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Abstract

The space-time geometry is considered to be a physical geometry, i.e. a
geometry described completely by the world function. All geometrical con-
cepts and geometric objects are taken from the proper Euclidean geometry.
They are expressed via the Euclidean world function og and declared to be
concepts and objects of any physical geometry, provided the Euclidean world
function og is replaced by the world function o of the physical geometry in
question. The set of physical geometries is more powerful, than the set of
Riemannian geometries, and one needs to choose a true space-time geome-
try. In general, the physical geometry is multivariant (there are many vectors
QoQ1, QoQ),... which are equivalent to vector PoPy, but are not equivalent
between themselves). The multivariance admits one to describe quantum ef-
fects as geometric effects and to consider existence of elementary particles as
a geometrical problem, when the possibility of the physical existence of an
elementary geometric object in the form of a physical body is determined by
the space-time geometry. Multivariance admits one to describe discrete and
continuous geometries, using the same technique. A use of physical geometry
admits one to realize the geometrical approach to the quantum theory and to
the theory of elementary particles.

1 Introduction

Geometrization is the principal direction of the contemporary theoretical physics
development. It began in the nineteenth century. One can list the following stages
of the physics geometrization:

1. Conservation laws of energy-momentum and angular momentum



2. The first modification of the space-time geometry (geometrization of the
space-time, the concept of simultaneity, geometrization of particle motion, problem
of high velocities)

3. The second modification of the space-time geometry (existence of nonhomo-
geneous space-time geometry, influence of the matter distribution on the space-time
geometry)

4. Geometrization of charge and electromagnetic field. (Kaluza, O. Klein)

5. The third modification of the space-time geometry (the new space-time geom-
etry of microcosm, the concept of multivariance, geometrization of mass, existence
of geometrical objects in the form of physical bodies, geometrical approach to the
elementary particles theory).

Now the theoretical physics stands before the third modification of the space-time
geometry, connected with investigation of microcosm. The conventional space-time
geometry is insensitive to structure of the microcosm. From viewpoint of the conven-
tional geometry it is of no importance, whether the microcosm geometry is discrete
or continuous. It is of no importance, whether geometrical objects may be divided
into parts at no allowance, or their divisibility is restricted. The mathematical
technique of contemporary theoretical physics is based on a use of the infinitesimal
calculus, which supposes continuity of space-time and unlimited divisibility of geo-
metrical objects. Furthermore, there exists no effective method, which admits one
to construct a discrete geometry, or a geometry with a limited divisibility. This
is connected with the fact that the contemporary geometry ignores the concept of
multivariance and ejects the concept of multivariance, if it meets accidentally. The
third modification of the space-time geometry is connected with appearance of a
new method of the geometry construction, which describes multivariant geometries.
The multivariant geometry may describe both discrete and continuous geometries,
as well as geometries with a limited divisibility of geometrical objects [1]. These
properties appear to be important in the space-time geometry of microcosm.

Necessity of the third modification appeared in the thirtieth of the twentieth
century, when diffraction of electrons on the small hole was discovered. Motion of a
free particle depends only on the space-time geometry, and one needs such a space-
time geometry, where the free particle motion be multivariant, and the multivariance
intensity depend on the particle mass. Neither physicists, nor mathematicians could
imagine such a space-time geometry. As a result the problem of the particle motion
multivariance has been solved in the framework of dynamics (but not on the level of
geometry). Classical principles of dynamics in microcosm were replaced by quantum
ones. The problem of multivariant motion of microparticles has been solved on
the level of dynamics. W.Heisenberg suggested to replace conventional dynamic
variables by matrices. Introduction of matrices is an introduction of a multivariance.
However, it is a multivariance on the level of dynamics. The space-time geometry
remained to be former.

Impossibility of the multivariance problem solution on the geometric level was
connected with imperfection of the method of the geometry construction. It does not
admit one to construct multivariant geometries, which possess properties, necessary



for explanation quantum effects and other properties of microcosm. Besides, in that
time the researchers were under the impression of advances of quantum mechanics,
and multivariance of the electron motion had been explained as a quantum effect.

In the end of the twentieth century a more perfect method of the space-time
geometry construction has been suggested [2]. This method is known as the de-
formation principle. Geometries, constructed by this method, are known as tubu-
lar geometries (T-geometries) This method is simpler and more general, than the
conventional Euclidean method, because it does not use such a constraint of the
conventional method, as absence of multivariance. In particular, in the framework
of the Riemannian geometry there is only one plane uniform isotropic space-time ge-
ometry: the Minkowski geometry, whereas in the framework of T-geometries there is
a set of plane uniform isotropic space-time geometries, labelled by a function of one
argument. All geometries of this set (except for the Minkowski one) are multivari-
ant with respect to timelike vectors. Multivariance of the space-time geometry with
respect to timelike vectors means that there exist vectors QoQ1, QoQ},... which are
equivalent to timelike vector PyPy, but not equivalent between themselves.

