hui2
(3.5)
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and the pressure tensor can be written in the form

P�� =
1

2
�

 
��� �

hu�i


u�
�

hui2

!�
c2 � 2V � hui2

�
(3.6)

Remark. Tachyon gas may be a mixture of tachyon gases with di¤erent polar-
ization vector. Components of this mixture have di¤erent mean velocities. These
components do not interact between themselves and move freely one through an-
other.
Dynamic equations for the tachyon gas have the form

rkT
ik = 0 (3.7)

where T ik is the energy-momentum tensor of the tachyon gas and r is the covariant
derivative in the space-time with the metric tensor

gik = diag
�
c2 � 2V;�1;�1;�1

�
(3.8)

The Christo¤el symbols ikl are de�ned by the relations

ikl =
1

2
gis (gis;k + gsk;i � gik;s)

Here and further comma means di¤erentiation.

gis;k � @kgis �
@gis
@xk

Only following Christo¤el symbols do not vanish in the space-time geometry (3.8)

000 =
1

2
g00g00;0 =

1

2

@

@t
log
�
c2 � 2V

�
� �c�2@0V;

�00 = �1
2
g��g00;� =

1

2

@

@x�
�
c2 � 2V

�
= �@�V

0�0 =
1

2
g00g00;� =

1

2

@

@x�
log
�
c2 � 2V

�
� �c�2@�V (3.9)

Then the dynamic equations (3.7) have the form

rkT
0k = @kT

0k + @0 log
�
c2 � 2V

�
T 00 +

3

2
@� log

�
c2 � 2V

�
T 0� = 0 (3.10)

rkT
�k = @kT

�k+
1

2
@�
�
c2 � 2V

�
T 00+

1

2
@0 log

�
c2 � 2V

�
T �0+

1

2
@� log

�
c2 � 2V

�
T 0� = 0

(3.11)
In the nonrelativistic approximation they have the form

@kT
0k = 0; @kT

�k = T 00@�V (3.12)
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The energy-momentum tensor T ik is the energy-momentum tensor of ideal gas.
It has the form

T ik = �


uiuk

�
(3.13)

where 4-velocity uk is de�ned by the relation (2.15). Averaging is made by means
of the formula (2.19). One obtains

T 00 = �; T�0 = T 0� = � hu�i (3.14)

T�� = � hu�i


u�
�
+ P��; �; � = 1; 2; 3 (3.15)

where the pressure tensor P�� is determined by relations (3.1), (3.2). Omitting for
brevity the symbol of averaging and replacing hu�i by u�, one obtains from (3.12)

@0�+ @� (�u
�) = 0 (3.16)

@0
�
�u�
�
+ @�

�
�u�u�

�
+ @�P

�� = �@�V (3.17)

Using equation (3.16), equation (3.17) is reduced to the form

@0u
� + u�@�u

� +
1

�
@�P

�� = @�V (3.18)

If u 6= 0 one may use the expression (3.6) for the energy-momentum tensor P��.
One obtains

@0u
�+u�@�u

�+
1

�
@�

�
1

2
�
�
c2 � 2V � u2

��
� 1
�
@�

�
1

2
�
u�u�

u2
�
c2 � 2V � u2

��
= @�V

(3.19)
or

@0u
� + u�@�u

� +
1

2

@��

�

�
c2 � 2V � u2

�
� @�

�
2V � u

2

2

�
�1
�
@�

�
1

2
�
u�u�

u2
�
c2 � 2V � u2

��
= 0 (3.20)

If u = 0, the last term in (3.20) becomes inde�nite. To make it de�nite, one is
to use the tachyon gas parametrization and to replace u�u�=u2 by p�p�=p2.

