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Abstract
It is shown that the space-time geometry should be formulated in terms

of the world function, because only description in terms of world function
admits one to recognize similar geometrical objects in regions of the space-time
geometry with di¤erent geometries. The Berwald-Moor geometry formulated
in terms of the world function appears to be multivariant geometry, which
hardly can be used as a space-time geometry, because in this geometry the
world lines wobbling of free particles di¤ers from the real wobbling.

Key words: recognition of similar geometric objects; deformation principle; mul-
tivariant geometry; world function; linear vector space; vector bundle; role of coor-
dinates

1 Introduction

Finsler geometry is some generaization of the Riemannian geometry, which uses a
vector bundle [1, 2]. This bundle is equipped by a metric function. This metric
function generates some geometry, which may be not locally Euclidean (or pseu-
doeuclidean). In means that the Finsler geometry is a generalization of the Rie-
mannian geometry, because the Riemannian geometry is locally Euclidean. But the
Finsler geometries as well as the Riemannian geometries are local geometries. They
are described by in�nitesimal distance ds between the points x and x + dx, which
in the case of the Riemannian geometry is de�ned by the relation

2� (x; x+ dx) = ds2 = gikdx
idxk (1.1)

Here � is the world function of the Riemannian geometry. For construction of a
geometry in some �nite region one uses a coordinate system which connects de-
scriptions in di¤erent in�nitesimal regions. Besides, a geometry G1 in the region 
1
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appears to be not connected with the geometry G2 in the region 
2. For instance, in
the region 
1 with the space-time geometry of Minkowski GM there is a geometric
object OM. This geometric object moves in the space-time without a deformation.
It appears in other region 
2 of the space-time with the space-time geometry G.
In the geometry G this object is described as O. How description of the geometri-
cal object O in the space-time geometry G can be expressed via description of the
same object OM in the geometry GM? Neither Riemannian geometry, nor Finsler
geometry can answer this question, because these geometries do not consider the
problem of a geometry deformation. The only exclusion is the segment T[AB] of
straight line between the points A and B. It is supposed that the segment T[AB] is a
one-dimensiomal segment of a curve in the Riemannian geometry and in the Finsler
geometry.
One can answer this important question on a connection between O and OM

only in the case, when the space-time geometry is described in terms of the world
function �. Such a geometry is called the physical geometry. Any physical geometry
is obtained as a result of a deformation of the proper Euclidean geometry which is
considered as a standard geometry. As a result a physical geometry can be obtained
from other physical geometry by means of some deformation.
The idea, that a geometry is described completely by means of a distance function

(or world function) is very old. At �rst it was a metric space, described by metric
(distance). The metric has been restricted by a set of conditions such as the triangle
axiom and nonnegativity of the metric. Condition of nonnegativity of the metric
does not permit to apply the metric space for description of the space-time. The
main defect of the metric geometry and of the distance geometry [3, 4] is impossibility
of construction of geometrical objects in terms of the metric � , or in terms of the
world function � = 1

2
�2. Construction of geometrical objects in terms of the world

function is to be possible, because it is supposed that the geometry is described
completely by the world function and in terms of the world function. Furthermore,
a physical geometry is to admit a coordinateless description.
Such a situation is possible, if one de�nes concepts of a geometry and those of a

geometrical objects correctly [6].
De�nition 1.1 : The physical geometry G = f�;
g is a point set 
 with the

single-valued function � on 
� 


� : 
� 
! R; � (P; P ) = 0; � (P;Q) = � (Q;P ) ; 8P;Q 2 

(1.2)

De�nition 1.2: Two physical geometries G1 = f�1;
1g and G2 = f�2;
2g are
equivalent (G1eqvG2), if the point set 
1 � 
2 ^ �1 = �2, or 
2 � 
1 ^ �2 = �1.
Remark: Coincidence of point sets 
1 and 
2 is not necessary for equivalence

of geometries G1 and G2. If one demands coincidence of 
1 and 
2 in the case of
equivalence of G1 and G2, then an elimination of one point P from the point set 
1
turns the geometry G1 = f�1;
1g into geometry G2 = f�1;
1n fPgg, which appears
to be not equivalent to the geometry G1. Such a situation seems to be inadmissible,
because a geometry on a part ! � 
1 of the point set 
1 appears to be not equivalent
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to the geometry on the whole point set 
1.
According to de�nition the geometries G1= f�; !1g and G2= f�; !2g on parts

of 
, !1 � 
 and !2 � 
 are equivalent (G1eqvG), (G2eqvG) to the geometry
G = f�;
g, whereas the geometries G1= f�; !1g and G2= f�; !2g are not equivalent,
in general, if !1 " !2 and !2 " !1. Thus, the relation of equivalence is intransitive,
in general. The space-time geometry may vary in di¤erent regions of the space-time.
It means, that a physical body, described as a geometrical object, may evolve in such
a way, that it appears in regions with di¤erent space-time geometry.
De�nition 1.3: A geometrical object gPn of the geometry G = f�;
g is a subset

gPn � 
 of the point set 
. This geometrical object gPn is a set of roots R 2 
 of
the function FPn, Pn = fP0; P1; :::Png � 


FPn : 
! R (1.3)

where

FPn : FPn (R) = GPn (u1; u2; :::us) ; s =
1

2
(n+ 1) (n+ 2) (1.4)

ul = � (wi; wk) ; i; k = 0; 1; :::n+ 1; l = 1; 2; :::
1

2
(n+ 1) (n+ 2)(1.5)

wk = Pk 2 
; k = 0; 1; :::n; wn+1 = R 2 
 (1.6)