As far as there exist many uniform isotropic space-time geometries, we are
to choose the true space-time geometry from this set. We may not choose the
Minkowski space-time geometry on the ground, that this geometry was used before.
We are to make the best of agreement of the space-time geometry with the exper-
imental data. It appears that the parameters of the space-time geometry can be
chosen in such a way, that the classical principles of dynamics describe correctly
both quantum and classical motion of a free particle. Of course, the parameters
of the true space-time geometry contain the quantum constant A. In this case we
do not need the quantum principles, which in the conventional theory compensate
influence of the incorrectly chosen space-time geometry of microcosm.

Such an expansion of the space-time geometry capacities is connected with the
non-Euclidean method of the geometry construction. This method of the geometry
construction may be qualified as the deformation principle, because any physical
geometry can be obtained as a result of a deformation of the proper Euclidean
geometry. Capacities of the space-time geometries constructed by means of the de-
formation principle do not exhausted by explanation of quantum effects. Structure
of elementary particles, their masses, appearance of short-range force fields in micro-
cosm and such an enigmatic phenomenon as confinement can be easily explained in
terms of the space-time geometry and its particularity. At any rate the mathemati-
cal technique of T-geometry admits this. In this paper we shall not try to determine
the concrete form of the microcosm geometry. To choose the concrete microcosm
geometry one needs very careful analysis of experimental data. It is a very difficult
problem. We shall show only that mathematical capacity of microcosm geometry
are larger, than that of the contemporary theory of elementary particles.

The main advantage of the microcosm geometry is the circumstance that it
does not use any hypotheses. Of course, to obtain a concrete space-time geometry
of microcosm, we are to use experimental data and make some suppositions on the
space-time geometry. However, these suppositions will be made in framework of fixed



principles. One may choose only the form of the world function, which determines
the space-time geometry. The principles of the geometry construction remain to be
changeless. They are not a result of a fitting. They are obtained by means of logic
reasonings. This is an essential difference from the contemporary methods of the
elementary particle theory, where the unprincipled fitting dominates.

Note, that probabilistic and noncommutative geometries are not geometries in
the exact sense of this word. These ”geometries” are fortified geometries, i.e. geome-
tries, equipped with some additional structures (probabilistic and matrix), given on
the Minkowski manifold. In other words in the framework of these ”geometries” the
physical geometry, as a science on mutual disposition of geometric objects remains
to be the former geometry of Minkowski. One adds to this geometry additional
structures, introducing multivariance, which is necessary for the microcosm descrip-
tion. However, this multivariance is introduced on the dynamic level, but not on
the level of geometry/

Thus, in this paper we demonstrate only mathematical capacity of space-time
geometry in explanation of the microcosm phenomena.

2 Approaches to geometry

There are two approaches to geometry. According to the conventional approach a
geometry (axiomatic one) is constructed on a basis of some axiomatics. All propo-
sitions of the axiomatic geometry are obtained from several primordial propositions
(axioms) by means of logical reasonings. Examples of axiomatic geometries: Eu-
clidean geometry, affine geometry, projective geometry etc. The main defect of the
axiomatic geometry: impossibility of axiomatization of nonhomogeneous geometries.

Axiomatization of geometry means that from the set S of all geometry proposi-
tions one can separate several primordial propositions A (axioms) in such a way that
all propositions S can be obtained from axioms A by means of logical reasonings.
Possibility of axiomatization is a hypothesis. Its validity has been proved only for
the proper Euclidean geometry [3]. For nonhomogeneous geometries (for instance,
for the Riemannian one) a possibility of axiomatization was not proved. In general,
a possibility of axiomatization for nonhomogeneous geometries seems to be doubt-
ful. Felix Klein [4] assumed that the Riemannian geometry (nonhomogeneous one)
is rather a geography or a topography, than a geometry.

According to another approach a geometry (physical geometry) is a science on
mutual position of geometrical objects in the space or in the space-time. (Euclidean
geometry, metric geometry). All relations of the metric geometry are finite, but not
differential, and the metric geometry may be given on an arbitrary set of points, but
not necessarily on a manifold. It is supposed that the mutual position of geometri-
cal objects is determined, if the distance (metric) between any two points of the set
is given. The simplicity of the geometry characteristic and absence of constraints
on the set of points (on the space) is the principal advantage of the metric geome-
try. The main defect of metric geometry is its poverty. Such important concepts of



Euclidean geometry as scalar product of vectors and concept of linear dependence
are absent in the metric geometry. However, the proper Euclidean geometry is a
special case of the metric geometry. It means that in the case of Euclidean geome-
try the scalar product, concept of linear dependence of vectors and other concepts
and objects of Euclidean geometry can be expressed via Euclidean metric. These
expressions of the Euclidean concepts via metric are declared to be valid for any
metric geometry. Replacing Euclidean metric by the metric of the metric geometry
in question, we obtain a system of geometrical concepts in any metric geometry.
As a result we obtain the metric geometry, equipped by all concepts of Euclidean
geometry [5].

