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Abstract

Dynamics is considered as a corollary of the space-time geometry. Evo-
lution of a particle in the space-time is described as a chain of connected
equivalent geometrical objects. Space-time geometry is determined uniquely
by the world function �. Proper modi�cation of the Minkowskian world func-
tion for large space-time interval leads to wobbling of the chain, consisted
of timelike straight segments. Statistical description of the stochastic world
chain coincides with the quantum description by means of the Schrödinger
equation. Proper modi�cation of the Minkowskian world function for small
space-time interval may lead to appearance of a world chain, having a shape of
a helix with timelike axis. Links of the chain are spacelike straight segments.
Such a world chain describes a spatial evolution of a particle. In other words,
the helical world chain describes the particle rotation with superluminal veloc-
ity. The helical world chain associated with the classical Dirac particle, whose
world line is a helix. Length of world chain link cannot be arbitrary. It is
determined by the space-time geometry and, in particular, by the elementary
length. There exists some discrimination mechanism, which can discriminate
some world chains.

1 Introduction

Geometrical dynamics is a dynamics of elementary particles, generated by the space-
time geometry. In the space-time of Minkowski the geometrical dynamics coincides
with the conventional classical dynamics, and the geometrical dynamics may be
considered to be a generalization of classical dynamics onto more general space-time
geometries. However, the geometric dynamics has more fundamental basis, and it
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may be de�ned in multivariant space-time geometries, where one cannot introduce
the conventional classical dynamics. The fact is that, the classical dynamics has
been introduced for the space-time geometry with unlimited divisibility, whereas
the real space-time has a limited divisibility. The limited divisibility of the space-
time is of no importance for dynamics of macroscopic bodies. However, when the
size of moving bodies is of the order of the size of heterogeneity, one may not neglect
the limited divisibility of the space-time geometry.
The geometric dynamics is developed in the framework of the program of the

further physics geometrization, declared in [1]. The special relativity and the general
relativity are steps in the development of this program. Necessity of the further
development appeared in the thirtieth of the twentieth century, when di¤raction of
electrons has been discovered. The motion of electrons, passing through the narrow
slit, is multivariant. As far as the free electron motion depends only on the properties
of the space-time, one needed to change the space-time geometry, making it to be
multivariant. In multivariant geometry there are many vectorsQ0Q1,Q0Q

0
1,...at the

point Q0, which are equal to the vector P0P1, given at the point P0, but they are not
equal between themselves, in general. Such a space-time geometry was not known
in the beginning of the twentieth century. It is impossible in the framework of the
Riemannian geometry. As a result the multivariance was prescribed to dynamics.
To take into account multivariance, dynamic variables were replaced by matrices
and operators. One obtains the quantum dynamics, which di¤ers from the classical
dynamics in its principles. But the space-time conception remains to be Newtonian
(nonrelativistic). Multivariant space-time geometry appeared only in the end of
the twentieth century [2, 3]. The further geometrization of physics became to be
possible.
It should note that there were numerous attempts of further geometrization

of physics. They were based on the Riemannian space-time geometry. Unfortu-
nately, the true space-time geometry of microcosm does not belong to the class of
Riemannian geometries, and approximation of real space-time geometry by a Rie-
mannian geometry cannot be completely successful. In particular, the Riemannian
geometry cannot describe such a property of real space-time geometry as multivari-
ance. The multivariance of the space-time geometry was replaced by the multivari-
ance of dynamics (quantum theory).
Understanding of nature of elementary particles is the aim of the further geometrn-

ization of physics. This aim distinguishes from the aim of the conventional theory of
elementary particles. Let us explain the di¤erence of aims in the example of history
the chemical elements investigation. Investigation of chemical elements reminds to
some extent investigation of elementary particles. Chemical elements are investi-
gated from two sides. Chemists systematized chemical elements, investigating their
phenomenological properties. The results of these investigations were formulated in
the form of the periodical system of chemical elements in 1870. Formulating this
system, D.I.Mendeleev conceived nothing about the atom construction. Neverthe-
less the periodical system appears to be very useful from the practical viewpoint.
Physicists did not aim to explain the periodical system of chemical elements, they
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tried to understand simply the atom structure and the discrete character of atomic
spectra. After construction of the atomic theory it became clear, that the periodi-
cal system of chemical elements can be obtained and explained on the basis of the
atomic theory. As a result the "physical" approach to investigation of chemical ele-
ments appeared to be more fundamental, deep and promising, than the "chemical"
one. On the other hand, the way of the "physical" approach to explanation of the
periodical system is very long and di¢ cult. Explanation of the periodical system
was hardly possible at the "physical" approach, i.e. without the intermediate aim
(construction of atomic structure).
Thus, using geometrization of physics, we try to approach only intermediate aim:

explanation of multivariance of particle motion (quantum motion) and capacity of
discrimination of particle masses. Discrete character of masses of elementary parti-
cles can be understood, only if we understand the reason of the elementary particle
discrimination. Contemporary approach to the elementary particle theory is the
"chemical" (phenomenological) approach. It is useful from the practical viewpoint.
However, it admits hardly to understand nature of elementary particles, because
the nature of the discrimination mechanism, leading to discrete characteristics of
elementary particle, remains outside the consideration.
The most general geometry is a physical geometry, which is called also the tubular

geometry (T-geometry) [2, 3, 4], because straights in T-geometry are hallow tubes, in
general. The T-geometry is determined completely by its world function � (P;Q) =
1
2
�2 (P;Q), where � (P;Q) is interval between the points P and Q in space-time,
described by the T-geometry. All concepts of T-geometry are expressed in terms of
the world function �. Dynamics of particles (geometric dynamics) is also described in
terms of the world function. The elementary particle is considered as an elementary
geometrical object (EGO) in the space-time. The elementary geometrical object O
is described by its skeleton Pn = fP0; P1; :::Png and its envelope E . The envelope E
is de�ned as a set of zeros of the envelope function fPn

O = fRjfPn (R) = 0g (1.1)

The envelope function fPn is a real function of arguments w = fw1; w2; :::wsg. Any
argument wk k = 1; 2; :::s is a world function wk = � (Lk; Sk), Lk; Sk 2 fR;Png. It
is supposed that EGO with skeleton Pn = fP0; P1; :::Png is placed at the point P0.
In T-geometry the vector

��!
P0P1 � P0P1 is an ordered set of two points fP0; P1g.

The length jP0P1j of the vector P0P1 is de�ned via the world function by means of
the relation

jP0P1j2 = 2� (P0; P1) (1.2)

The scalar product (P0P1:Q0Q1) of two vectors P0P1 and Q0Q1 is de�ned by
the relation

(P0P1:Q0Q1) = � (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) (1.3)

Equivalence P0P1eqvQ0Q1 of two vectors P0P1 and Q0Q1 is de�ned as follows.
Two vectors P0P1 and Q0Q1 are equivalent (equal), if

P0P1eqvQ0Q1 : ((P0P1:Q0Q1) = jP0P1j � jQ0Q1j) ^ (jP0P1j = jQ0Q1j) (1.4)
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In the developed form we have

� (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) = 2� (P0; P1)

� (P0; P1) = � (Q0; Q1)

Skeletons Pn = fP0; P1; :::Png andQn = fQ0; Q1; :::Qng are equivalent (PneqvQn),
if corresponding vectors of both skeletons are equivalent

PneqvQn : PiPkeqvQiQk; i; k = 0; 1; :::n (1.5)

The skeleton Pn = fP0; P1; :::Png of EGO at the point P0 may exist as a skeleton
of a physical body, if it may exist at any point Q0 2 
 of the space-time 
. It means
that there is a solution for system of equations

PiPkeqvQiQk; i; k = 0; 1; :::n (1.6)

for any point Q0 2 
. Further for brevity we take, that an existence of a skeleton
means an existence of corresponding geometrical object.
In the space-time of Minkowski the problem of the skeleton existence is rather

simple, because at given Pn and Q0 the system (1.6) of n (n+ 1) algebraic equations
has a unique solution, although the number of equations may distinguish from the
number of variables to be determined. Indeed, in the four-dimensional space-time
the number of coordinates of n points Q1; Q2; :::Qn is equal to 4n (the point Q0
is supposed to be given). If n > 3; the number n (n+ 1) of equations is larger
than the number (4n) of variables. In the case of an arbitrary space-time geometry
(arbitrary world function �) existence of solution of the system (1.6) is problematic,
and the question of existence of the skeleton as a skeleton of a physical body is
an essential problem. On the contrary, if n < 3, the number of coordinates to be
determined is less, than the number of equations, and one may have many skeletons
Qn;Q0n; :::placed at the point Q0, which are equivalent to skeleton Pn, but they are
not equivalent between themselves. This property is a property of multivariance of
the space-time geometry. This property is actual for simple skeletons, which contain
less, than four points (n < 3). For instance, for the skeleton of two points fP0; P1g,
which is described by the vector P0P1, the problem of multivariance is actual. In the
space-time of Minkowski the equivalence of two vectors (P0P1eqvQ0Q1) is single-
variant for the timelike vectors, however it is multivariant for spacelike vectors. In
the general space-time the equivalence relation P0P1eqvQ0Q1 is multivariant for
both timelike and spacelike vectors.
The problem of multivariance is essential for both existence and dynamics of

elementary geometrical objects (elementary particles). Let us formulate dynamics of
elementary particles in the coordinateless form. Dynamics of an elementary particle,
having skeleton Pn = fP0; P1; :::Png, is described by the world chain