Here Pn = fP0; P1; :::; Png � 
 are n+1 points which are parameters, determining
the geometrical object gPn

gPn = fRjFPn (R) = 0g ; R 2 
; Pn 2 
n+1 (1.7)

FPn (R) = GPn (u1; u2; :::us) is some function of
1
2
(n+ 1) (n+ 2) arguments us and

of n + 1 parameters Pn. The set Pn of the geometric object parameters will be
referred to as the skeleton of the geometrical object. The subset gPn will be referred
to as the envelope of the skeleton.
When a particle is considered as a geometrical object, its motion in the space-

time is described mainly by the skeleton Pn. The skeleton is an analog of a frame
attached rigidly to a physical body. Following the frame motion, one may follow the
motion of a body. One skeleton may have many envelopes and describe di¤erent
geometric objects.
If two geometric objects gPn;� and g

0
P 0n;�0 are similar their skeletons Pn;� =

fP0; P1; :::Png ; and P 0n:�0 = fP 00; P 01; :::P 0ng are to be similar. It means that

� (Pi; Pk) = �
0 (P 0i ; P

0
k) ; i; k = 0; 1; :::n (1.8)

Remark: Arbitrary subset of the point set 
 is not a geometrical object, in
general. It is supposed, that physical bodies may have a shape of a geometrical
object only in the case, when it is de�ned by (1.3) - (1.7), because only in this case
one can identify identical physical bodies (geometrical objects) in di¤erent space-
time geometries.
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Example: The straight line segment T[A;B] in the proper Euclidean geometry
GE = f�E;
g is de�ned as a set of points R 2 


T[A;B] =
n
Rj
p
2�E (A;R) +

p
2�E (R;B) =

p
2�E (A;B)

o
(1.9)

This segment T[A;B] is one-dimensional in GE. It means by de�nition that a section
S
�
T[A;B]; P

�
of T[A;B] at any point P 2 T[A;B] consists of one point P .

S
�
T[A;B]; P

�
=

(
Rj

^
C=A;B

p
2�E (R;C) =

p
2�E (P;C)

)
= fPg (1.10)

In other physical geometry G = f�;
g the straight line segment T[A;B] is de�ned by
the relation

T[A;B] =
n
Rj
p
2� (A;R) +

p
2� (R;B) =

p
2� (A;B)

o
(1.11)

Its section has the form

S
�
T[A;B]; P

�
=

(
Rj

^
C=A;B

p
2� (R;C) =

p
2� (P;C)

)
(1.12)

The set of points S
�
T[A;B]; P

�
may contain many points, because one equation (1.11)

in n-dimensional space is a (n � 1)-dimensional surface, in general. The fact, that
(1.9) in GE is one-dimensional segment is a corollary of special properties of the
world function �E.
Let us stress that the de�nitions (1.9), (1.11) of the straight line segment T[A;B]

in geometries GE and G do not contain a reference to a coordinate system. It is im-
portant, because the coordinateless description deals with the space-time geometry
in itself (without in�uence of the coordinate system, which may appear to be essen-
tial). We shall show, that the conventional coordinate system can be introduced not
always, because some physical geometries (for instance a discrete space-time geom-
etry) have inde�nite metrical dimension (maximal number of linear independent
vectors).
Identi�cation of geometrical objects in di¤erent regions of the space-time geom-

etry is a very important operation, which can be realized only if the description is
produced in terms of world function. Conventional description of the space-time
geometry based on a use of the linear space formalism is e¤ective only in the space-
time geometry of Minkowski GM and partly in the Riemannian geometry. Even
description of the straight line segment T[AB] leads to di¤erent results in the phys-
ical geometry and in the geometry of Minkowski. In the physical geometry the
timelike segment T[AB] (1.11) is a 3-dimensional tube, in general, whereas in GM it is
a one-dimensional line. According to conventional axiomatic approach to the space-
time geometry the segment T[AB] is one-dimensional in any space-time geometry.
In general, mathematical technique of the conventional space-time geometry is not
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applicable for simultaneous consideration of several di¤erent geometries of di¤erent
space-time regions.
We can perceive the space-time geometry only via motion of physical bodies in

the space-time, or via construction of geometrical objects corresponding to these
physical bodies. As it follows from the de�nition 1.3 of the geometrical object, the
function F as a function of its arguments us (of world functions of di¤erent points)
is the same in all physical geometries. It means, that a geometrical object O1 in
the geometry G1 = f�1;
1g is obtained from the same geometrical object O2 in
the geometry G2 = f�2;
2g by means of the replacement �2 ! �1 in the de�nition
of this geometrical object. This method of the geometrical objects comparison in
di¤erent geometries is simple and e¤ective. It cannot be used at the conventional
(axiomatic) approach to geometry. It is a reason, why we try to present the Finsler
geometry in terms of the world function. The Finsler space-time geometry is to be
described in terms of the world function, in order that one can recognize similar
geometrical objects in di¤erent regions of space-time.