Besides, one removes such constraints on the metric, as the triangle axiom and
positivity of metric p. They are not necessary, if concepts of the Euclidean geometry
are introduced in the metric geometry. Instead of metric p we use the world function
o= %pQ, which is real even in the geometries with indefinite metric (for instance,
in the geometry of Minkowski). We shall refer to such geometries as the tubular
geometries (T-geometry). Such a name of geometry is connected with the fact, that
the straight in T-geometry is a tube, but not a one-dimensional line. The tubular
character of straights in T-geometry is conditioned by the property of multivariance.
Multivariance of a T-geometry means, that there exist many vectors QoQ1, QoQY,
QoQY7, ...which are equivalent (equal) to vector PoPy, but are not equivalent between
themselves.

At first sight the multivariance is unexpected and undesirable property of ge-
ometry. However, multivariance is very important in application of geometry to
physics. For instance, the real space-time geometry appears to be multivariant. In
particular, multivariance of the space-time geometry explains freely quantum effects
as geometrical effects. Besides, the multivariance admits one to set the problem of
existence of geometrical objects in the form of physical bodies. This problem cannot
be set in framework of the Riemannian geometry. (More exact, this problem can be
set, but its solution leads to the statement, that any geometric object can be real-
ized in the form of a physical body). The statement of this problem is important,
to obtain a simple geometrical approach to the elementary particles theory.

In T-geometry all geometrical propositions have ready-made form. In T-geometry
there are no theorems, all theorems have been proved in the Euclidean geometry.
Statements of the Euclidean geometry turn into definitions of T-geometry. All this
is rather unusual and is difficult for perception, because some axioms of Euclidean
geometry are not valid in T-geometry (for instance, the Euclidean axiom: ”the
straight has no thickness” is not valid in T-geometry, in general).

To overcome defects of physical and axiomatic geometries we use the fact, that
the proper Euclidean geometry is the axiomatic and physical geometry simulta-
neously. The proper Euclidean geometry has been constructed as an axiomatic
geometry, and consistency of its axioms has been proved. On the other side, the
proper Euclidean geometry is a physical geometry and, hence, it is to be described
completely in terms of the metric p. Indeed, such a theorem has been proved [5].

It is more convenient to introduce the world function ¢ = %pQ instead of the



metric p, because in this case one may describe the Minkowski geometry and other
geometries with indefinite metric tensor in terms of real world function o.

As soon as the proper Euclidean geometry Gg is a known geometry, all propo-
sitions Pg of the Euclidean geometry Gg can be presented in terms of the world
function og of the proper Euclidean geometry: Pr = Pg (0g). Replacing the world
function og of Gg by the world function ¢ of another physical geometry G in all
propositions Pg (o) of the Euclidean geometry: Pg (o) — Pg (0), one obtains all
propositions of the physical geometry G. Replacement of the world function op by
other world function ¢ means a deformation of the Euclidean geometry (Euclidean
space). It may be interpreted in the sense, that any physical geometry is a result of
a deformation of the proper Euclidean geometry.

It is very important that all expressions of concepts of the Euclidean geometry
via the world function have a finite (but not differential) form. The differential form
of relations needs an additional information (initial or boundary conditions). The
finite expressions do not need such an additional information. Besides, using the
finite form of relations, we need to solve some algebraic equations, whereas, using a
differential form of relations we are forced to solve differential equations.

Thus, to construct a physical geometry one needs to express all propositions of
the proper Euclidean geometry in terms of the Euclidean world function og.

3 Non-Euclidean method of the physical
geometry construction (deformation principle)

Any physical geometry is described by the world function and obtained as a result
of deformation of the proper Euclidean geometry. The world function is described
by the relation

o: QxQ—R, o(P,Q)=0(Q,P), o (P,P) =0, VP, Q €
(3.1)
The vector PQ = Rj is the ordered set of two points {P,Q}, P,Q € Q. The
length |PQ|y of the vector PQ is defined by the relation

IPQ2 = 20% (P, Q) (3.2)

where index ”E” means that the length of the vector is taken in the proper Euclidean
space.

The scalar product (PoP;.PoPs); of two vectors PPy and PyP, having the
common origin Py is defined by the relation

(PoPl.P0P2>E — OR (P(), Pl) + oR (P(), PQ) — OR (Pl, PQ) (33)
which is obtained from the Euclidean relation

|P1P2|2 - |POP2 - ].:)0].:)1|2 == |].:)0].:)2|2 + ‘P0P1|2 - 2 (P()Pl.PQPQ)E (34)



The scalar product of two remote vectors PoP; and QoQ; has the form

(P0P1-Q0Q1)E = 0g (PO, Q1) +0p (Pla Qo) — OE (P0> Qo) — OE (Ph Q1) (3'5)

The necessary and sufficient condition of linear dependence of n vectors PoPy,
PyP,,...PoP,, is defined by the relation