C =
[
k

Pn(k); Pn(s) =
n
P
(s)
0 ; P

(s)
1 ; :::P (s)n

o
; Pn(0) = Pn; (1.7)

P
(s+1)
0 = P

(s)
1 s = :::0; 1; 2; ::: (1.8)
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Direction of evolution in the space-time is described by the leading vector P0P1. If
the motion of the elementary particle is free, the adjacent links Pn(s) and Pn(s+1) are
equivalent in the sense that

Pn(s)eqvPn(s+1) : P
(s)
i P

(s)
k eqvP

(s+1)
i P

(s+1)
k ; i; k = 0; 1; :::n; s = :::0; 1; 2; :::

(1.9)
Relations (1.7) - (1.9) realizes coordinateless description of the free elementary

particle motion. In the simplest case, when the space-time is the space-time of
Minkowski, and the skeleton consists of two points P0; P1 with timelike leading vector
P0P1, the coordinateless description by means of relations (1.7) - (1.9) coincides with
the conventional description. The conventional classical dynamics is well de�ned
only in the Riemannian space-time. The coordinateless dynamic description (1.7) -
(1.9) of elementary particles is a generalization of the conventional classical dynamics
onto the case of arbitrary space-time geometry.

2 Representations of the proper Euclidean
geometry

Any geometry is constructed as a modi�cation of the proper Euclidean geometry.
But not all representations of the proper Euclidean geometry are convenient for mod-
i�cation. There are three representation of the proper Euclidean geometry [5]. They
di¤er in the number of primary (basic) elements, forming the Euclidean geometry.
The Euclidean representation (E-representation) contains three basic elements

(point, segment, angle). Any geometrical object (�gure) can be constructed of these
basic elements. Properties of the basic elements and the method of their application
are described by the Euclidean axioms.
The vector representation (V-representation) of the proper Euclidean geometry

contains two basic elements (point, vector). The angle is a derivative element, which
is constructed of two vectors. A use of the two basic elements at the construction of
geometrical objects is determined by the special structure, known as the linear vector
space with the scalar product, given on it (Euclidean space). The scalar product of
linear vector space describes interrelation of two basic elements (vectors), whereas
other properties of the linear vector space associate with the displacement of vectors.
The third representation (�-representation) of the proper Euclidean geometry

contains only one basic element (point). Segment (vector) is a derivative element.
It is constructed of points. The angle is also a derivative element. It is constructed
of two segments (vectors). The �-representation contains a special structure: world
function �, which describes interrelation of two basic elements (points). The world
function � (P0; P1) = 1

2
�2 (P0; P1), where � (P0; P1) is the distance between points

P0 and P1. The concept of distance �, as well as the world function �, is used in
all representations of the proper Euclidean geometry. However, the world function
forms a structure only in the �-representation, where the world function � describes
interrelation of two basic elements (points). Besides, the world function satis�es
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a series of constraints, formulated in terms of � and only in terms of �. These
conditions (the Euclideaness conditions) will be formulated below.
The Euclideaness conditions are equivalent to a use of the vector linear space

with the scalar product on it, but formally they do not mention the linear vector
space, because all concepts of the linear vector space, as well as all concepts of the
proper Euclidean geometry are expressed directly via world function � and only via
it.
If we want to modify the proper Euclidean geometry, then we should use the