4 Balanced state of the tachyon gas

Let us consider the balanced state of the tachyon gas in the gravitational �eld of
a galaxy. Equations (3.20) are written in spherical coordinate system (r; �; �). For
simplicity we shall consider a spherically symmetric �eld V = V (r). We suppose
that the tachyon gas is practically at rest. The velocity components have the form
ur = 0; u� = 0 The azimuth component u� is very small, and one may set u = 0
everywhere in (3.20) except for the multiplier u�u�=u2. We are interested in the
density � = � (r) of the tachyon gas in the stationary gravitational �eld. More
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exactly we are interested, whether the tachyon gas density can be enough great to
explain the dark matter.
Two equations of (3.20) corresponding to � = � and to � = � are identities of

the form 0 = 0. The equation for � = r takes the form

1

2�

@�

@r

�
c2 � 2V

�
� 2 @

@r
V � 1

�

@

r@�

�
1

2
�
u�u�

u2
�
c2 � 2V

��
= 0 (4.1)

or, as far as @=@� = 0, one obtains

1

�

@�

@r

�
c2 � 2V (r)

�
= 4

@

@r
V (r) (4.2)

Integration of equation (4.2) gives

� =
�0c

4

(c2 � 2V (r))2
(4.3)

where �0 is the integration constant. In the case, when V (r)� c2, one obtains

� = �0

�
1 + 4

V (r)

c2

�
(4.4)

The density of the tachyon gas changes rather slowly, and the gravitational �eld of
the tachyon gas is su¢ cient to imitate the gravitational �eld of the dark matter.
Such a capacity of the tachyon gas is connected with a very high pressure of the
tachyon gas.
Remark. Someone argue that the mass of the halo

mh = 4�

Z R

0

� (r) r2dr � 4�

3
�0R

3 (4.5)

tends to1 at R!1 and concludes that the halo of the tachyon gas is impossible.
In reality, such a divergence is a problem of all stationary stellar atmospheres. For
instance, density of isothermal stationary atmosphere is de�ned by the relation

� = �0 exp

�
�GMmm

kTr

�
(4.6)

where �0 is the atmosphere density on the stellar surface, M is the stellar mass and
mm is the mass of a gas molecule. One obtains the following estimation for the
atmosphere mass

ma = 4�

Z R

r0

�0 exp

�
�GM
kTr

�
r2dr = 4�

Z 1=r0

1=R

�0 exp

�
�GM
kT

�

�
d�

�4
� 4��0

R5

5
(4.7)

which diverges at R!1. In reality the stellar atmospheres exist, but they are not
stationary [11]. The same may be valid for tachyon gas. Besides, such a situation
is possible that the whole universe is uniformly �lled by tachyons. The density of
tachyons is greater inside regions in vicinity of galaxies. These regions form halos
�lled with a dark matter. In general, calculation of such regions is an important
problem, but it is a complicated gas dynamic problem which is not considered in
this paper.
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5 Discussion

Thus, it follows from the condition of vector equality (1.1) that tachyons cannot
exist. It follows from the coordinateless conditions (1.2), (1.3), that a single tachyon
cannot be discovered, whereas the tachyon gas is the best candidate for role of
the dark matter, because it have the maximal possible pressure. It means that
the metric approach to the space-time geometry and coordinateless conditions (1.2),
(1.3) are true, whereas the conditions of vector equality (1.1) are wrong for spacelike
vectors. (For timelike vectors conditions (1.1) give the same result as coordinateless
conditions (1.2), (1.3).
From general consideration the coordinateless equations are better, than condi-

tions which uses the means of description (coordinate system). But why are the
conditions (1.1) wrong for spacelike vectors? To answer this question we consider
the proper Euclidean geometry, where conditions (1.1) and conditions (1.2), (1.3)
are equivalent and where the spacelike vectors are absent.
The geometry of Minkowski GM is a result of the proper Euclidean geometry