2 The world function as a generator of vector
bundle

Capacity of the world function of the Riemannian geometry to generate vector bun-
dle were investigated in the paper [7]. These properties were used for construction
of the relative gravitational �eld [8]. To construct the Finsler geometry one uses
a vector bundle TM of the Riemannian geometry GM given on a smooth manifold
M , where the coordinate system K is given. The Riemannian geometry GR may be
considered as a special case of the physical geometry G = f�;Mg with the world
function �R = � (x; x0) ; where x and x0 are coordinates of points P; P 0 2 M in the
coordinate system K. The metric tensor of Riemannian geometry G has the form

gik (x) =

�
�@

2� (x; x0)

@xi@x0k

�
x0=x

; i; k = 0; 1; :::n� 1 (2.1)

To construct the vector bundle TMx0 at the point x0 2M , one uses usually a set
SLx0 of one-dimensional lines, passing trough the point x0. The vector bundle TMx0

is tangent to all lines L � SLx0. In the physical geometry the vector bundle TM can
be constructed without a reference to the set SLx0. It is important, because in the
the physical geometry one-dimensional curves may not exist.
Di¤erentiating world function, one obtains the following quantity

�ik0 (x; x
0) � �;i;k0 (x; x0) � @i@k0� (x; x0) �

@2� (x; x0)

@xi@x0k
; i; k = 0; 1; 2; 3 (2.2)

This quantity forms a covariant two-point tensor (a vector at the point x and a vector
at the point x0). In general, a comma before the index k means di¤erentiation with
respect to xk, and a comma before the index k0 means di¤erentiation with respect
to x0k.
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For the Riemannian geometry the following property takes place

det jjgik (x)jj 6= 0 (2.3)

Then
det jj�ik0 (x; x0)jj 6= 0 (2.4)

in some �nite region !x0, where

jx� x0j �
���p2� (x; x0)��� < R (2.5)

In !x0 one may determine the contravariant two-tensor �ik
0
by means of relation

�ik
0
�lk0 = �

i
l (2.6)

Here and farther a summation is produced over like upper and lower indices.
Let us de�ne the quantity

�ikl = �
i
kl (x; x

0) = �is
0
�kls0 ; �kls0 (x:x

0) � @3� (x; x0)

@xk@xl@x0s
(2.7)

The quantity �ikl (x; x
0) transforms as a Cristo¤el symbol at the point x, and one

can de�ne a covariant derivative ~ri with respect to xi

~riT
k
l � T kljji = T kl;i � �kisT sl + �silT ks (2.8)

where T kl = T
k
l (x; x

0) is some two-point tensor at the point x.
Connection �ikl (x; x

0) at the point x appears to be a connection of a �at space,
because the curvature tensor

Rik;sr = @r�
i
ks � @s�ikr + �mks�imr � �mkr�ims � 0 (2.9)

vanishes identically. Indeed, according to (2.7) and according to relation

@s�
ik0 = ��ir0@s�lr0�lk

0
= ��ir0�slr0�lk

0
(2.10)

which follows from (2.6), one obtains

@r�
i
ks � @s�ikr + �mks�imr � �mkr�ims

= @r

�
�im

0
�ksm0

�
� @s

�
�im

0
�krm0

�
+
�
�ml

0
�ksl0�

ip0�mr;p0
�
�
�
�ml

0
�krl0�

ip0�msp0
�

= �ksm0@r�
im0 � �krm0@s�

im0
+
�
�ml

0
�ksl0�

ip0�mrp0
�
�
�
�ml

0
�krl0�

ip0�msp0
�
= 0

Thus, the Cristo¤el symbol (2.7) is a connection of a �at Riemannian space Ex0.
The set of all spaces Ex0 x0 2M forms a vector bundle TM .
One has

~rl�ik0 = �ik0;l � �sli�sk0 = �lik0 � �sm
0
�lim0�sk0 � 0 (2.11)
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~rl�
ik0 = ��ip0 ~rl�qp0�

qk0 = 0 (2.12)

~rlu
�0k0 (x0) = 0 (2.13)

where u�
0k0 (x0) is an arbirary one-point tensor at the point x0. Covariant metric

tensor Gik = Gik (x; x
0) of the �at Riemannian space Ex0 can be presented in the

form
Gik (x; x

0) = �il0g
l0s0

(0) (x
0)�k;s0 (2.14)

because in this case
~rlGik (x; x

0) � 0
It needs that

det
������gl0s0(0) (x

0)
������ 6= 0 (2.15)

in order that det jjGikjj 6= 0. It follows from (2.11), (2.13) and (2.14) that

~rlGik (x; x
0) = �ir0 ~rlg

r0s0

(0) (x
0)�ks0 = 0 (2.16)

Let us de�ne Cristo¤el symbol ~�ikl in the �at Riemannian space Ex0 with metric
tensor (2.14)

~�ikl =
1

2
Gis (Gks;l +Gls;k �Gkl;s) (2.17)

where Gik is the contravariant metric tensor

Gik = �ip
0
g(0)p0q0 (x

0)�kp
0
; g(0)i0k0 (x

0) gi
0l0

(0) (x
0) = �l

0

k0 (2.18)

Substituting (2.14) in (2.17) and using (2.18), one obtains

~�ikl = �
is0�kls0 = �

i
kl (2.19)

Thus, a physical geometry G = f�;Mg on a smooth manifold M , whose world
function has the property (2.4), generates a vector bundle TM . The world function
� determines a mapping of the coordinate system K on M into coordinate system
Kx0 on any space Ex0 of the bundle TM . This mapping determines connection �ikl
on any Ex0 of the vector bundle TM . However, the metric tensor Gik (x0; x0) in Ex0,
de�ned by (2.14) may not coincide with gi0k0 (x0). The �at Riemannian space Ex0
may have singularity at the point x0. In particular, Ex0 can be a conical space with
the vertex at the point x0.
At the point x0 of the space Ex0

Gi
0k0 (x0; x0) = gi

0p0 (x0) g(0)p0q0 (x
0) gk

0q0 (x0) (2.20)

If g(0)i0k0 (x0) = gi0k0 (x0), the metric tensor [Gik (x; x0)]x=x0 in Ex0 coincides with the
metric tensor gi0k0 (x0) in the geometry G = f�;Mg, de�ned by (2.1)