F, (P") =0, P ={PF,P,..,.P.} (3.6)
where F), (P") is the Gram’s determinant

Fn (Pn) = det H(POPZPOPk)E“ = det ||O'E (Pg, Pz) —+ OR (Po, Pk) — OE (-qu Pk)||
ik = 1,2,.n (3.7)

Collinearity PoP; || QoQ; of two vectors is a special case of the linear depen-
dence. It described by the relation

2
e | gee, Maal -0 0
Two vectors PoP; and QgQ; are parallel, if
PoP1 1T QoQu - (P0P1-Q0Q1)E = \P0P1|E ) |Q0Q1|E (3.9)
Two vectors PoP; and QgQ; are antiparallel, if
PoPy Tle QoQu (PoP1.QoQ1)g = — [PoPig - [QoQulg (3.10)

Two vectors PoP; and QpQ; are equivalent (equal) PoP1eqvQoQy, if

PoP1eqvQoQ; : (P0P1 n Qle) N (‘P0P1| = ‘QOQl’) (3-11)

or

PPieqvQoQi:  ((PoP1.QoQ1) = [PoPif*) A (IPoPy| = [QoQul)  (3.12)

The property of the equivalence of two vectors in the proper Euclidean geometry
is reversible and transitive.

if P()PleQVQ()Ql, then QlequP()Pl (313)

(PoP1eqvQoQi) A (QoQieqvRoR,) = PPieqvRoR; (3.14)

In general case of physical geometry the equivalence property is intransitive.
The intransitivity of the equivalence property is connected with its multivariance,
when there are many vectors QuQ1, QoQ}, QoQf,...which are equivalent to the
vector PoPy, but they are not equivalent between themselves. Multivariance of the
equivalence property is conditioned by the fact, that the system of equations for
determination of the point @)y (at fixed points Py, Pi, Q) has, many solutions, in
general. It is possible also such a situation, when these equations have no solution.
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4 Construction of geometrical objects
in T-geometry

Geometrical object O C{2 is a subset of points in the point set (2. In the T-geometry
the geometric object O is described by means of the skeleton-envelope method. It
means that any geometric object O is considered to be a set of intersections and
joins of elementary geometric objects (EGO).

The finite set P" = {Fy, Py, ..., P,} C Q of parameters of the envelope function
fpn is the skeleton of elementary geometric object (EGO) € C €. The set £ C 2 of
points forming EGO is called the envelope of its skeleton P". The envelope function

Jpn
fpn: Q2 — R, (4.1)

determining EGO is a function of the running point R € €2 and of parameters P" C
Q2. The envelope function fp» is supposed to be an algebraic function of s arguments
w = {wy, wa, ..ws}, s = (n+2)(n+1)/2. Each of arguments wy, = o (Qg, L) is the
world function o of two points Qy, Lr € {R,P"}, either belonging to skeleton P",
or coinciding with the running point R. Thus, any elementary geometric object & is
determined by its skeleton P™ and its envelope function fpn. Elementary geometric
object £ is the set of zeros of the envelope function

€ ={R|fp~ (R) = 0} (4.2)

Characteristic points of the EGO are the skeleton points P" = { Py, P, ..., P, }.
The simplest example of EGO is the segment 7p p,] of the straight line between the
points Py and P;, which is defined by the relation

,]EPOPI] = {R|fPoP1 (R) = 0}7 (43)
frop (R) = /20 (P, R) + /20 (R, P,) — \/20 (P, ) (4.4)
Another example is the cylinder C(Fy, P, @) with the points Py, P; on the cylin-

der axis and the point @) on its surface. The cylinder C(P,, P, @) is determined by
the relation

C(F, P, Q) = {R|fpprq(R)=0}, (4.5)
frrq(R) = (R, P1,Q) — Fa (R, P, R)

<P0P1 ~POP1) (P0P1 POQ)
(PoQ.PoP1)  (PoQ.PoQ)

Here \/F5 (P, P1, Q) is the area of the parallelogram, constructed on the vectors
PoP, and PyQ, and % Fy (P, P1,Q) is the area of triangle with vertices at the
points Py, Py, Q. The equality Fy (Py, P, Q) = F» (Po, P1, R) means that the distance
between the point ) and the axis, determined by the vector PyPy, is equal to the
distance between R and the axis. Here the points Iy, P, () form the skeleton of the
cylinder, whereas the function fp p ¢ is the envelope function.

F (P(]yPl;Q) = (4-6)
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In the proper Euclidean geometry the cylinder depends only on the axis 7jp, p,] (or
Tp,p, ), passing through the points Py and P;. It means, that if the point P| € 7ip,p
and P} # P, A\ P| # Py, the cylinders C(Py, P1, Q) and C(Fy, P{,Q) coincide in the
proper Euclidean geometry. However, the cylinders C(FPy, Pi, Q) and C(Fy, P[,Q)
do not coincide, in general, in an arbitrary T-geometry. It is a result of the multi-
variance of the T-geometry, where the straight lines 7p,p, and 7p,p; are in general
different, even if P| € Tp, p,.

