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Abstract

Compactification of the 5-dimensional Kaluza-Klein space-time geometry
is considered. The space-time geometry is supposed to be discrete, uniform
and isotropic. It is shown, that consideration of the space-time geometry as
a physical geometry, i.e. as a geometry described completely by the single-
valued world function, leads to a discrimination of some values of the particle
charge. At the conventional approach, when the world function becomes to
be many-valued after compactification, the value of the elementary particle
electric charge remains to be unrestricted, and this fact does not agree with
experimental data. It is important, that the discrete geometry is given on the
continual set of points. This circumstance makes admissible a compatibility
of discreteness with the uniformity isotropy of the geometry.

1 Introduction

The role of space-time geometry in description of physical phenomena of microcosm
has been increased due to appearance of a more general conception of geometry. In
the twentieth century the Riemannian geometry was considered to be the most gen-
eral geometry, suitable for description of the space-time. However, the Riemannian
geometry cannot describe such properties of space-time as discreteness, restricted
divisibility of geometrical objects and discrete characteristics (mass, charge, angular
momentum) of elementary particles. Discrete characteristics of elementary particles
are considered usually to be dynamic properties of elementary particles.

In reality, at a use of a true conception of the space-time geometry the elemen-
tary particles in themselves, as well as their properties and their dynamics can be
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described in terms of the proper space-time geometry and only in terms of the space-
time geometry. The conventional conception of geometry, which supposes, that any
geometry is axiomatizable, and any geometry can be deduced from a system of ax-
ioms, is wrong. In any axiomatizable geometry the equivalence relation is supposed
to be transitive. Only at the transitive equivalence relation the set of all geometric
propositions (i.e. geometry) can be deduced from an axiomatics (a finite set of basic
geometric propositions).

A new method of the physical geometry construction has been invented in the
end of the twentieth century [1]. The physical geometry is such a geometry, which
is described completely by the world function σ. The world function σ (P,Q) is a
single-valued real function of any two points P,Q ∈ Ω, where Ω is the set of all
points (or events), where the geometry is given.

σ : Ω × Ω → R, σ (P, P ) = 0, ∀P ∈ Ω (1.1)

The world function σ (P,Q) = 1
2
ρ2 (P,Q), where ρ (P,Q) is the distance between

the points P and Q.
On one hand, the proper Euclidean geometry GE is the axiomatizable geometry,

which can be deduced from the Euclidean axiomatics [2]. On the other hand, the
proper Euclidean geometry GE is a physical geometry. It means, that all definitions
DE of GE can be expressed in terms of the Euclidean world function in the form
DE = DE [σE]. There is a theorem, where this statement has been proved [3, 1]. If
now one replaces the Euclidean world function σE with the world function σ of some
other physical geometry G in all definitions DE : DE [σE] → DE [σ], one obtains
all definitions DE [σ] of the physical geometry G. The procedure of replacement
is a deformation of the proper Euclidean geometry, when the Euclidean distance
ρE =

√
2σE are replaced by the distance ρ =

√
2σ of the physical geometry G. Thus,

any physical geometry is obtained from the proper Euclidean geometry by means of
a deformation.

In general, the physical geometry is not axiomatizable, because the axioma-
tizability of a geometry is possible only, if the equivalence relation is transitive.
Indeed, in the proper Euclidean geometry the vector P0P1 is defined as an or-
dered set P0P1 = {P0, P1} of two points P0, P1. The equivalence (equality) of two
vectors P0P1 and Q0Q1 is defined by two relations. Two vectors P0P1 and Q0Q1

are equivalent (P0P1eqvQ0Q1), if

P0P1eqvQ0Q1 : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| ∧ |P0P1| = |Q0Q1| (1.2)

where the scalar product (P0P1.Q0Q1) of vectors P0P1 and Q0Q1 is defined by the
relation

(P0P1.Q0Q1) = σ (P0, Q1)+σ (P1, Q0)−σ (P0, Q0)−σ (P1, Q1) , ∀P0, P1, Q0, Q1 ∈ Ω
(1.3)

|P0P1|2 = 2σ (P0, P1) (1.4)

and σ means the world function of the proper Euclidean geometry. The first relation
of (1.2) describes parallelism of vectors P0P1 and Q0Q1, whereas the second one
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describes equality of their lengths. The definition of equivalence of two vectors
contains only points P0, P1, Q0, Q1, determining the vectors, and world functions
between these points. The definition does not refer to a coordinate system and
to the dimension of the proper Euclidean geometry GE. It is a pure geometric
definition, which does not contain a reference to the means of description. In the
proper Euclidean geometry the definition (1.2) of equivalence coincides with the
conventional equivalence definition on the ground of the linear vector space. The
equivalence relation (1.2) is transitive in the proper Euclidean geometry GE, and
this transitivity is a special property of the proper Euclidean geometry.

In the arbitrary physical geometry G the definition of equivalence has the same
form (1.2) with the world function σ, describing the geometry G. However, in the
general case the equivalence relation (1.2) is not transitive, in general, because in
the case of arbitrary world function σ the equivalence of two vectors is multivariant,
in general. It means that at the point P0 may exist many vectors P0P1, P0P

′
1,

P0P
′′
1, ..., which are equivalent to the vector Q0Q1 at the point Q0, whereas the

vectors P0P1, P0P
′
1, P0P

′′
1, ...are not equivalent between themselves. In this case it

is possible, that

P0P1eqvQ0Q1 ∧ P0P
′
1eqvQ0Q1 ∧ P0P1eqvP0P

′
1 (1.5)

is true. Here the symbol eqv means non-equivalency. If relations (1.5) take place,
the equivalence relation is intransitive, because for transitive equivalence relation it
follows from

P0P1eqvQ0Q1 ∧ P0P
′
1eqvQ0Q1 (1.6)

that
P0P1eqvP0P

′
1 (1.7)

and the relation (1.5) is false. On the other hand, the number of vectors P0P1, P0P
′
1,

P0P
′′
1, ..., which are equivalent to the vector Q0Q1 at the point Q0 depends on the

number of solutions of two equations (1.2), considered as equations for determination
of the point P1 at fixed points P0, Q0, Q1 (or at fixed point P0 and fixed vector Q0Q1).
The number of these solutions depends on the form of the world function σ. We
shall differ three different cases:

(1) Single-variance with respect to points P0, Q0, Q1, when there is one and only
one solution for P1 at given points P0, Q0, Q1. In this case the equivalence relation
is transitive, if the single-variance takes place for any points P0, Q0, Q1.

(2) Multivariance with respect to points P0, Q0, Q1, when there is more, than
one solution at some given points P0, Q0, Q1. In this case the equivalence relation is
intransitive.

(3) zero-variance with respect to points P0, Q0, Q1, when there is no solution at
some given points P0, Q0, Q1. In this case the equivalence relation may be intransi-
tive and may be transitive.

The second case is strongest in the sense, that appearance of multivariance with
respect to some three points P0, Q0, Q1 generates intransitivity of the equivalence
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relation, and, hence, non-axiomatizability of a physical geometry, because the tran-
sitivity of the equivalence relation is a necessary condition of axiomatizability. The
second case and the third one are compatible in the sense that the multivariance
may take place with respect to some points P0, Q0, Q1, whereas the zero-variance
may take place with respect to other points P ′

0, Q
′
0, Q

′
1.