[Gik (x; x
0)]x=x0 = gi0k0 (x

0) ; if g(0)i0k0 (x
0) = gi0k0 (x

0) (2.21)
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It means that the �at Riemannian space Ex0 is Euclidean. In this case it is tangent
to the manifold M at the point x0.
If the physical geometry G = f�;Mg is a Riemannian geometry, the world func-

tion � = �R satis�es the di¤erential equation [5]

�Ri0g
i0k0 (x0)�Rk0 = 2�R; �Ri0 �

@�R
@x0i

(2.22)

Acting to both sides of equation (2.22) by ~rl
~rs and taking into account relations

(2.11), (2.13), one obtains

�Rli0g
i0k0 (x0)�Rsk0 = ~rl�Rs (2.23)

Comparing (2.23) with (2.14) and (2.21), one concludes that for the Riemannian
geometry GR = f�R;Mg, the metric tensor in Ex0 at the point x takes the form

Gik (x; x
0) = ~ri

~rk�R (x; x
0) (2.24)

Thus, let a physical geometry G = f�;Mg be given on a smooth manifoldM with
a coordinate system K on M and satisfy the condition (2.4). Then this geometry
generates bundle TM of �at Riemannian spaces Ex0 at any point x0 2 M . It
generates a mapping of coordinate system K ! Kx0 and determines the metric
tensor Gik (x; x0) at any point x of the Euclidean space Ex0 in the coordinate system
Kx0. The metric tensor Gik (x; x0) at the point x is determined by some tensor
g(0)i0k0 (x

0) at the point x0 (det
����g(0)i0k0 (x0)���� 6= 0). If the geometry G = f�R;Mg

is a Riemannian geometry, the metric tensor Gik (x; x0) on Ex0 at the point x is
determined completely by the world function �R of the Riemannian geometry.
The vector bundle TM is a tangent vector bundle in the case, when G = f�R;Mg.

It means that, if the manifold M is embedded isometrically into an Euclidean man-
ifold ME and form a surface S in ME, the bundle TM is a set of planes, which
are tangent to the surface S. In the case, when G = f�;Mg is not a Riemannian
geometry, the vector bundle TM is not a tangent vector bundle, in general, because
the manifold M cannot be embedded isometrically into an Euclidean manifold ME.
In this case the straight lines of manifoldM are not one-dimensional lines, and such
straight lines of the form of (1.11) cannot be embedded isometrically in the Euclid-
ean manifold ME. Nevertheless a physical geometry G = f�;Mg generates a vector
bundle TM of �at Riemannian spaces Ex0 and a mapping of the coordinate system
K onto any space Ex0 of TM .

3 Role of the coordinate system in the space-time
geometry description

One assumes usually that the coordinate system is something external with respect
to space-time geometry and, in general, with respect to any geometry. But it is
not so. To understand the role of the coordinate system, let us consider the proper
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Euclidean geometry GE in the �-representation. The �-representation appears at the
metric approach to geometry, when all geometrical quantities and relations are de-
scribed in terms of the world function. The geometry dimension and the coordinate
system are expressed in terms of the world function.
In the Cartesian coordinate systemK the world function �E of the proper Euclid-

ean geometry has a special form

�E (P; P
0) = �E (x; x

0) =
1

2

k=nX
k=1

�
xk � x0k

�2
(3.1)

where P = fx1; x2; :::xng, P 0 = fx01; x02; :::x0ng are points of the n-dimensional
Euclidean space En; P; P 0 2 En and x = fx1; x2; :::xng, x0 = fx01; x02; :::x0ng are
coordinates in some Cartesian coordinate system K.
The way of generalization of GE depends essentially on the method of the GE

representation. There are two methods of GE representation: (1) V-representation
and (2) �-representation [9].
At V-representation one uses axiomatic approach to GE, when the Euclidean

geometry is constructed on the basis of linear space Ln. The linear space Ln is a
set 
n of elements u 2 
n. These elements u will be referred to as linear vectors
(linvectors). Multiplication of a linvector u 2 
n by a real number a gives the lin-
vector au 2 
n. Sum of two linvectors u 2 
n and v 2 
n gives a new linvector
(u+ v) 2 
n. These operations have linear properties. The term "linvector" (in-
stead of conventional term "vector") is used, because any linvector u 2 
n exists in
one copy.
On the contrary, vector AB in GE is de�ned as the ordered set AB = fA;Bg 2


�
 of two points A;B 2 
. Here 
 is the set of points, where the geometry GE is
de�ned. Among vectors PQ 2
�
 of the Euclidean space En there are equivalent
(equal) vectors, and there are many equivalent vectors PQ 2
�
. We use di¤erent
terms ("linvector" and " vector") for elements of 
n and of 
 � 
, because it is
incorrect to use the same term for di¤erent objects with di¤erent properties.
The set 
AB of vectors CD 2 
�
 which are equivalent to vector AB 2 
�


is de�ned as a set of vectors CD which are in parallel with AB and their lengths
jCDj, jABj are equal.