�-representation for its modi�cation. In the �-representation the special geometric
structure (world function) has the form of a function of two points. Modifying
the form of the world function, we modify automatically all concepts of the proper
Euclidean geometry, which are expressed via the world function. It is very important,
that the expression of geometrical concepts via the world function does not refer to
the means of description (dimension, coordinate system, concept of a curve). The
fact, that modifying the world function, one violates the Euclideaness conditions, is
of no importance, because one obtains non-Euclidean geometry as a result of such a
modi�cation. A change of the world function means a change of the distance, which
is interpreted as a deformation of the proper Euclidean geometry. The generalized
geometry, obtained by a deformation of the proper Euclidean geometry is called
the tubular geometry (T-geometry), because in the generalized geometry straight
lines are tubes (surfaces), in general, but not one-dimensional lines. Another name
of T-geometry is the physical geometry. The physical geometry is the geometry,
described completely by the world function. Any physical geometry may be used as
a space-time geometry in the sense, that the set of all T-geometries is the set of all
possible space-time geometries.
Modi�cation of the proper Euclidean geometry in V-representation is very re-

stricted, because in this representation there are two basic elements. They are not
independent, and one cannot modify them independently. Formally it means, that
the linear vector space is to be preserved as a geometrical structure. It means,
in particular, that the generalized geometry retains to be continuous, uniform and
isotropic. The dimension of the generalized geometry is to be �xed. Besides, the gen-
eralized geometry,obtained by such a way, cannot be multivariant. Such a property of
the space-time geometry as multivariance can be obtained only in �-representation.
As far as the �-representation of the proper Euclidean geometry was not known in
the twentieth century, the multivariance of geometry was also unknown concept.
Transition from the V-representation to �-representation is carried out as follows.

All concepts of the linear vector space are expressed in terms of the world function �.
In reality, concepts of vector, scalar product of two vectors and linear dependence of
n vectors are expressed via the world function �E of the proper Euclidean geometry.
Such operations under vectors as equality of vectors, summation of vectors and
multiplication of a vector by a real number are expressed by means of some formulae.
The characteristic properties of these operations, which are given in V-representation
by means of axioms, are given now by special properties of the Euclidean world
function �E. After expression of the linear vector space via the world function the
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linear vector space may be not mentioned, because all its properties are described
by the world function. We obtain the �-representation of the proper Euclidean
geometry, where some properties of the linear vector space are expressed in the form
of formulae, whereas another part of properties is hidden in the speci�c form of the
Euclidean world function �E. Modifying world function, we modify automatically
the properties of the linear vector space (which is not mentioned in fact). At such a
modi�cation we are not to think about the way of modi�cation of the linear vector
space, which is the principal geometrical structure in the V-representation. In the
�-representation the linear vector space is a derivative structure, which may be
not mentioned at all. Thus, at transition to �-representation the concepts of the
linear vector space (primary concepts in V-representation) become to be secondary
concepts (derivative concepts of the �-representation).
In �-representation we have the following expressions for concepts of the proper

Euclidean geometry. Vector PQ =
�!
PQ is an ordered set of two points P and Q.

The length jPQj of the vector PQ is de�ned by the relation

jP0P1j =
p
2� (P0; P1) (2.1)

The scalar product (P0P1:Q0Q1) of two vectors P0P1 and Q0Q1 is de�ned by the
relation

(P0P1:Q0Q1) = � (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) (2.2)

where the world function �

� : 
� 
! R; � (P;Q) = � (Q;P ) ; � (P; P ) = 0; 8P;Q 2 

(2.3)

is the world function �E of the Euclidean geometry.
In the proper Euclidean geometry n vectors P0Pk, k = 1; 2; :::n are linear de-

pendent, if and only if the Gram�s determinant

F (Pn) = 0; Pn = fP0; P1; :::; Png (2.4)

where the Gram�s determinant F (Pn) is de�ned by the relation

F (Pn) � det jj (P0Pi:P0Pk) jj ; i; k = 1; 2; :::n (2.5)

Using expression (2.2) for the scalar product, the condition of the linear dependence
of n vectors P0Pk, k = 1; 2; :::n is written in the form

F (Pn) � det jj� (P0; Pi) + � (P0; Pk)� � (Pi; Pk) jj = 0; i; k = 1; 2; :::n (2.6)

De�nition (2.2) of the scalar product of two vectors coincides with the conven-
tional scalar product of vectors in the proper Euclidean space. (One can verify this
easily). The relations (2.2), (2.6) do not contain a reference to the dimension of the
Euclidean space and to a coordinate system in it. Hence, the relations (2.2), (2.6)
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are general geometric relations, which may be considered as a de�nition of the scalar
product of two vectors and that of the linear dependence of vectors.
Equivalence (equality) of two vectors P0P1 and Q0Q1 is de�ned by the relations

P0P1eqvQ0Q1 : (P0P1:Q0Q1) = jP0P1j � jQ0Q1j ^ jP0P1j = jQ0Q1j (2.7)

where jP0P1j is the length (2.1) of the vector P0P1

jP0P1j =
p
(P0P1:P0P1) =

p
2� (P0; P1) (2.8)