Note that the geometry of Minkowski may be axiomatizable and non-physical,
and the geometry of Minkowski may be physical and nonaxiomatizable. In general,
in this case one has two different geometries, having the same world function. We use
for them different names. The geometry of Minkowski, which is a physical geometry,
will be referred to as the σ-Minkowskian geometry. The σ-Minkowskian geometry is
not axiomatizable, because it is multivariant with respect to any point P0 and any
spacelike vector Q0Q1 = {Q0, Q1}. The conventional geometry of Minkowski, which
is constructed on the ground of the linear vector space with the scalar product, given
on it, is axiomatizable (it is deduced from some axiomatics), but it is not a physical
geometry. The geometry of Minkowski cannot be constructed on the basis of the
world function only. Construction of the geometry of Minkowski contains a refer-
ence to the means of description in the form of the coordinate system. Although
the construction of the geometry of Minkowski is invariant with respect to transfor-
mation of the coordinate system, it is not invariant with respect to transformation
of the coordinate system dimension (see detailed discussion in [4]). The geometry
of Minkowski should be qualified as a fortified physical geometry, i.e. a physical
geometry with some additional structure, given on the physical geometry. Existence
of the additional structure imposes some additional constraints on the geometry.

The difference between the space-time geometry of Minkowski and the σ-Minkow-
skian space-time geometry appears only at consideration of spacelike vectors, with
respect to which the σ-Minkowskian geometry is multivariant. However, the space-
like vectors do not figure in the particle dynamics, and the difference between the
σ-Minkowskian space-time geometry and the space-time geometry of Minkowski re-
mains to be obscure. If one considers the geometry as a science on mutual disposition
of geometrical objects and their shapes, one should prefer the σ-Minkowskian ge-
ometry as a space-time geometry, because the distance between any pair of points
determines mutual disposition of geometrical objects and their shapes completely.
As to axiomatizability of a geometry, this property is important only for deduction
of the geometric propositions from the axiomatics. From viewpoint of the geometry
as a science on disposition of geometrical object, the axiomatizability is a secondary
property of the geometry, and practically all physical geometries are not axiomati-
zable. The proper Euclidean geometry is a very important exclusion, which admits
one to construct physical geometries by means of a deformation of the proper Eu-
clidean geometry.

Deduction of an axiomatizable geometry from axiomatics has two essential de-
fects. Firstly, one needs to formulate geometric propositions and to prove corre-
sponding theorems. The geometric propositions are to be formulated and proved for
any new geometry. These procedures are complicated from the technical viewpoint.
Besides, only geometries with the transitive equivalence relation can be deduced from
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axiomatics. Secondly, one needs to invent axioms, and to test their consistency. In-
consistency of a geometry means, that using two different ways of deduction of some
statement, one obtains two incompatible statements. Inconsistency of a geometry is
a property of the method of the geometry construction, but not a property of the ge-
ometry in itself. In the physical geometry, which is constructed on the ground of the
deformation principle, the question of its inconsistency is meaningless, because the
problem of geometric propositions formulation is absent at all. All definitions of a
physical geometry are taken from the proper Euclidean geometry in the ready-made
form. More exactly, definitions of geometrical objects are taken from the proper
Euclidean geometry. If it is necessary to determine properties of these objects, they
are calculated on the basis of the world function. As far as the world functions are
different, in general, in the considered geometry and in the Euclidean one, the cal-
culated properties may be different in the considered geometry and in the Euclidean
one.

Finally, the method of a physical geometry construction, based on linear vector
space, (for instance, construction of the Riemannian geometry) starts from some n-
dimensional manifold Mn, where the metric tensor gik is given. The world function
σ is given by the relation

σ (x, x′) =
1

2

⎛
⎜⎝ ∫
Lxx′

√
gik (x) dxidxk

⎞
⎟⎠

2

(1.8)

where integration is produced along the geodesic Lxx′ , connecting points x and x′.
There may be several geodesics, connecting points x and x′. In this case the world
function σ appears to be many-valued. In this case the world function is a derivative
quantity, and it may be many-valued. However, in a physical geometry, the world
function is a primary quantity, it determines the physical geometry, and it cannot
be many-valued.

To make the Riemannian geometry with many-valued world function (1.8) a
physical geometry (σ-Riemannian geometry), one needs to turn the many-valued
world function into single-valued one, choosing only one branch of the world function
(1.8). Different choice of branches generates different world functions and, hence,
different σ-Riemannian geometries. Thus, the n-dimensional manifold Mn with
the metric tensor, given on it generates several σ-Riemannian geometries, if the
expression (1.8) appears to be many-valued for some pairs of points x, x′.

Construction of σ-Riemannian geometries by means of a transformation of many-
valued world function (1.8) into a single-valued world function is accompanied by
appearance of zero-variance for some points. Of course, this mechanism of construc-
tion of a physical geometry with the zero-variance is not unique. However, this
mechanism is interesting from the physical viewpoint, because the σ-Riemannian
geometry with the zero-variance may be obtained as a result of the compactifica-
tion of the flat space-time geometry (for instance, compactification of 5-dimensional
space-time geometry of Kaluza-Klein [6, 7]). The zero-variance generates some dis-
crimination mechanism, responsible for discrete values of the elementary particle

5



parameters. In particular, compactification of the fifth coordinate in the Kaluza-
Klein geometry leads to restrictions on the possible electric charge of the elementary
particle.

This paper is devoted to consideration of the procedure of compactification of
the Kaluza-Klein geometry, which is accompanied by the construction of a discrim-
ination mechanism, imposing restrictions on the value of the electric charge of the
elementary particles. However, at first, we mention about influence of the multi-
variance upon the dynamics of elementary particles.

2 Influence of the multivariance on the particle

dynamics.

In the space-time geometry of Minkowski the dynamics of a pointlike particle is
described by a timelike world line L of the particle. In the inertial coordinate
system x = {x0, x1, x2, x3} the world function σM (x, x′) between two points with
coordinates x and x′ has the form

σM (x, x′) =
1

2
gik

(
xi − x′i

) (
xk − x′k

)
(2.1)

where the metric tensor has the form gik = diag {c2,−1,−1,−1}, and c is the speed
of the light. The world line x = x (τ) of a charged particle, moving in the given
electromagnetic field Fik, is described by the dynamic equation

m
d

dτ

cgil
dxl

dτ√
gjn

dxj

dτ
dxn

dτ

=
e

c
Fik (x)

dxk

dτ
, i = 0, 1, 2, 3 (2.2)

where m is the particle mass, e is the electric charge of the particle and τ is a param-
eter along the world line. The constants m and e are non-geometrical characteristics
of the pointlike particle.

In general, the mass m and the charge e can be geometrized, i.e. they may be
considered as pure geometric characteristics of the pointlike particle. However, it
is possible only in the framework of the physical geometry, which is formulated in
terms of the world function. The motion of a pointlike particle is described by a
world chain C, consisting of connected vectors PsPs+1, s = ...0, 1, ...