AB = fCDj (CDeqvAB)g (3.2)

(CDeqvAB) : (CD � AB) ^ jCDj = jABj (3.3)

(CD � AB) : (CD:AB) = jCDj � jABj (3.4)

Here (CD:AB) 2 R is the scalar product of two vectors CD and AB which is
de�ned by the relation

(CD:AB) = �E (C;B) + �E (D;A)� �E (C;A)� �E (D;B) (3.5)

jCDj2 = 2�E (C;D) (3.6)
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Equivalence (3.3) of two vectors CD 2 
�
 and AB 2 
�
 is de�ned in terms
of the Euclidean world function �E. In the Cartesian coordinate system K, where
the world function �E has the form (3.1) and points A;B;C;D have respectively
coordinates xA; xB; xC ; xD the scalar product (3.5) and jCDj take respectively the
form

(CD:AB) =

k=nX
k=1

�
xkD � xkC

� �
xkB � xkA

�
(3.7)

jCDj2 =
k=nX
k=1

�
xkD � xkC

�2
(3.8)

These expressions coincide respectively with the scalar product of two linvectors
(uCD:uAB) and with juCDj2, provided uCD and uAB have coordinates respectively�
xkD � xkC

�
and

�
xkB � xkA

�
.

In GE the equivalence relation (3.3) is re�exive, symmetric and transitive. Then
the set 
AB is the equivalence class of the vectorAB. One may identify the linvector
uAB 2 Ln with the equivalence class 
AB of the vectorAB 2 
�
. Axiomatics of
the linear space Ln and operations in Ln can be used for construction of geometric
relations in GE. After generalization of GE, when �E is replaced by another world
function �, the equivalence relation (3.3) ceases to be transitive, in general. As a
result the set 
AB ceases to be an equivalence class of the vector AB. One may not
identify the linvector uAB 2 Ln with the set 
AB, because not all vectorsCD 2 
AB
are equivalent between themselves. The geometry G = f�;
g, obtained as a result
of the replacement �E ! �, appears to be multivariant.
A physical geometry G = f�;
g is a multivariant geometry, in general. In the

multivariant geometry there are many vectors CD;CD0;CD00; :::at the point C,
which are equivalent to vector AB at the point A, but they are not equivalent
between themseves. Equivalence of vectors CD and AB is de�ned by formulas (3.3)
-(3.6). The equivalence relation (3.3) -(3.6) becomes intransitive. This intransitivity
is a reason of the physical geometry multivariance. Only the proper Euclidean
geometry is not multivariant. The space-time geometry of Minkowski is multivariant
with respect to spacelike vectors, but it is single-variant with respect to timelike
vectors. The discrete space-time geometry is multivariant with respect to timelike
vectors, and this circumstance is a reason of quantum e¤ects [10]. Multivariance
of the space-time geometry is a very important property [11], but it cannot be
described by the formalism of linear space, which is used usually for the space-time
description.
At the generalization of the proper Euclidean geometry one obtains a physical

geometry G = f�;
g, replacing the world function �E by the world function � of
the geometry G in all geometric relations of GE = f�E;
g, which can be expressed
in terms of only the Euclidean world function �E. These relations will be referred
to as general geometric relations. Expressions (3.5), (3.6) are examples of general
geometric relations.
Another example of such a relation is the de�nition of linear dependence of n
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vectors P0P1;P0P2,...P0Pn . Vectors P0P1;P0P2,...P0Pn are linear dependent, if
the condition

Fn (Pn) = 0 (3.9)

is ful�lled. Here Pn = fP0; P1; :::Png and Fn (Pn) is the Gram determinant

Fn (Pn) � det jj(P0Pi:P0Pk)jj ; i; k = 1; 2; :::n (3.10)

Scalar product in (3.10) is expressed via the world function by means of (3.5).
Let us consider a generalization G = f�;
g of the proper Euclidean geometry

GE = f�E;
g. One replaces the world function �E by the world function � in all
general geometric relations. But there are special relations of the geometry GE,
which depends on special properties of the world function �E. One cannot replace
world function in the special relations. These special properties determine dimension
of the geometry GE and properties of the rectilinear coordinate system in GE.
If �E is the world function of n-dimensional Euclidean space En, it satis�es the

following relations.
I. De�nition of the dimension and introduction of the rectilinear coordinate sys-

tem:

9Pn � fP0; P1; :::Png � 
; Fn (Pn) 6= 0; Fk
�

k+1

�
= 0; k > n (3.11)

where Fn (Pn) is the Gram�s determinant (3.10). Vectors P0Pi, i = 1; 2; :::n are
basic vectors of the rectilinear coordinate system Kn with the origin at the point
P0. The covariant metric tensor gik (Pn), i; k = 1; 2; :::n and the contravariant one
gik (Pn), i; k = 1; 2; :::n in a rectilinear coordinate system Kn are de�ned by the
relations

k=nX
k=1

gik (Pn) glk (Pn) = �il; gil (Pn) = (P0Pi:P0Pl) ; i; l = 1; 2; :::n (3.12)

Fn (Pn) = det jjgik (Pn)jj 6= 0; i; k = 1; 2; :::n (3.13)

II. Linear structure of the Euclidean space:

�E (P;Q) =
1

2

i;k=nX
i;k=1

gik (Pn) (xi (P )� xi (Q)) (xk (P )� xk (Q)) ; 8P;Q 2 


(3.14)
where coordinates xi (P ) ; i = 1; 2; :::n of the point P are covariant coordinates of
the vector P0P, de�ned by the relation

xi (P ) = (P0Pi:P0P) ; i = 1; 2; :::n (3.15)

III: The metric tensor matrix glk (Pn) has only positive (or only negative) eigen-
values

gk > 0; k = 1; 2; :::; n (3.16)
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IV. The continuity condition: the system of equations

(P0Pi:P0P) = yi 2 R; i = 1; 2; :::n (3.17)

considered to be equations for determination of the point P as a function of coordi-
nates y = fyig, i = 1; 2; :::n has always one and only one solution.
Not all conditions I �IV are independent, they determine di¤erent properties of