Definition. Two EGOs & (P™) and £ (Q") are equivalent, if their skeletons are
equivalent and their envelope functions fp» and gg- are equivalent. Equivalence of
two skeletons P = { Py, Py, ..., P} C Q and Q" = {Qo, @1, ..., Qn} C  means that

P;PreqvQ;Qy, ,k=0,1,..n, i<k (4.7)
Equivalence of the envelope functions fp» and gon means that
frn (R) = ® (g (R)), VREQ (4.8)
where ® is an arbitrary function, having the property
®:R— R, $(0)=0 (4.9)

Equivalence of shapes of two EGOs £ (P") and £ (Q") is determined by equiva-
lence of shapes of their skeletons P and Q", which is described by the relations

and equivalence of their envelope functions fpn and ggon (4.8).
Equivalence of orientations of skeletons P™ and Q" in the point space € is de-
scribed by the relations

PP, 1T QiQu,  i,k=0,1,.n, i<k (4.11)

Equivalence of shapes and orientations of skeletons is equivalence of skeletons,
described by the relations (4.7).

5 Existence of geometrical objects as physical
objects

By definition an elementary geometric object Opn exists at the point Fy € € in
the space-time as a physical object, if it exists at any time moment at any place of
the space-time. Mathematically it means, that at any point Qg € €2 there exists a
geometrical object Ogn with the skeleton Q"eqvP"™. The relation Q"eqvP"™ means
that

P;PLeqvQ;Qy, ,k=0,1,..n, i<k (5.1)



According to definition of equivalence (3.12) the equivalence equation P;PreqvQ;Qx
means two relations

(P:iP.QiQu) = [P:Py*, PP = |Q:Qxl (5.2)

There are n(n+1) equations for determination of 4n coordinates of points @1, @2, ...Q,
in the 4-dimensional space-time. The skeleton P™ and the point () are supposed to
be given.

In the case of Minkowski space-time we have only 2n relations (instead of n (n + 1))
for determination of 4n coordinates

(PoPr.QoQk) = |PoPs| - [QoQxkl, IPoP| = [QoQul k=1,2,..n (53)

because in the Minkowski space-time

(PoPieqvQoQ;) A (PoPreqvQoQr) = PiPreqvQ; Qi

The structure of equivalence constraints in the Minkowski space-time is such,
that two relations

(PoPr.QoQy) = |PoPL>,  |PoPi| = |QoQl (5.4)

determine uniquely four coordinates of the point ()i, provided the vector PoP;. is
timelike, i.e. |P0Pk|2 > (0. Thus, in the Minkowski space-time any geometrical
object exists always, as a physical object. If the number of the skeleton points
increases, the number n (n + 1) of constraints increases faster, than the number 4n
of coordinates, to be determined.

In the simplest case, when all n (n + 1) /2 vectors P; Py, of the skeleton are time-
like, the relation between n (n + 1) constraints and 4n coordinates is given by the
following table

n n(n+1) 4n diff
2 6 8 2
3 12 12 0
4 20 16 —4

We see that for n > 3, the number constraints is larger, than the number of variables
to be determined. It appears that existence of complicated elementary geometrical
objects is impossible.

6 Evolution of geometrical object

In some cases skeletons of equivalent geometrical objects may form a chain of identi-
cal skeletons. In such cases we shall speak on temporal evolution of the geometrical
object. For instance, let skeletons {Po(l), Pl(l), ...P,Sl)} , 1 =...0,1,..are equivalent in
pairs

PUPVequP™ VP ik =0,1,.n;  1=.12, . (6.1)
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and besides
PO =pi =12 . (6.2)

If vectors P(()Z)Pgl) are timelike ‘P(()Z)Pgl)‘ > 0, one may speak on the temporal evo-

lution of the geometrical object O (P™), which is described by the chain, consisting
of equivalent skeletons P". In some cases the temporal evolution arises, even if the
vectors Pél)Pgl) are spacelike. However, one may not speak on a temporal evolution
of a geometrical object, if skeletons of the chain are not equivalent.

7 Temporal evolution of two-point objects

We consider some simple examples of temporal evolution of the skeleton, consisting
of two points, in the flat homogeneous isotropic space-time Vg = {04, R*}, described
by the world function

oqg =om+d-sgn(om), d = A2 = const > 0 (7.1)
1, if >0
sgn(x)=4 0, if z=0 | (7.2)
-1, if <0

where oy is the world function of the 4-dimensional space-time of Minkowski. Aq is
some elementary length.

The distorted space Vy describes the real space-time better, than the Minkowski
space-time. Description by means of Vy is better in the sense, that the space-time
(7.1) describes quantum effects, if the distortion constant d is chosen in the form [6]

h

- (7.3)

where h is the quantum constant, c¢ is the speed of the light and b is the universal
constant, coupling the geometrical length p of the vector P;P;,; in the chain of
skeletons with the conventional mass m of the particle, described by this chain

m = bu (7.4)

Consideration of distortion taken, in the form (7.3) means a consideration of the
quantum constant as a parameter of the space-time.