C =
⋃
s

PsPs+1 (2.3)

where vector PsPs+1 = {Ps, Ps+1} is an ordered set of two points Ps, Ps+1. The
world chain C is an ordered set of points ...P0, P1, ...Ps, ... The distance |PsPs+1|
between the adjacent points Ps, Ps+1 is the same.

|PsPs+1| = μ, s = ...0, 1, .. (2.4)
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The quantity μ = |PsPs+1| is the length of the world chain link. It determines the
geometric mass μ. The geometrical mass μ is connected with the usual mass m by
means of the relation

m = bμ (2.5)

where b is some universal constant. The geometrical mass μ is a geometric character-
istic of the particle, as well as the vector PsPs+1, which is the geometric momentum
of the particle.

The motion (2.2) of a pointlike particle in the electromagnetic field may be
described as a free motion of the particle in the 5-dimensional space-time of Kaluza-
Klein. The fact, that the motion of a pointlike particle in a physical space-time
geometry is free, means that the adjacent vectors in the world chain are equivalent

PsPs+1eqvPs+1Ps+2, s = ...0, 1, .. (2.6)

Let the electromagnetic field be absent. Then dynamic equation (2.2) turns into
the dynamic equation

m
d

dτ

cgil
dxl

dτ√
gjn

dxj

dτ
dxn

dτ

= 0 (2.7)

Its solution

xi = xi (τ) = X i + U iτ , X i, U i = const, i = 0, 1, 2, 3 (2.8)

does not depend on the mass m and coincides with the solution of equations (2.6),
(1.2) in the space-time of Minkowski. However, if the space-time of Minkowski is
slightly deformed, the solution may appear to depend on the mass.

Let us consider the space-time geometry Gd, described by the world function

σd = σM + d, d =
1

2
λ2

0sgn (σM) , λ0 = const (2.9)

sgn (x) =

{ x
|x| if x �= 0

0 if x = 0
(2.10)

where σM is the world function of the space-time geometry of Minkowski, and λ0 is
some elementary length of the geometry Gd.

The length |P0P1|d of any vector P0P1 has the form

|P0P1|2d = 2σd (P0, P1) = 2σM (P0, P1) + λ2
0sgn (σM (P0.P1)) (2.11)

In other words, if the distance between points P0, P1 is timelike in Gd (σd (P0, P1) > 0),
it is also timelike in GM (σM (P0, P1) > 0). If the distance between points P0, P1 is
spacelike in Gd (σd (P0, P1) < 0), it is also spacelike in GM (σM (P0, P1) < 0). It fol-
lows from (2.11) that any timelike (and spacelike) distance is larger, than λ0. It
means that in the space-time geometry Gd there are no close points, and the geom-
etry Gd should be qualified as a discrete space-time geometry. The geometry Gd is
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given on the continuous manifold of Minkowski. It looks rather unexpected, that the
discrete geometry may be given on the same point set, on which a continuous geom-
etry can be given. This surprise is explained by the fact, that at the conventional
approach, based on the concept of the linear space, the discrete geometry is given
on a countable point set, whereas the continuous geometry is given on a continual
point set.

Conventionally a discrete geometry is described as follows. Let us consider some
geometry Gc (Euclidean, Minkowskian, or Riemannian) on some manifold Mn and
introduce some curvilinear coordinate system (x0, x1, ...xn) in it. Let us remove
from the manifold Mn+1 all points except of points with all integer coordinates. As
a result one obtains the point set Md, whose points a labelled by integer coordinates
xs, s = 0, 1, , ..n. The world function σ(P,Q) between the points P,Q ∈ Md is the
same as between the corresponding points P,Q ∈ Mn+1. As a result one obtains the
same geometry Gc on the subset Md of the set Mn+1. In the discrete geometry Gc

defined on Md there is an elementary length λ, defined by the relation

λ = min
∀P,Q∈Md

{∣∣∣√2σ (P,Q)
∣∣∣} at

∣∣∣√2σ (P,Q)
∣∣∣ > 0 (2.12)

In this conventional definition of the discrete geometry one uses such means of
description as the manifold Mn+1 and a coordinate system on it. The obtained
geometry on Md depends essentially on the choice of the coordinate system. Besides,
it is impossible to obtain a discrete geometry on a continuous set of points.

The definition (2.9) does not use any means of description. It uses only world
function, and discreteness of the geometry arises from the fact that |σ (P,Q)| /∈
(0, λ0) for ∀P,Q ∈ Ω, where Ω is the point set where the geometry is given. The set
Ω may be discrete or continuous. This circumstance is unessential for construction
of the discrete geometry.

The character (discreteness, or continuity) of geometry depends only on the form
of the world function. Of course, the continual geometry may be given only on a
continual point set. However, as we have seen, the discrete geometry may be given
also on a continual point set .

As we have seen, the σ-Minkowskian geometry is multivariant with respect to
any point and any spacelike vector. The space-time geometry Gd is multivariant with
respect to timelike vectors also, and this circumstance appears to be important for
dynamics of a pointlike particle, because the dynamics deals with timelike vectors.
The free motion of a pointlike particle appears to depend on the geometric particle
mass μ and on the elementary length λ0, which is responsible for multivariance of
Gd with respect to timelike vectors.

Two adjacent links P0P1 and P1P2 are equivalent, and, hence, satisfy the rela-
tions of the type of (1.2). Let coordinates of the points be

P0 = {0, 0, 0, 0} , P1 = {μ, 0, 0, 0} , P2 = {2μ+ α0, α1, α2, α3} (2.13)
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The coordinates of vectors P0P1, P1P2, P0P2 are

P0P1 = {μ, 0, 0, 0} , P1P2 = {μ+ α0, α1, α2, α3} , (2.14)

P0P2 = {2μ+ α0, α1, α2, α3} (2.15)

Let us take into account that

|P0P1|2d = |P0P1|2M = 2σM (P0, P1) + λ2
0sgn (σM (P0, P1)) (2.16)

(P0P1.P1P2)d = (P0P1.P1P2)M + w (P0, P1, P1, P2) (2.17)

Here indices ”M” and ”d” mean that the quantities are calculated in GM and Gd

respectively, and for timelike vectors (2.14)

w (P0, P1, P1, P2) = d (P0, P2) + d (P1, P1) − d (P0, P1) − d (P1, P2) = −1

2
λ2

0 (2.18)

The relation P0P1eqvP1P2 has the form of two equations

μ (μ+ α0) − 1

2
λ2

0 = μ2 + λ2
0 (2.19)

μ2 = (μ+ α0)
2 − α2

1 − α2
2 − α2

3 (2.20)

The quantities α are to be determined from these equations. Solution of equations
(2.19), (2.20) has the form

α0 =
3λ2

0

2μ
, α1 = λ0

√
3 +

9λ2
0

4μ2
sin θ cosϕ, (2.21)

α2 = λ0

√
3 +

9λ2
0

4μ2
sin θ sinϕ, α3 = λ0

√
3 +

9λ2
0

4μ2
cos θ (2.22)

where the quantities θ and ϕ are arbitrary.
Thus, position of the link P1P2 with respect to the adjacent link P0P1 appears

to be indefinite (multivariant). Possible positions of the link P1P2 form generatrices
of the cone with the axis P0P1and the angle φ at the vertex, which lies at the point
P1. The angle φ is determined by the relation

tanφ =

√
α2

1 + α2
2 + α2

3

μ+ α0

=
λ0

μ
(
1 + 3λ2

0

μ2

)
√

3 +
9λ2

0

4μ2
≈ λ0

√
3

μ
, if λ0 	 μ (2.23)

If the elementary length λ0 → 0, the space-time geometry Gd turns into GM, and the
cone degenerates into a straight line.