GE. For instance, the condition (3.11) determines the dimension n of the Euclidean
space En. This dimension n is the maximal number of linear independent vectors
in GE. This number is determined by the general geometric expression (3.10) which
depends on the form of the world function. If conditions (3.11) are not ful�lled, one
cannot introduce a coordinate system in the conventional form, because the metric
dimension nm = n of the geometry G remains to be not determined.
The sum of two vectors is de�ned as follows. If one adds vectors AB and BC,

when the end of one vector is the origin of the other, then one obtains

AB+BC = AC (3.18)

If one adds arbitrary vectors AB and CD, one obtains

AB+CD = AB+BR = AR (3.19)

where the point R is de�ned from the relation

(CDeqvBR) (3.20)

According to (3.3) - (3.5) the relation (3.20) represents two equations of the type
(3.3). If these equations have always one and only one solution for the point R (as
in GE), the operation of addition is de�ned univalently. However, if the solution
is multivariant, one cannot de�ne the addition as a single-valued operation in the
form, that is used in linear space for addition of linvectors.
Multiplication of a vector AB by a real number a is de�ned as follows

aAB = AR (3.21)

where the point R is determined from the relations

(AB:AR) = a jABj2 ; jARj = a jABj (3.22)

If solution of equations (3.22) is multivariant, the multiplication operation is multi-
variant also.
Summarizing, one can say, that the proper Euclidean geometry GE can be reduced

to linear algebra. However, generalizations of GE cannot be reduced, in general, to
linear algebra. They are multivariant, in general, and this multivariance is a corollary
of the vector directivity which is absent in algebra. Generally speaking, geometry
cannot be reduced to algebra.
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Most restrictions on world function �E of GE arise from restrictions (3.11), which
consist of many equations. These restrictions have a global character. One may
reduce these restriction to a local form

9Pn � fP0; P1; :::Png � 
"; Fn (Pn) 6= 0; Fk
�

k+1"

�
= 0; k > n

(3.23)
where 
" is an in�nitesimal vicinity of the point P0, de�ned by the relation���p2� (P0; P )��� < "; "! +0 (3.24)

If conditions (3.23) take place, one can use formalism of the linear space locally.
The Riemannian geometry is locally Euclidean. The Riemannian geometry is ob-
tained at application of restrictions (3.11) in the form (3.23). A use of restriction
(3.23) admits one to suppress multivariance of the vector equivalence for vectors
having common origin. But multivariance of the vector equality remains for vectors
having di¤erent origin. Consideration of equality of vectors with di¤erent origin is
forbidden in the Riemannian geometry or it is connected with the way of the vector
transport. It is necessary for a use of the linear space formalism, which can be
used only, if the metric dimension exists at least locally, and one can introduce a
rectilinear coordinate system locally.
According to consideration of the second section any physical geometry G =

f�;Mg generates a vector bundle TM with a �at Riemannian geometry on any space
Ex0 of the bundle. In the case, when the geometry G = f�;Mg is a Riemannian
geometry, according to (2.21) the metric tensor [Gik (x; x0)]x0=x on Ex0 at the point
x0 in the coordinate system Kx0 coincides with the metric tensor gi0k0 (x0) of the
Riemannian geometry G = f�;Mg at the point x0. The metric tensor Gik (x; x0) at
the point x on Ex0 is determined by the formulae (2.23), (2.24) in the form

Gik (x; x
0) = �il0g

l0s0 (x0)�ks0 (3.25)

It means that the Riemannian geometry may be described as an Euclidean geometry
on a bundle TM of Euclidean spaces Ex0. It is natural, because the Riemannian
geometry is a set of many Euclidean geometries on connected in�nitesimal manifolds
dM . Transition from the Euclidean geometries on the bundle TdM of in�nitesimal
manifolds dM to the Riemannian geometry is rather simple. It is described by the
formula (3.25).
If the physical geometry G = f�;Mg is not a Riemannian geometry, the geometry

on any space Ex0 of the vector bundle TM is a �at Riemannian geometry, but the
relation (3.25) does not take place, in general. The Riemannian geometry on Ex0may
have a singuarity at the point x0. Instead one has the relation (2.18)

Gik (x; x
0) = �il0g

l0s0

(0) (x
0)�ks0 (3.26)

where the tensor gl
0s0

(0) (x
0) is determined by the physical geometry G = f�;Mg by

some unknown way. But we may hope that the set of �at Riemannian geometry on
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manifolds Tx0M describes the physical geometry G = f�;Mg. We may hope that
the world function � can be obtained from the set of �at Riemannian geometries
on manifolds Tx0M of the bundle TM . We cannot prove this statement, but we
may hope that the physical geometry G = f�;Mg can be described as a set of �at
Riemannian geometries. In other words, a single physical geometry G = f�;Mg is
reduced to a set of many �at Riemannian geometries. This set of �at Riemannian
geometries associates with the Finsler geometry, which is given on a vector bundle
TM . Note that description on the vector bundle TM is unsu¢ cient in application
to the space-time geometry, because one needs a world function for identi�cation
of a geometrical object in di¤erent regions of the manifold M , as we have seen in
introduction.
Conventional presentation of the Finsler geometry is based on a use of the linear

space formalism. We try to replace presentation on the basis of linear space by a
presentation on the basis of the world function. Presentation in terms of the world
function is interesting in the relation that the world function of a Riemannian (or a
metric) manifold describes the vector bundle of this manifold.