GE generalization. However, a generalization of the proper Euclidean geometry GE
depends on the way of the proper Euclidean geometry representation [10]. Conven-
tional representation of the proper Euclidean geometry GE is based on a use of the
linear vector space formalism. Any generalized geometry is also based on the linear
vector space formalism, and all properties of the linear vector space are conserved
at the generalization, because all axioms of the linear vector space take place in the
generalized geometry. The conventional representation of the Euclidean geometry
GE will be referred to as axiomatic approach to the proper Euclidean geometry GE.
However, there exists a metric approach to the proper Euclidean geometry GE,

when it is described in terms of the world function and only in terms of the world
function. At a generalization of the proper Euclidean geometry GE the Euclidean
world function �E is replaced by the world function � of the geometry in question
in all de�nitions of GE. Besides, the world function �E has some speci�c properties
of GE. These special properties can be described in terms of the world function �E.
These properties are described by the relations [7]
If �E is the world function of n-dimensional Euclidean space, it satis�es the

following relations.
I. De�nition of the dimension and introduction of the rectilinear coordinate sys-

tem:

9Pn � fP0; P1; :::Png � 
; Fn (Pn) 6= 0; Fk
�

k+1

�
= 0; k > n (5.1)

where Fn (Pn) is the Gram�s determinant

Fn (Pn) � det jj(P0Pi:P0Pk)jj i; k = 1; 2; :::n (5.2)

Here (P0Pi:P0Pk) is the scalar product of two vectors P0Pi and P0Pk de�ned by
the relation

(P0Pi:P0Pk) = �E (P0; Pi) + �E (P0; Pk)� �E (Pi; Pk) (5.3)
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Vectors P0Pi, i = 1; 2; :::n are basic vectors of the rectilinear coordinate system Kn

with the origin at the point P0. The covariant metric tensor gik (Pn), i; k = 1; 2; :::n
and the contravariant one gik (Pn), i; k = 1; 2; :::n in Kn are de�ned by the relations

k=nX
k=1

gik (Pn) glk (Pn) = �il; gil (Pn) = (P0Pi:P0Pl) ; i; l = 1; 2; :::n (5.4)

Fn (Pn) = det jjgik (Pn)jj 6= 0; i; k = 1; 2; :::n (5.5)

II. Linear structure of the Euclidean space:

�E (P;Q) =
1

2

i;k=nX
i;k=1

gik (Pn) (xi (P )� xi (Q)) (xk (P )� xk (Q)) ; 8P;Q 2 


(5.6)
where coordinates xi (P ) ; i = 1; 2; :::n of the point P are covariant coordinates of
the vector P0P, de�ned by the relation

xi (P ) = (P0Pi:P0P) ; i = 1; 2; :::n (5.7)

III: The metric tensor matrix glk (Pn) has only positive (or only negative) eigen-
values

gk > 0; k = 1; 2; :::; n (5.8)

IV. The continuity condition: the system of equations

(P0Pi:P0P) = yi 2 R; i = 1; 2; :::n (5.9)

considered to be equations for determination of the point P as a function of coordi-
nates y = fyig, i = 1; 2; :::n has always one and only one solution.
Conditions I -IV describe possibility of a use of the linear vector space formalism.

These conditions are ful�lled in the case of the proper Euclidean geometry. This
formalism involves a use of a coordinate system. The geometry of Minkowski GM
is rather close to the proper Euclidean geometry. Nevertheless the condition (5.8)
is not ful�lled in GM, and one has a surprise with tachyons. To introduce a metric
dimension of a geometry and to use the coordinate system, the conditions (5.1),
(5.2) are to be ful�lled.
Let the space-time geometry be discrete. For instance, let the world function

have the form

� = �M +
�20
2
sgn (�M)

where �M is the world function of the geometry of Minkowski and �0 is the elemen-
tary length. In this case conditions (5.1), (5.2) are not ful�lled, and one cannot
use coordinate system and a de�nite metric dimension. One cannot use the linear
vector space formalism. One is forced to use coordinateless description [7]. Formally
this circumstance is conditioned by multivariance of the discrete geometry. Unfortu-
nately, most scientists believe that coordinate system can be used in any space-time
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geometry and do not believe in existence of the multivariant space-time geometry.
This paper is important in the relation, that it explains freely the dark matter phe-
nomenon by means of multivariant properties of the space-time geometry even in
the case of the geometry of Minkowski. Multivariant properties of the space-time
geometry are important not only in applications to tachyons.
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