Indefinite (multivariant) position of adjacent links leads to wobbling of the world
chain of the pointlike particle. Let us choose elementary length of the space-time
geometry Gd in the form

λ2
0 =

�

bc
(2.24)
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where � is the quantum constant, c is the speed of the light and the constant b
is the universal constant (2.5), connecting the geometrical mass μ with the usual
mass m. Then the statistical description of wobbling world chains is equivalent to
the quantum description in terms of the Schrödinger equation [5]. The quantum
constant � appears in the dynamics of the particle as a parameter of the space-time
geometry Gd. The conventional quantum principles appear to be needless. Thus,
the multivariant space-time geometry admits one to describe quantum effects as
geometric effects. Besides, the pointlike particle mass m appears to be geometrized
by its connection (2.5) with the geometrical mass μ = |P0P1|d.

We have no direct information on the space-time geometry in microcosm. In the
usual scale the space-time geometry may be considered as continuous, because the
possible discreteness of the space-time has a small scale, which cannot be recognized
in macroscopic experiments. However, in the small scale the space-time geometry
may appear to be discrete. The discrete space-time geometry generates multivari-
ance, which is responsible for quantum effects. It is impossible to object anything
against the discreteness of the space-time geometry at small scale. Such a possi-
bility should be considered. The discrete space-time geometry is to be considered
in the framework of the physical geometry, which describes continuous and discrete
geometries, using a uniform method.

3 World function of the Kaluza-Klein space-time

The space-time geometry of Kaluza-Klein GK is given on the 5-dimensional manifold.
In the coordinate system with coordinates x = {x0, x1, x2, x3, x5}. Four coordinates
{x0, x1, x2, x3} = {x0,x} describe position of a particle in the 4D-space-time of
Minkowski, whereas the charge coordinate x5 describes additional characteristic of
the particle, which is responsible for interaction with the electromagnetic field.

Covariant metric tensor γAB, A,B = 0, 1, 2, 3, 5 in the geometry GK is determined
by the relation

γAB =

∣∣∣∣
∣∣∣∣ gik − aiak ak

ai −1

∣∣∣∣
∣∣∣∣ , i, k = 0, 1, 2, 3, A,B = 0, 1, 2, 3, 5 (3.1)

where gik, i, k = 0, 1, 2, 3 is the metric tensor in the conventional 4-dimensional
space-time. The quantities ak, k = 0, 1, 2, 3 are connected with electromagnetic
potential Ak, k = 0, 1, 2, 3 by means of the relation

ak = κAk, k = 0, 1, 2, 3 (3.2)

where κ is some universal constant. The contravariant metric tensor γAB, A,B =
0, 1, 2, 3, 5 has the form

γAB =

∣∣∣∣
∣∣∣∣ gik gilal

gklal −1 + gjlajal

∣∣∣∣
∣∣∣∣ , i, k = 0, 1, 2, 3, A,B = 0, 1, 2, 3, 5 (3.3)
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It is supposed that neither electromagnetic potentials ak, nor the metric tensor gik

depend on the charge coordinate x5.
Then the action

A [x] =

∫ {
−m5c

√
γABẋ

AẋB
}
dτ , x =

{
x0 (τ) , x1 (τ) , x2 (τ) , x3 (τ) , x5 (τ)

}
(3.4)

describes the motion of a charged particle in the gravitational field,described by
the metric tensor gik and in the electromagnetic field Ak. Corresponding dynamic
equations are obtained as a result of variation of the action (3.4) with respect to xA,
A = 0, 1, 2, 3, 5.

dpA

dτ
= − ∂

∂xA

(
m5c
√
γABẋ

AẋB
)
, A = 0, 1, 2, 3, 5 (3.5)

where

pA = − m5cγABẋ
B√

γCDẋ
C ẋD

, A = 0, 1, 2, 3, 5 (3.6)

As far as γAB does depend on x5, it follows from (3.5), that the canonical momentum
component p5 =const. Then, taking into account (3.1), the equation (??) may be
rewritten in the form(

∂S

∂xi
+ p5ai

)
gik

(
∂S

∂xk
+ p5ak

)
= (m5c)

2 + p2
5 (3.7)

Comparing (3.7) with the Hamilton-Jacobi equation(
∂S

∂xi
+
e

c
Ai

)
gik

(
∂S

∂xk
+
e

c
Ak

)
= m2c2 (3.8)

describing motion of a pointlike particle of mass m and of charge e in 4-dimensional
space-time with electromagnetic potential Ak, k = 0, 1, 2, 3, one concludes that
equations (3.7) and (3.8) are equivalent, if

m =
√
m2

5 + c−2p2
5, p5 =

e

κc
, ak = κAk, k = 0, 1, 2, 3 (3.9)

where κ is some universal constant.
The original action (3.4) has the form of the action for a geodesic in 5-dimensional

Riemannian space with the metric tensor (3.1). Thus, the motion of a pointlike
charged particle in the 4-dimensional Riemannian space-time with the electromag-
netic field can be described as a free motion of a particle in the 5-dimensional Rie-
mannian space-time. The electric charge e of the particle is geometrized in the sense,
that it appears to be connected with the component p5 of the particle momentum
along the fifth (charge) coordinate x5.

However, the fifth coordinate x5 is unobservable, and one tries to explain this
circumstance by the hypothesis, that the space-time of Kaluza-Klein is thin in the di-
rection of the fifth coordinate x5. One supposes, that the space-time of Kaluza-Klein
is compactified in the direction of fifth coordinate x5, i.e. the points with coordinates
{x0, x1, x2, x3, x5} and {x0, x1, x2, x3, x5 + 2kL} coincide, where L is some universal
constant and k is any integer number.
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4 Discrimination properties of the Kaluza-Klein

geometry compactification

We shall try to analyze influence of compactification on the Kaluza-Klein geometry
GK. For simplicity we shall consider the case, when the gravitational field and
the electromagnetic one are absent. Then the metric tensor (3.1) takes the form
γAB =diag(c2,−1,−1,−1,−1) and ak = 0, k = 0, 1, 2, 3. Geodesics LP0P1 , passing
through points P0 and P1 with coordinates

P0 = {0, 0, 0, 0, 0} , P1 =
{
y0, y1, y2, y3, y5

}
, y0, y1, y2, y3, y5 ∈ R (4.1)

have the form

xk = ykτ , x5 =
(
y5 + 2nL

)
τ , k = 0, 1, 2, 3 (4.2)

where τ is a parameter along the geodesic, and n is an arbitrary integer number. The
compactification may be considered as a conglutination of points with coordinates
{x0, x1, x2, x3, x5 − L} and {x0, x1, x2, x3, x5 + L}. As a result one obtains a ”cylin-
der” instead of a plane. The compactification distinguishes the space-time direction
of the coordinate x5 in the sense that it forbids space-time rotations, including the
coordinate x5.