4 Finsler geometry in terms of world function

Finsler geometry is a generalization of the Riemannian geometry, which may be
locally non-Euclidean [1]. The Finsler geometry GF is given on a tangent bungle
TM of a smooth Riemannian manifold M . We are interested in application of the
Finsler geometry for the space-time description.
The Finsler manifold is a di¤erentiable manifold together with the structure of an

intrinsic quasimetric space in which the length of any recti�able curve  : [a; b]!M
is given by the length functional

L () =

Z b

a

F ( (t) ; _ (t)) dt (4.1)

where F (x; � ) is some asymmetric norm on each tangent space TxM . Finsler man-
ifolds generalize non-trivially Riemannian manifolds in the sense that they are not
necessarily in�nitesimally Euclidean. This means that the (asymmetric) norm on
each tangent space is not necessarily induced by an inner product (metric tensor).
A Finsler manifold is a di¤erentiable manifoldM together with a Finsler function

F de�ned on the tangent bundle of M so that for all tangent vectors v,

1. F (x; v) � 0 with equality, if and only if v = 0 (positivede�niteness).

2. F (x; v) = �F (x; v) for all � � 0 (but not necessarily for � < 0) (homogeneity):

3. F (x; v + w) � F (x; v) + F (x;w) for all w at the same tangent space with v
(subadditivity).
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In other words, F is an asymmetric norm on each tangent space. Typically one
replaces the subadditivity with the following strong convexity condition: For each
tangent vector v, the hessian of F 2 at v is positive de�nite. Here the hessian of F 2

at v is the symmetric bilinear form

gv (X; Y ) =
1

2

�
@2

@s@t
F 2 (x; v + sX + tY )

�
s=t=0

; X; Y 2 TxM

also known as the fundamental tensor of F at v.
Conventional presentation of the Finsler geometry is based on a use of the linear

space formalism. We try to replace presentation on the basis of linear space by a
presentation on the basis of the world function. Presentation in terms of the world
function is interesting in the relation that the world function of a Riemannian (or a
metric) manifold describes the vector bundle of this manifold.
There is an idea that the Finsler geometry may be used as a space-time geometry

[14, 15]. It is assumed that the Berwald-Moor geometry is the most adequate Finsler
geometry for description of the space-time. We are interested mainly in geometries,
which could be used as a space-time geometry. We present the Berwald-Moor geom-
etry in terms of the world function and try to investigate to what extent it can serve
as a space-time geometry.

5 Geometry of Berwald - Moor as a possible space-
time geometry

We are interested in the Finsler geometry in its application to the space-time. Let
us consider the Berwald-Moor space-time geometry. In the isotropic coordinates its
line element has the form

ds2 =
4
p
dx1dx2dx3dx4 (5.1)

The corresponding world function has the form

� (x; x0) =
1

2

p
(x1 � x01)(x2 � x02)(x3 � x03)(x4 � x04) (5.2)

Although the line element (5.1) does not determine the world function uniquely, but
the relation (5.1) together with properties 2 and 3 of the previous section leads to
expression (5.2) for the world function. Besides, only those values of coordinates x
are admissible for which the world function is real.
Instead of isotropic coordinates xi, i = 1; 2; 3; 4 we use coordinates

t1 = x
1 + x2; t2 = x

3 + x4; y1 = x
1 � x2; y2 = x

3 � x4 (5.3)

x1 =
t1 + y1
2

; x2 =
t1 � y1
2

; x3 =
t2 + y2
2

; x4 =
t2 � y2
2

(5.4)
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Then the world function has the form

� (t1; t2; y1; y2; t
0
1; t

0
2; y

0
1; y

0
2)

=
1

2

����q�(t1 � t01)2 � (y1 � y01)2� �(t2 � t02)2 � (y2 � y02)2�����
��
�
(t1 � t01)

2 � (y1 � y01)
2
�
�
�
(t2 � t02)

2 � (y2 � y02)
2
�

�1
2

����q�(t1 � t01)2 � (y1 � y01)2� �(t2 � t02)2 � (y2 � y02)2�����
��
�
(y1 � y01)

2 � (t1 � t01)
2
�
�
�
(y2 � y02)

2 � (t2 � t02)
2
�

(5.5)

Here

� (x) =

�
1 if x � 0
0 if x < 0

(5.6)

Vector P0P1 = ft1; t2; y1y2g is timelike, if (t1 > y1 > 0) ^ (t2 > y2 > 0), or if
(t1 < y1 < 0) ^ (t2 < y2 < 0). It is spacelike, if (y1 > t1 > 0) ^ (y2 > t2 > 0), or if
(y1 < t1 < 0)^(y2 < t2 < 0) Vector P0P1 = ft1; t2; y1y2g is isotropic, if t1 = y1_t2 =
y2. Domains of coordinate values t21 < y

2
1 ^ t22 > y22 and t21 > y21 ^ t22 < y22 should be

excluded, because in these domains the world function is imaginary.
Let us consider segment of a world chain in the space-time geometry of Berwald-

Moor. We consider three adjacent points P0; P1; P2 of this world chain, describing
motion of a free particle. The world chain of a free particle contains two adjacent
vectors P0P1 and P1P2 which are equivalent. It means that

jP0P1j = jP1P2j ; (P0P1:P1P2) = jP0P1j � jP1P2j (5.7)

where the scalar product (P0P1:P1P2) has the form

(P0P1:P1P2) = � (P0; P2)� � (P1; P2)� � (P0; P1) (5.8)

and
jP0P1j = 2� (P0; P1) (5.9)

Equations (5.7) describe both timelike and spacelike world lines.
Using (5.8), (5.9), equations (5.7) are written in the form

� (P0; P1) = � (P1; P2) ; � (P0; P2) = 4� (P0; P1) (5.10)

Let three points P0; P1; P2 have coordinates

P0 = f0; 0; 0; g ; P1 = ft1; t2; y1; y2g ; P2 = f2t1 + � 1; 2t2 + � 2; 2y1 + �1; 2y2 + �2g
(5.11)