The space-time is discrete in the space-time model (7.1). The space-time is
discrete in the sense that there are no timelike vectors PoP; with [PoPy|* € (0, A2)
and there are no spacelike vectors PoP; with [PoPy|* € (—)2,0) However, the
space-time model (7.1) is not a final space-time geometry [6]. The fact is that the
relation

h
04 = oM + % (75)

may be not valid for all oy > 0. For explanation of quantum effects, it is sufficient,
that the relation (7.5) be satisfied for oy > 09, where the constant oy is determined
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by the geometrical mass of the lightest massive particle (electron) by means of

relation
h .
V204 = /200 + = < pe = 7% (7.6)
C

where m, is the electron mass.
For oy < 0p the form of the distorted world function may distinguish from (7.1)
and have, for instance, the form

2d
o4i = om + —arctan (o) , d = A2 = const > 0 (7.7)
m

The space-time Vg with world function (7.7) takes intermediate position between
the Minkowski space-time and space-time Vg, described by (7.1). Space-time Vy;
describes quantum effects as Vj, however, the space-time is not discrete as Vj.

If the world function o (x,2’) is given on a manifold and have derivatives with
respect to arguments x and 2’ at the coinciding points x = 2/, the metric tensor
gi. () is defined via derivatives of the world function in the form

00 (x,2")
0x'Ox
Evaluation of the infinitesimal space-time interval in the space-time (7.7) in the
inertial coordinate system gives the result

ds® = (1 + 2—d> (Pdt* — dx?) (7.9)

TOoQ

} . i, k=0,1,2,3 (7.8)

which means space-time interval between two close points x and x + dx appears
to be finite at oy — 0, even if dz is infinitesimal. The metric tensor, defined by
the relation (7.9), coincides with the metric tensor of the Minkowski space-time to
within a constant factor.

7.1 Two connected timelike vectors

Let we have two connected timelike vectors PoP; and P;P,. If PoPieqvP P, and
vector PoP; is given, the vector P;P5 can be determined. Let coordinates of points
Py, P, P, in the inertial coordinate system be

Py, ={0,0,0,0}, Py ={s,0,0,0}, Py ={2s 4+ ag, 7,72, 73} (7.10)

where the quantity s is given and the quantities ag, v, V2,73 are to be determined.
Vectors PgP; and PP, have coordinates

P0P1 = {5707070}7 P1P2 = {S"’CYO,”Yl,’)/Q,P)/g} (711)
According to (3.5) in the space-time V4

(PoPl.Plpg) = O'(P(),PQ)—O'(PQ,P1>—O'(P1,P2)
= om(Po, P2) — om (Po, Pr) — o (P, P) +w

12



where
w = A3 (sgn (on (Py, P2)) — sgn (on (Po, P1)) — sgn (ou (P, P))) (7.13)

and o)y means the world function of the Minkowski space-time.
Note that in the space-time (7.1)

sgn (on (Po, P)) = sgn (0 (P, P)) (7.14)

If the vector PoP; is timelike, [PoP;|> = s2 4+ 2)2 > 0, The equivalence equations
of vectors PoP; and P;P, take the form

IPoP |3, = |P1Pa)3, (PoP1.P Py),, +w =[PPy |3, + 2)\2 (7.15)

where
w = A2 (sgn (on (Po, P)) — 2) (7.16)

Scalar products with a subscript ”M” are usual scalar products in the Minkowski
space-time. In the coordinate form the relations (7.15) are written as follows

(s+a0)’ =21 =% -7 = (7.17)
s(s+ag) + A2 (sgn (om (Po, Po)) — 2) = s* +2)5 (7.18)

The vector PoPy = {25 + ag, 71,72, 73} have the length
IPoPaly = (25 + a0)* =77 — 73 — 3 (7.19)

Using relations (7.17) and (7.18), we eliminate o and v + 72 +~2 from the relation
(7.19). We obtain

[PoP,|3 = 45° + 8)\2 — 2)\Zsgn (on (Po, P2)) > 0 (7.20)
It means that sgn (on (Fy, P2)) = 1, and the relation (7.18) has the form
sap =3 (7.21)

Solution of equations (7.17) and (7.21) has the form

32 Ao/ o
Oéo:—o7 ’Ya:—o 632+9)\(2) 5 ﬁ 5 57 OZ:].,2,3 (722)
S S ﬁ1 ‘f‘ﬁz +ﬁ3

where (31, 32, B3 are arbitrary real quantities.
Representing coordinates (P1P), of the vector P1P5 in the form

(P1P2); = (PoP1); + a; (7.23)

where 4-vector a; describes the difference between the vectors P1P, and PoP; in
the Minkowski space-time. We obtain