Defining the world function σK (P0, P1) by means of (1.8) as an integral along the
geodesic, connecting points P0 and P1, one obtains a many-valued world function,
because there are many geodesics of different length, connecting the points P0 and
P1. If the space-time geometry is constructed according to conventional method on
the basis of the linear vector space, the metric tensor is a primary quantity, whereas
the world function is a secondary (derivative) quantity. In this case one may accept
situation with many-valued world function, and one may try to interpret this fact
in some way.

However, if the space-time geometry is a physical geometry, where the world
function is the primary fundamental quantity, one cannot accept a many-valued
primary quantity. One needs to use a single-valued world function and to choose
only one of many possible variants of the geodesic (4.2). One obtains different
space-time geometries for different choice of the geodesic (4.2), determining the
world function.

The single-valued world function restricts possible values of electric charge, con-
sidered as a momentum along the fifth coordinate x5 in the space-time of Kaluza-
Klein. As a result of the single-valued world function the electric charge of an
elementary particle appears to be restricted. Compactification with many-valued
world function does not need such a restriction.

We consider the simplest case, when the world function is defined as integral (1.8)
along the ”shortest” geodesic, corresponding to the geodesic (4.2). This geodesic
makes less, than one convolution around the ”cylinder”. In this case the world
function depends on the standartized value x5

st of the coordinate x5

σK (x, x′) =
1

2

((
x0 − x′0

)2 − (x − x′)2 − ((x5 − x′5
)
st

)2)
(4.3)

12



where x = {x1, x2, x3}

xst =

{
2L
{

x
2L

}
if 2L

{
x
2L

} ≤ L
2L
{

x
2L

}− 2L if L < 2L
{

x
2L

} , 2L
{ x

2L

}
∈ [0, 2L) (4.4)

Here {x} means the fractional part of a decimal number x, and [x] is the integer
part of x. In other words, [x] and {x} are defined by relations.

[x] = max (k ∈ Z|k ≤ x) , (4.5)

where Z is the set of all integer numbers.

{x} = x− [x] (4.6)

The coordinate x5
st is a standartized coordinate x5

st ∈ (−L,L], although formally
x5 ∈ R. The expression (x5 − x′5)st ∈ (−L,L], although formally x5, x′5 ∈ R. We
have

(xst − x′st)st =

⎧⎨
⎩

xst − x′st if −L < xst − x′st ≤ L
−2L+ xst − x′st if L < xst − x′st ≤ 3L
2L+ xst − x′st if −3L < xst − x′st ≤ −L

(4.7)

The choice of the world function σK in the form (4.3), (4.4) corresponds to the
geodesic (4.2), which makes less, than one convolution around the ”cylinder”. The
world function (4.3), (4.4) is zero-variant with respect to some vectors.

Let us consider the points of two adjacent vectors of a world chain.

P0 = {0, 0, 0, 0, 0} , P1 = {s0, s1, s2, s3, l} , (4.8)

P2 = {2s0 + α0, 2s1 + α1, 2s2 + α2, 2s3 + α3, 2l + α5} (4.9)

P0P1 = s = {s0, s1, s2, s3, l} , (4.10)

P1P2 = s+ α = {s0 + α0, s1 + α1, s2 + α2, s3 + α3, l + α5} (4.11)

P0P2 = 2s+ α = {2s0 + α0, 2s1 + α1, 2s2 + α2, 2s3 + α3, 2l + α5} (4.12)

We shall show, that if the fifth coordinate x5 = l satisfies the relation

|l| > L

2
(4.13)

then the vector P1P2, which is equivalent to vector P0P1 does not exist. It means,
that the world chain of a free pointlike particle with the link P0P1 cannot exist.

The equivalence conditions P0P1eqvP1P2 for vectors (4.10), (4.11) are written
in the form

|P0P1|2K = |P1P2|2K (4.14)

(P0P1.P1P2)K = |P0P1|2K (4.15)

where index ”K” means, that the corresponding quantities are taken in the geometry
(4.3).
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We suppose, that the vector P0P1 is timelike in the sense, that

s2
0 > L2 + s2, s = {s1, s2, s3} (4.16)

As far as
(P0P1.P1P2)K = σK (P0, P2) − σK (P0, P1) − σK (P1, P2) (4.17)

the equations (4.14), (4.15) are written in the form

s2
0 − s2 − l2 = (s0 + α0)

2 − (s + α)2 − ((l + α5)st)
2 (4.18)

(2s0 + α0)
2 − (2s + α)2 − (2l + α5)

2
st = 4

(
s2
0 − s2 − l2

)
(4.19)

Taking sum of equations (4.19) and (4.18), one obtains

2s0α0 − 2sα − (2l + α5)
2
st + (l + α5)

2
st = −3l2 (4.20)

α0 =
2sα+ (2l + α5)

2
st − (l + α5)

2
st − 3l2

2s0

(4.21)

Substituting (4.21) in (4.18), one obtains

α2 = (2l + α5)
2
st−2 (l + α5)

2
st−2l2+

(
2sα+ (2l + α5)

2
st − (l + α5)

2
st − 3l2

2s0

)2

(4.22)

Let us set
β = βst = (l + α5)st (4.23)

Then
(2l + α5)st = (l + β)st = l + β + γ (4.24)

where

γ =

⎧⎨
⎩

0 if −L < l + β ≤ L
−2L if L < l + β ≤ 3L
2L if −3L < l + β ≤ −L

=

⎧⎨
⎩

0 if −L− l < β ≤ L− l
−2L if L− l < β ≤ 3L− l
2L if −3L− l < β ≤ −L− l

(4.25)
Note, that we are interested in the quantity β, because it is the fifth coordinate

of the vector P1P2, which is determined to within 2kL, where k is an arbitrary
integer number

P1P2 = {s0 + α0, s1 + α1, s2 + α2, s3 + α3, β}
= {s0 + α0, s1 + α1, s2 + α2, s3 + α3, β + 2kL} (4.26)

Substituting (4.23) and (4.24) in (4.22), one obtains after transformations

α2 = +
2sαl (β − l)

s2
0

+
(sα)2

s2
0

− (l − β)2

(
1 − l2

s2
0

)
+ γ2

( 1
2
γ + (l + β)

s0

)2

+γ (γ + 2 (l + β))

(
1 +

l (β − l) + sα

s2
0

)
(4.27)
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Let us consider the case, when

γ = 0, −L < β + l ≤ L, (4.28)

Then one obtains from (4.27)

α2 = − (l − β)2

(
1 − l2

s2
0

)
+

(
sα

s0

)2

− 2
sα

s2
0

l (l − β) (4.29)

One can see, that the equation (4.29) has the evident solution

β = l, α = (α1, α2, α3) = (0, 0, 0) , α0 = 0 (4.30)

. It follows from (4.28) and (4.30), that

−L/2 < l ≤ L/2, −L/2 < β ≤ L/2 (4.31)

To obtain other solutions, let us set

β = l + ε (4.32)

One obtains instead of (4.29)

α2 = −ε2

(
1 − l2

s2
0

)
+

(
sα

s0

)2

+ 2
sα

s2
0

lε (4.33)

Or ∑
β

(
s2
0α

2
β − 2lsβεαβ −

∑
ν

sβsναβαν

)
+ ε2

(
s2
0 − l2

)
= 0 (4.34)

We are to find such spacelike vectors {α0, α1, α2, α3, ε} and such a value of the
variable l, which satisfy the equation (4.34).