Here the Greek variables � 1; � 2; �1; �2 describe wobbling of the world chain. If � 1 =
� 2 = �1 = �2 = 0, the world chain does not wobble. Four variables � 1; � 2; �1; �2 are
to be determined from two equations (5.10).
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According to (5.5) dynamic equations (5.10) are transformed to the form�
(t1 + � 1)

2 � (y1 + �1)
2� �(t2 + � 2)2 � (y2 + �2)2� = �t21 � y21� �t22 � y22� (5.12) �

t1 +
� 1
2

�2
�
�
y1 +

�1
2

�2! �
t2 +

� 2
2

�2
�
�
y2 +

�2
2

�2!
=
�
t21 � y21

� �
t22 � y22

�
(5.13)

Let us introduce designations

f1 (� 2; �2) =
(t21 � y21) (t22 � x22)

(t2 + � 2)
2 � (y2 + �2)

2 (5.14)

f2 (� 2; �2) =
16 (t21 � y21) (t22 � y22)

(2t2 + � 2)
2 � (2y2 + �2)

2 (5.15)

Then equations (5.12), (5.13) are written in the form�
(t1 + � 1)

2 � (y1 + �1)
2� = f1 (� 2; �2) (5.16)�

(2t1 + � 1)
2 � (2y1 + �1)

2� = f2 (� 2; �2) (5.17)

where lhs of equations do not depend on � 2, �2.
Solutions of equations (5.16), (5.17) have the form

�1 =
t1
y1
� 1 �

f2 � f1 � 3 (t21 � y21)
2y1

� 1 = t1

�
f2 � f1
2 (t21 � y21)

� 3
2

�
�

s
y21f1

(t21 � y21)
� y

2
1

4

�
f2 � f1
(t21 � y21)

� 1
�2

(5.18)

�1 =
t1
y1

0@t1� f2 � f1
2 (t21 � y21)

� 3
2

�
�

s
y21f1

(t21 � y21)
� y

2
1

4

�
f2 � f1
(t21 � y21)

� 1
�21A

�f2 � f1 � 3 (t
2
1 � y21)

2y1
(5.19)

Only real solutions are essential. They take place, if and only if

F2 (� 2; �2) �
f1 (� 2; �2)

(t21 � y21)
� 1
4

�
f2 (� 2; �2)� f1 (� 2; �2)

(t21 � y21)
� 1
�2
� 0 (5.20)

Let us introduce variables

a1 =
� 1
t1
; a2 =

� 2
t2
; b1 =

�1
y1
; b2 =

�2
y2

(5.21)
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and expand (5.20) over powers of a2, b2, supposing that a22; b
2
2 � 1. One obtains

F2 (� 2; �2) =
4y22

(t22 � y22)

�
� 2
t2

��
�2
y2

�
+

3t42

(t22 � y22)
2

�
� 2
t2

�2
+
y22 (2y

2
2 + t

2
2)

(t22 � y22)
2

�
�2
y2

�2
(5.22)

Thus, in the approximation

� 1
t1
;
� 2
t2
;
�1
y1
;
�2
y2
� 1 (5.23)

one obtains the following result. In the case of timelike vector P0P1, when t21 >
y21 > 0 and t

2
2 > y

2
2 > 0, F2 (� 2; �2) > 0, if �2� 2sgn (t2y2) > 0, and dynamic equations

(5.12), (5.13) have many solutions, because � 2; �2 are arbitrary parameters satisfying
inequalities (5.23). In the approximation (5.23) the dynamic equations (5.12), (5.13)
take the form

�1 =
t1
y1
� 1 +

� 22 (t
2
1 � y21)

y1 (t22 � y22)
(5.24)�

� 1 + t1
� 22

(t22 � y22)

�2
=

1

(t22 � y22)
2

�
4y2
�
t22 � y22

� � 2�2
t2

+ 3t22�
2
2 + �

2
2

�
2y22 + t

2
2

��
(5.25)

In the case of spacelike vector P0P1, when y22 > t22 > 0 and y21 > t21 > 0,
F2 (� 2; �2) > 0, if �2� 2sgn (t2y2) < 0, and dynamic equations (5.12), (5.13) have
many solutions also, because � 2; �2 are arbitrary parameters satisfying inequalities
(5.23).
One can see that world lines of free particles wobble in the space-time, having

Berwald-Moor geometry. In the space-time geometry there are two types of world
line wobbling: (1) quantum wobbling and (2) tachyon wobbling. The quantum
wobbling takes place for tardions (particles having timelike world line). This wob-
bling is conditioned by the elementary length �0 of the discrete space-time geometry.
The elementary length is connected with the quantum constant ~ by the relation
�20 = ~=bc, where c is the speed of the light and b is some universal constant. It
may be interpreted in the sense, that wobbling of the tardions world line is con-
nected with quantum e¤ects. World line of a tachion (a particle having a spcelike
world line) wobbles with in�nite amplitude. This wobbling is not restricted by the
quantum constant. A single tachyon cannot be detected, because of unrestricted
wobbling of its world line. It is used to think that tachyons do not exist. In reality
tachyons exist, but a single tachyon cannot be detected. However, the tachyon gas
can be detected by its gravitational �eld. Tachyon gas is the best candidate for the
dark matter [16].
In the space-time geometry of Berwald-Moor the wobbling of world lines di¤ers

from the quantum wobbling for tardions and from tachyon wobbling for tachyons.
It means that the Berwald-Moor geometry can be used hardly as a real space-time
geometry.
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