A2\
a; = (ﬂ 20 J6s2 + 9Agi) (7.24)
s s q

where q is an arbitrary 3-vector. The 4-vector a; is spacelike

a;a’ = (aiai)M + 2\3sgn ((a,-ai)M) = —6); (7.25)

If the elementary length A\g — 0, the vector a; tends to zero.
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7.2 Two connected null vectors

Let us consider now two null connected equivalent vectors PoP; and PPy (|PoP; |2 =
|P1P2|2 = 0). Using the coordinate representation for vectors PoP; and PP,

P0P1 = (8787070)a P1P2 = (S+a073+a17727,73> (726)
we obtain the following conditions of equivalence
(PoP,.P,Py),, +w =0, P,P,> =0 (7.27)

w = )\gsgn (O'M (Po, PQ)) (728)

The relations (7.27) and (7.28) are written in terms of coordinates
s(s+ag) —s(s+ay) =—Asgn (on (P, P»)) (7.29)

(s + 040)2 —(s+ 041)2 — 7 =7 =0 (7.30)

After simplification we obtain
s(ap — ap) = —Alsgn (on (Po, Py)) (7.31)

(ap—a1) (2s+ag+ar) =75 —7; =0 (7.32)
For the length of the vector PPy we obtain

’P0P2’12\/1 = (2s+ 040)2 — (25 + 041)2 — 75— 7??
= (ap—on)(4s+ oy + 1) —722 —7§ (7.33)

By means of relations (7.31), (7.32) the relation (7.33) takes the form
PP, |3 = —2)\2sgn (o (Po, P2)) (7.34)
The relation (7.34) is fulfilled, only if
|PoP,f3 = 200 (P, P2) = 0 (7.35)
In this case the solution of equations has the form
a; = ap, Yo =73 =0 (7.36)
Thus, in the case of two connected equivalent null vectors PoP; and P;Py we have
PP, = (s,5,0,0), PPy = (s + ap, s + a0, 0,0) (7.37)

where o is an arbitrary real number. The result does not depend on the elementary
length \. It takes place in the Minkowski space-time also.
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7.3 'Two connected spacelike vectors

Let we have two connected spacelike equivalent vectors PoP; and P P,. If PoPieqvP Py
and vector PyP; is given, the vector PP, can be determined. Let coordinates points
Py, P, P, in the inertial coordinate system be

P():{0,0,0,0}, P1 :{O,Z,0,0}, PQI{Oéo,Ql—l-’Yl,’}/Q,’}/g} (738)

where the quantity [ is given and the quantities ag, 71, 72,73 are to be determined.
Vectors PoP; and P;P, have coordinates

POPl - {07l7070}7 P1P2 = {Oéo,l +717’72773} (739>
(P()Pl P PQ) (PoPl P P2) +w (740)

where
w = A2 (sgn (on (Po, Po)) + 2) (7.41)

In the coordinate representation the equivalence equations take the form
I bw=— =22, - () —E—=—L (7.42)
For the vector PyP, we have
|P0P2|M = ap — (21 + M) = - 7 (7.43)

Eliminating v; and o2 — 3 — 72 from (7.43) by means of (7.42), we obtain

Iy +w=—-2)3,  |PPyfi = —20(2l + ) (7.44)
22
It follows from (7.45) that the vector PyPy is always spacelike, and, hence, w = 2.
It follows from (7.42), that
3A\2 9N
N = 707 \/’72 + 75 4+ 675 + NER (7.46)

where v, and v, are arbitrary real numbers. Thus

9N
PoP, = {0,1,0,0}, PPy = {\/722 + 93 + 65 + el 7l772,73} (7.47)

Representing coordinates of the vector P1P, in the form
(P1Py), = (PoP1); + a; (7.48)

we obtain for the 4-vector a;

a; = Y2 + V3 + 6)‘0 + l_27 07 V2,73 ¢ s (CLZ'CL )M - 6)‘ l2 (749)
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Let us imagine now that there is an infinite chain of connected equivalent vectors
.PoP1, PPy, .. PPy, ... If the vectors are timelike, the chain may be interpreted
as a multivariant "world line” of a free particle. The vector PyP,1 may be inter-
preted as the geometric particle momentum and |PPj. 1| may be interpreted as the
geometric mass p. To obtain the conventional particle mass m, one needs to use the
relation (7.4), where b is some universal constant. Statistical description of the mul-
tivariant particle motion leads to quantum description in terms of the Schrodinger
equation [6]. However, this correspondence between the geometrical description and
the quantum one admits one to determine only production A2b = i/ (2¢). The uni-
versal constants Ay and b are not determined asunder from this relation. Thus, in
the case of timelike vector PpPy.; we obtain dynamics of free particle from the pure
geometrical consideration (dynamics is a corollary of geometry).

If the vectors PPy of the chain are null, it is difficult to speak about temporal
evolution. Although the chain of null vectors is single-variant, but vectors of the
chain may change their direction, because the constant «g in (7.37) may have any
sign and module.