Let us choose the axis x1 along the 3-vector s. Equation (4.34) takes the form(
s2
0 − s2

1

)
α2

1 + s2
0α

2
2 + s2

0α
2
3 +
(
s2
0 − l2

)
ε2 − 2ls1εα1 = 0 (4.35)

Lhs of equation (4.35) is a quadratic form with respect to variables {α1, α2, α3, ε} .The
matrix of the quadratic form of the equation (4.35) has the form∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
s2
0 − s2

1 0 0 −ls1

0 s2
0 0 0

0 0 s2
0 0

−ls1 0 0 (s2
0 − l2)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(4.36)

Eigenvectors and eigenvalues of the quadratic form (4.36) have the form,⎧⎪⎪⎨
⎪⎪⎩

0
1
0
0

,

0
0
1
0

,

− l
s1

0
0
1

⎫⎪⎪⎬
⎪⎪⎭↔ s2

0,

⎧⎪⎪⎨
⎪⎪⎩

1
l
s1

0
0
1

⎫⎪⎪⎬
⎪⎪⎭↔ −l2 + s2

0 − s2
1 (4.37)
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The equation (4.34) has trivial solution (4.30): α = {0, 0, 0} , ε = 0. The equa-
tion (4.34) has nontrivial solution if, at least, one of eigenvalues of the matrix (4.36)
vanishes. For timelike vector {s0, s,l} we have

s2
0 > s2 + l2 (4.38)

Let us try to find such values of the variable l, for which the eigenvalue vanishes.
The first eigenvalue of (4.37) is positive always. The second eigenvalue of (4.37)
vanishes, if

s2
0 − s2

1 − l2 = 0 (4.39)

Fulfilment of equation (4.39) is impossible, because of (4.38). It means, that eigen-
values of the matrix (4.36) do not vanish and the equation (4.34) has only trivial
solution

α = {0, 0, 0} , α0 = 0, ε = 0, α5 = 0, β = l if − L/2 < l ≤ L/2 (4.40)

Let us consider the case

γ = −2L, L < l + β ≤ 3L (4.41)

In the nonrelativistic case s2, l2, L2 	 s2
0 the equation (4.27) takes the form

α2 = (l + β + γ)2 − 2β2 − 2l2

α2 + (l − β)2 − 2L (2L− 2 (l + β)) = 0 (4.42)

This equation can be written in the form

l + β = −α2 + (l − β)2

4L
+ L ≤ L (4.43)

As it follows from comparison of (4.41) and of (4.43) the equation (4.42) has no
solution, satisfying the inequality (4.41) even in the case when

α = {0, 0, 0} , l = β = L/2 (4.44)

Let us consider the case

γ = 2L, −3L < l + β ≤ −L (4.45)

In the nonrelativistic case s2, l2, L2 	 s2
0 the equation (4.27) takes the form

α2 = − (l − β)2 + 2L (2L+ 2 (l + β)) (4.46)

According with (4.45) this equation can be written in the form

l + β =
α2 + (l − β)2

4L
− L ≤ −L (4.47)
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As it follows from the equation (4.47) and inequality (4.45), that the solution of
equation (4.47) has the form

α = {0, 0, 0} , l = β = −L/2 (4.48)

Uniting (4.40) with (4.48), one obtains, that if vectors P0P1 and P1P2 are timelike
in the sense (4.16), the unique solution of (4.22) is

α = 0, α5 = 0, α0 = 0, −L
2
≤ l ≤ L

2
(4.49)

Thus, one obtains, that at the point P1 there is only one vector P1P2 = {s0, s1, s2, s3, l},
which is equivalent to the vector P0P1 = {s0, s1, s2, s3, l} at the point P0. This
equivalence takes place only, if l satisfies the relation

|l| ≤ L

2
(4.50)

If the relation (4.50) is not satisfied, at the point P1 there is no vector P1P2, which
is equivalent to the vector P0P1 = {s0, s1, s2, s3, l}.

If the Kaluza-Klein geometry is not compactificated the vectors P0P1 = {s0, s1, s2, s3, l}
and P1P2 = {s0, s1, s2, s3, l} are equivalent at any value of the charge l (at l2 <
s2
0 − s2). Thus, the compactification discriminates large values of the charge coordi-

nate x5 = l. Influence of compactification reminds influence of a potential hole with
infinite high walls placed at the values −L/2 and L/2 of the fifth coordinate x5. In
both cases displacement of a particle in the fifth direction is restricted. In the case
of the potential hole only displacement (but not momentum p5) is restricted. In the
case of compactification the value of momentum p5 (electric charge) is restricted,
when the physical space-time geometry is used. In this case the links of the world
chain have finite length and a discrimination of large values of the electric charge
appears. At the conventional approach to the Kaluza-Klein geometry, based on the
linear vector space, the compactification does not discriminate any values of the
electric charge (in the case of classical dynamics), because the length of the particle
world chain links is considered to be infinitesimal.

The charge coordinate x5 = l describes a displacement of the particle in the
fifth direction x5. In the physical geometry the component x5 = l of the vector
P0P1 = {s0, 0, 0, 0, l}, is simultaneously a component p5 of the momentum vector
(the electric charge to within a factor). The discrimination of values of the quantity
l is a discrimination of the charge component p5 of the momentum vector P0P1,
i.e. it is a discrimination of the particle electric charge. Conventional method
of compactification, using a single-valued metric tensor (but a many-valued world
function), does not admit one to obtain a restriction of the module of the electric
charge of an elementary particle. It generates only periodical dependence of the
particle state on the fifth coordinate. Of course, this periodical dependence relates
only to the state of the statistical ensemble, but not to the state of a single particle.
Instead of the dynamic equations for a single free particle

d

dt
xA (t) = vA (t) ,

dvA (t)

dt
= 0, A = 1, 2, 3, 5 (4.51)
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one should consider dynamic equations for the statistical ensemble consisting of free
particles, whose motion is described by equations (4.51). In particular, if the state
of this ensemble is described by the wave function ψ (t,x, x5), the wave function is
to be a periodical function of the fifth coordinate x5

ψ
(
t,x,x5

)
= ψ

(
t,x,x5 + 2kL

)
(4.52)

where k is any integer number. In the framework of quantum mechanics this peri-
odicity leads to that result, that the operator of the electric charge −i�∂/∂x5 has
eigenvalues which are multiple to some elementary electric charge.

After compactification the single-valued world function restricts the particle dis-
placement in the direction of fifth coordinate. However, in general, it does not
restrict the charge component p5 of the momentum vector. The the charge compo-
nent p5 is restricted, if (1) the links of the world chain have a finite length and (2)
the world function is single-valued. If one of these conditions is violated, the value
of the charge component p5 of the momentum vector may be not restricted.

In particular, at the conventional approach, when the world function becomes to
be many-valued after compactification, the particle displacement along the direction
x5, and momentum p5 of a particle remain to be unrestricted. If the world function
is single-valued after compactification, but the world chain links are infinitesimal,
the particle displacement along the direction x5 appears to be restricted, but the
momentum p5 remains to be unrestricted. In particular, in the discrete space-time
geometry, where the links of the world chain cannot be infinitesimal, the momen-
tum p5 appears to be restricted, if the world function is made single-valued after
compactification.

It is well known, that stable elementary particles have the electric charge 0,±e0,
where e0 is the elementary charge. Only short-living resonances have multiple
charges. Apparently, they are bound states of several elementary particles. As
to quarks, which have fractional electric charge, they cannot be extracted from sta-
ble elementary particles. Quarks are rather elements of a structure of elementary
particles, than elementary particles themselves.

Thus, experimental data confirm a reasonable supposition on single-valuedness
of the world function after compactification.

5 Compactification in the discrete Kaluza-Klein

space-time

Let us consider compactification of the discrete Kaluza-Klein space-time. The world
function has the form

σdK (x, x′) = σK (x, x′) +
λ2

0

2
sgn (σK (x, x′)) (5.1)

where σK is determined by the relation (4.3), (4.4). As far as the space-time geome-
try with the world function (5.1) is discrete, the world chains of particles have links
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of a finite length, because in the discrete space-time geometry the link length can-
not be infinitesimal. We consider two timelike vectors P0P1 and P1P2 of the world
chain. The vectors are determined by the relations (4.8) - (4.12). These vectors are
supposed to be equivalent and to satisfy the relations of the type (4.14), (4.15).

The equations are rewritten in the developed form

s2
0 − s2 − l2 = (s0 + α0)

2 − (s + α)2 − (l + α5)
2
st (5.2)(

(2s0 + α0)
2 − (2s + α)2 − (2l + α5)

2
st

)
+ λ2

0 = 4
((
s2
0 − s2 − l2

)
+ λ2

0

)
(5.3)

Combining equations (5.2) (5.3), one obtains

α0 =
2sα+ (2l + α5)

2
st − (l + α5)

2
st − 3l2 + 3λ2

0

2s0

(5.4)

Substituting (5.4) in (5.2), one obtains

α2 = (2l + α5)
2
st−2 (l + α5)

2
st−2l2+3λ2

0+

(
2sα+ (2l + α5)

2
st − (l + α5)

2
st − 3l2 + 3λ2

0

2s0

)2

(5.5)
Or

α2 = (l + γ) (l + 2β + γ)−β2−2l2+3λ2
0+

(
2sα+ (l + γ) (l + 2β + γ) − 3l2 + 3λ2

0

2s0

)2

(5.6)
where γ is determined by (4.25)

We shall consider only nonrelativistic case s2, l2, L2 	 s2
0 for timelike vectors

P0P1 and P1P2. In the case, when γ = 0 and according to (4.23), (4.25)

−L < l + β ≤ L (5.7)

one obtains from (5.6)

α2 + (β − l)2 = r2
1, r2

1 = 3λ2
0 (5.8)

The relation (5.8) describes a sphere of the radius

r1 =
√

3λ0 (5.9)

with the center {αc, βc} = {0, l} in the 4-dimensional space of coordinates {α, β} =
{α1, α2, α3, β}.

Solution of equations (5.8) has the form

α1 = r1 sin θ sinφ2 sinφ3, α2 = r1 sin θ sinφ2 cosφ3, (5.10)

α3 = r1 sin θ cosφ2, β = l + r1 cos θ, α0 = 0, (5.11)

which is valid for
r1 cos θ ≤ L− 2l. (5.12)
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Here r1 is defined by relation (5.9), and θ, φ2, φ3 are arbitrary numbers. Although
the solution (5.10), (5.11) is many-valued, but it is placed at the distance of the
order of λ0 from the single-valued solution (4.49). At λ0 = 0 the radius r1 of the
sphere (5.8) vanishes and the solution (5.10), (5.11) coincides with (4.49).

We are interested in behaviour of the solutions the equation (5.8) near the
boundary x5 = L/2. The sphere (5.8) lies either completely inside the region
−L/2 < x5 < L/2, or intersects the boundary x5 = L/2. In the last case we
use the designation

l =
L

2
+ δ, −r1

2
< δ ≤ r1

2
(5.13)

then according to (5.11)

β =
L

2
+ δ + r1 cos θ (5.14)

The angle θmax of intersection of the sphere (5.8) with the boundary x5 = L/2 is
defined by the relation

cos θmax = −2δ

r1
(5.15)

which follows from (5.12). Position of the sphere section is determined by

βmax = L/2 + δ + r1 cos θmax = L/2 − δ (5.16)

which corresponds to the condition

βmax + l = L (5.17)

Radius R of the sphere section has the form

R = r1 sin θmax = r1
√

(1 − cos2 θmax) =

√
r2
1 − 4δ2 (5.18)

One can see, that the value x5
(2) = β of the charge coordinate x5 of vector P1P2

is always less, than L
2

+ r1

2
. Besides, the value x5

(2) = β of the charge coordinate x5
(2)

of vector P1P2 is less, than L/2, if the charge coordinate x5
(1) = l of vector P0P1 is

larger, than L/2. In other words, the charge coordinate x5 ”reflects itself” from the
boundary x5 = L/2 in the following sense. If the coordinate x5

(1) of the vector P0P1

appears near the boundary x5 = L/2, x5
(1) ∈ (L/2 − r1/2, L/2), then coordinate

x5
(2) of the vector P1P2 may be larger than L/2. For instance, it is possible, that

x5
(2) ∈ (L/2, L/2 + r1/2). However, coordinate x5

(3) of the next link P2P3 will be

less than L/2. According to (5.14) x5
(3) ∈

(
L
2
− 3r1

2
, L

2
− r1

2

)
. Thus, the world chain

cannot go through the boundary x5 = L/2, although single points of the world
chain may have coordinate x5 ∈ (L/2 + r1/2). Behaviour of the world chain near
the boundary x5 = −L/2 is the same, as near the boundary x5 = L/2. The world
chain reflects itself from the boundary x5 = −L/2. Thus, the world chain will be
placed in the region −L/2 < x5 < L/2.
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In the case of continuous space-time, when λ0 = 0, the world chain does not pen-
etrate through the boundary x5 = L/2. In the case of the discrete space-time, when
λ0 > 0, one point of the world chain may penetrate through the boundary x5 = L/2.
However, the next point of the world chain returns to the region −L/2 < x5 < L/2.
We shall refer to solutions, satisfying the condition (5.7), as basic solutions, whereas
the solutions, satisfying conditions (4.41), as additional solutions. Behaviour of the
world chain near the boundary x5 = L/2 reminds behavior of a quantum particle
near the wall of the potential hole.

Let us consider the case (additional solutions), when

γ = −2L, L < l + β ≤ 2L (5.19)

In the nonrelativistic case the equation (5.6) takes the form

α2 + (β − l + 2L)2 = r2
2, r2 =

√
8L2 − 8lL+ 3λ2

0 (5.20)

This equation describes the sphere of radius r2 with center at the point {αcβc} =
{0, l − 2L}. It follows from (5.20) that

α1 = r2 sin θad sinφ2 sinφ3, α2 = r2 sin θad sinφ2 cosφ3, α3 = r2 sin θad cosφ2,

β = l − 2L+ r2 cos θad, α0 = 0, for r2 cos θad ≥ 3L− 2l (5.21)

where θad, φ2, φ3 are arbitrary values. In the case (5.19) and λ0 = 0 we obtain, that
r2 = 2L β = l = L/2.