At first sight, any temporal evolution in the chain of spacelike vectors PP
is impossible. It is true, provided there are no additional constraints on the chain
of spacelike vectors. However, if the skeleton contains more than two points, for
instance, Py, P;, @)1, ... the chain, determined by the points Fy, P;, may contain ad-
ditional constraints, generated by additional points ()1, ... of the skeleton. These
constraints may be such, that the spacelike ”world line” forms a helix with a time-
like axis. If so, the helix may be interpreted as a world line of a particle, moving
with the superlight velocity along some circle. In this case the mean 4-momentum
of the particle is timelike and directed along the helix axis. The direction of mean
4-momentum does not coincide with that of the instantaneous 4-velocity, which is
spacelike. We see a similar situation in the case of the Dirac particle, where 4-
momentum is a usual timelike vector, whereas the velocity is always equal to the
speed of the light. In the classical approximation the world line of the Dirac particle
has the shape of a helix [7, 8]. The world line of a free particle, having a shape of
a helix, may be explained by the circumstance, that the particle is composite, and
in reality there are two connected particles, rotating around their common center
of inertia. However, in this case one needs to explain the nature of the interaction,
connecting two particles. Such a confinement cannot be explained by means of dy-
namics, but it can be explained geometrically as a temporal evolution, generated by
the spatial evolution.

We are not sure, that such a situation may appear in the distorted space-time
(7.1). However, there may exist such a space-time geometry, where the spatial
evolution leads to the temporal evolution. Such a case is rather unexpected from
the viewpoint of the conventional Riemannian space-time geometry.
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8 Metric force fields

It is well known, that contorting the Minkowski space-time, we obtain the curved
space-time. The space-time curvature generates the gravitational field, which is
connected with the form of the metric tensor. The curvature is a special form of the
space-time deformation, which does not generate multivariance of the space-time
geometry. The world function og of a Riemannian space satisfies the equation [9]

Jog (z,2)
oxk
The two-point world function of the space-time is determined by the equation (8.1)

and by the metric tensor ¢g** (), given at any point x of the space-time.

However, if the space-time geometry is multivariant, the world function does not
satisfy the equation (8.1), in general. In this case the metric tensor ¢** () does not
determine the world function, in general. For instance, in the case of world function
(7.7) the metric tensor is given by the relation (7.9). It coincides with the metric
tensor of the Minkowski space-time to within a constant factor. However, in this
case the metric tensor does not determine the world function, because in this case
the world function does not satisfy the equation (8.1). For |o| > |og| the world
function (7.7) satisfies the equation of the type (8.1), which has the form

oR.ig" (7) or = 20R, ORk = (8.1)

2

2d 20
2 14 4
O (]_ + (ﬁ) ) + o0

where g (z) is the metric tensor of the Minkowski space-time.

In the case of the single-variant Riemannian space-time geometry, the influence
of the space-time geometry can be imitated by means of a gravitational field in the
Minkowski space-time. In the case of the space-time geometry (7.7) one also may
say, that the space-time geometry is imitated by means of some metric fields in the
Minkowski space-time. However, in this case the metric fields form a complex of
fields, which cannot be imitated by a one-point field of the type of metric tensor.
It remains to be unknown, how these fields are described and how they act on
the matter. Formally one may speak about such metric fields and discuss to what
extent such metric fields can imitate interaction between the elementary particles
in microcosm.

Classification of these metric fields and their investigation is very difficult, if we
do not take into account their geometrical origin. Properties of these fields and their
description appear to be very exotic, because they are generated by the multivariant
space-time geometry. For instance, respectively simple space-time geometry (7.7) is
imitated by principles of quantum mechanics, but not by some force fields, because
the quantum principles take into account the property of multivariance, whereas the
conventional force fields ignore multivariance.

oigi(x)or= |1+
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In reality, there exists a very important strategic problem. What is the starting
point for investigation of microcosm phenomena? Now this investigation is pro-
duced on the basis of supposition, that elementary particles are described by some
enigmatic wave functions. They move and interact in accordance with principles
of quantum mechanics. Nobody understand, what does it mean. Nevertheless the
researchers try different approaches and test them, comparing calculations with ex-
perimental data. No principles, only fitting! A use of space-time geometry is very
restricted, because of imperfection of our knowledge on geometry.

After construction of multivariant geometries it became possible to explain quan-
tum properties as an appearance of the multivariance of the space-time geometry.
Besides, it becomes possible to set the problem of existence of geometrical objects in
the form of physical bodies. At such conditions it seems more reasonable at first to
investigate capacities of the geometric approach to the elementary particle theory.
At geometric approach we also have fitting. However, this fitting concerns only a
choice of proper space-time geometry (proper world function). As soon as the world
function is chosen, the fitting ceases. One uses only logical reasonings and mathe-
matical calculations. High-handedness of the theorist imagination is restricted.
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