Let us set
l = L/2 + δ, |δ| ≤ r1

2
(5.22)

One obtains from the first inequality (5.19) and (5.21)

0 < 2δ − 2L+ r2 cos θad (5.23)

where θad is the angle between the axis and generatrix of the cone with vertex at
the point (αcβc) = (0, l − 2L). The cone is based on the set of solutions on the
sphere (5.20). One obtains from (5.18) and (5.19) for the minimal value cos θmin of
the quantity cos θad

cos2 θmin =
(2L− 2δ)2

4L2 − 8Lδ + r2
1

(5.24)

sin2 θ0 = 1 − cos2 θmin =
1
4
r2
1 − δ2

r2
2

, δ2 ≤ 1

4
r2
1 (5.25)

It follows from (5.25) that in the case (5.19) there are additional solutions, if

l = L/2 + δ, δ2 <
r2
1

4
≤ L2

4
(5.26)

The minimal value βmin is determined by the condition

βmin + l = L (5.27)
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Figure 1: Set of solutions, depending on the value of l, shown by small dark square.
Usual solutions are shown by thick line. Additional solutions are shown by thin line.

which coincides with the maximal value (5.17) for basic solutions. Radius Rad of
the corresponding section of the sphere (5.20) has the form

Rad = r2 sin θ0 =

√
r2
1 − 4δ2 (5.28)

which coincides with the radius (5.18). The solutions are shown in figure 1
Action of the boundary x5 = L/2 changes the surface of the sphere of basic

solutions. The set of all solutions has a shape of two connected spherical segments
of different radius. Restriction (4.50) on the electric charge of a particle is connected
directly with a finite length of the world chain links. In the discrete space-time
geometry (5.1) the length of the world chain link is finite by necessity (but not
infinitesimal), because the infinitesimal length does not exist. In the continuous
space-time geometry, the link of the world chain may be infinitesimal, in principle.
In this case the space-time compactification does not restrict the maximal value of
the electric charge.

Experimental data show, that the electric charge of a stable elementary particle
is equal to 0,±e0, where e0 is the elementary charge of an elementary particle.

6 Restriction on maximal charge of elementary

particle

Thus, a compactification of the Kaluza-Klein space-time leads to a discrimination
of some values p5 of the charge momentum component. The discrimination is a
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corollary of the fact, that not all links of the world chain of a particle are possible
in the compactified geometry. In the conventional approach to the Kaluza-Klein
geometry, when the space-time geometry is constructed as a Riemannian geometry
(but not as a physical geometry), there is no discrimination of the maximal value of
the momentum component p5.

In all cases the electric charge has the form e = ne0, where e0 is the elementary
charge and n is an integer number. This fact is connected with the periodicity of the
wave function with respect to fifth coordinate x5. Averaging random world chains,
one obtains a dynamic equation of the type of the Schrödinger equation. In the
region, where the point P2 of the vector P1P2 is placed on the sphere (5.8) this
equation has the form

i�
∂ψ

∂t
= − �

2

2m5

∂2ψ

∂ (x5)2 − �
2

2m5

∇2ψ (6.1)

In other regions, where the set of solutions is not a sphere, this equation is modified.
It takes a form of the Schrödinger equation in a potential hole with walls at x5 =
±L/2. We shall not to take into account this modification and use the equation
(6.1) for approximate estimation of connection between the period 2L and possible
values of the of elementary length λ0.

Solution of equation (6.1) has the form

ψ
(
t,x, x5

)
=
∑

n

an exp

(
− i

�
Ent+ i

pnx

�
+ i

(p5)n

�
x5

)
(6.2)

where

(p5)n =
e

κc
n, En = c

√
m2

5c
2 + p2

n + (p5)
2
n (6.3)

n is an integer number, κ is some universal constant (3.2). an are arbitrary complex
numbers. The quantity m5 = const is a 5-mass of the particle, whereas the usual
mass m =

√
m2

5 + p2
nc

−2 depends on the fifth component p5 of momentum . In order
that ψ be a single-valued function of x5, the momentum p5 is to have the form

(p5)n =
π�

L
kn, kn is integer (6.4)

The wave function (6.2) must describe a stationary state of the particle, because
in a nonstationary state the charged particle, placed in a potential hole, radiates
electromagnetic waves. As a result the particle appears very rapidly at a stationary
state, where the charge density and charge current are constant, and the particle
ceases to radiate. The wave function (6.2) is single-valued, if all En in the sum (6.2)
are equal, and any En is not changed at a variation of kn. These conditions are
fulfilled, if the sum (6.2) contains only one term, and the momentum has the form

p5 =
π�

L
s (p5)n =

e

κc
n (6.5)
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where s is some definite integer number.
It follows from comparison of relations (6.3) and (6.5), that

κ =
e0L

π�c
(6.6)

where e0 is the elementary electrical charge, and 2L is the period of the fifth coor-
dinate x5.

On the other hand, the momentum p5 along the fifth direction is connected with
the geometrical momentum π5 by means of the relation

p5 = bcπ5 (6.7)

According to the relation (4.50), where the universal constant b is defined by the
relation (2.5),

|π5| = |l| < L

2
, (6.8)

Using relations (6.5), (6.7), (6.8), one obtains

π5 =
p5

bc
=

1

bc

π�

L
s = π

λ2
0

L
s (6.9)

and

|s| < L2

2πλ2
0

(6.10)

Taking maximal value r1 =
√

3λ0 = L/2, one obtains

|s| < 3L24

2πL2
= 1. 909 9 (6.11)

|s| = 1, and the module |e| of the charge e of a stable elementary particle is not more
than the elementary charge e0. In general, the approximation (6.1) is too rough,
and the relation (6.11) may not be considered as a true relation. Firstly we have
used the approximate equation (6.2). Secondly, the choice r1 = L/2 is not founded
exactly. However, it is important, that in any case the maximal electric charge of
a stable elementary particle is restricted. The exact value of s may be obtained at
at proper choice of λ0. The relation (6.11) shows, that if the period 2L of the fifth
coordinate x5 is of the order of λ0, it is possible such an interrelation between L and
λ0, that the module |e| of the charge e of a stable elementary particle is not more,
than the elementary charge e0. It is essential, that the restriction has a geometrical
form. It connects the elementary length λ0 with the length 2L of compactification.

Thus, compactification of the Kaluza-Klein space-time geometry imposes restric-
tions on possible values of the electric charge of an elementary particle. One needs
only to use the physical geometry, which uses uniform formalism for description of
continuous and discrete geometries.

24



7 Concluding remarks

Discreteness of the space-time in microcosm seems to be a more simple and reason-
able supposition, than the opposite supposition on continuous space-time equipped
by quantum principles. Discreteness of the space-time admits one to describe quan-
tum effects without referring to quantum principles. Describing discreteness of the
space-time, the elementary length λ0 determines the quantum constant �. The
space-time discreteness appears to be compatible with its isotropy and its unifor-
mity. However, this compatibility can be understood only in framework of physical
geometry, which uses the same formalism for description of discrete and continuous
geometries. Combination of the discrete space-time with its compactification ad-
mits one to obtain restrictions on the electric charge of stable elementary particles.
These restrictions are known from experiments, but they have no explanation in the
framework of the conventional quantum theory.
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