In the developed form the condition (2.7) of equivalence of two vectors P0P1 and
Q0Q1 has the form

� (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) = 2� (P0; P1) (2.9)

� (P0; P1) = � (Q0; Q1) (2.10)

Let the points P0; P1, determining the vector P0P1, and the origin Q0 of the
vector Q0Q1 be given. Let P0P1eqvQ0Q1. We can determine the vector Q0Q1,
solving two equations (2.9), (2.10) with respect to the position of the point Q1.
In the case of the proper Euclidean space there is one and only one solution

of equations (2.9), (2.10) independently of the space dimension n. In the case of
arbitrary T-geometry one can guarantee neither existence nor uniqueness of the
solution of equations (2.9), (2.10) for the point Q1. Number of solutions depends on
the form of the world function �. This fact means a multivariance of the property
of two vectors equivalence in the arbitrary T-geometry. In other words, the single-
variance of the vector equality in the proper Euclidean space is a speci�c property of
the proper Euclidean geometry, and this property is conditioned by the form of the
Euclidean world function. In other T-geometries this property does not take place,
in general.
The multivariance is a general property of a physical geometry. It is connected

with a necessity of solution of algebraic equations, containing the world function.
As far as the world function is di¤erent in di¤erent physical geometries, the solution
of these equations may be not unique, or it may not exist at all.
If in the n-dimensional Euclidean space F (Pn) 6= 0, the vectors P0Pk, k =

1; 2; :::n are linear independent. We may construct rectilinear coordinate system with
basic vectors P0Pk, k = 1; 2; :::n in the n-dimensional Euclidean space. Covariant
coordinates xk = (P0P)k of the vector P0P in this coordinate system have the form

xk = xk (P ) = (P0P)k = (P0P:P0Pk) ; k = 1; 2; :::n (2.11)

Now we can formulate the Euclideaness conditions. These conditions are con-
ditions of the fact, that the T-geometry, described by the world function �, is n-
dimensional proper Euclidean geometry.
I. De�nition of the dimension and introduction of the rectilinear coordinate sys-

tem:

9Pn � fP0; P1; :::Png � 
; Fn (Pn) 6= 0; Fk
�

k+1

�
= 0; k > n (2.12)
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where Fn (Pn) is the Gram�s determinant (2.5). Vectors P0Pi, i = 1; 2; :::n are
basic vectors of the rectilinear coordinate system Kn with the origin at the point
P0. In Kn the covariant metric tensor gik (Pn), i; k = 1; 2; :::n and the contravariant
one gik (Pn), i; k = 1; 2; :::n are de�ned by the relations

k=nX
k=1

gik (Pn) glk (Pn) = �il; gil (Pn) = (P0Pi:P0Pl) ; i; l = 1; 2; :::n (2.13)

Fn (Pn) = det jjgik (Pn)jj 6= 0; i; k = 1; 2; :::n (2.14)

II. Linear structure of the Euclidean space:

� (P;Q) =
1

2

i;k=nX
i;k=1

gik (Pn) (xi (P )� xi (Q)) (xk (P )� xk (Q)) ; 8P;Q 2 


(2.15)
where coordinates xi = xi (P ) ; i = 1; 2; :::n of the point P are covariant coordinates
of the vector P0P, de�ned by the relation (2.11).
III: The metric tensor matrix glk (Pn) has only positive eigenvalues

gk > 0; k = 1; 2; :::; n (2.16)

IV. The continuity condition: the system of equations

(P0Pi:P0P) = yi 2 R; i = 1; 2; :::n (2.17)

considered to be equations for determination of the point P as a function of coordi-
nates y = fyig, i = 1; 2; :::n has always one and only one solution. All conditions I
� IV contain a reference to the dimension n of the Euclidean space.
One can show that conditions I � IV are the necessary and su¢ cient conditions

of the fact that the set 
 together with the world function �, given on 
 � 
,
describes the n-dimensional Euclidean space [2].
Investigation of the Dirac particle (dynamic system, described by the Dirac equa-

tion) has shown, that the Dirac particle is a composite particle [6], whose internal
degrees of freedom are described nonrelativistically [7]. The composite structure
of the Dirac particle may be explained as a relativistic rotator, consisting of two
(or more) particles, rotating around their inertia centre. The relativistic rotator
explains existence of the Dirac particle spin, however, the problem of the rotating
particles con�nement appears. In this paper we try to explain the problem of spin
in the framework of the program of the physics geometrization, when dynamics of
physical bodies is determined by the space-time geometry.
Although the �rst stages of the physics geometrization (the special relativity

and the general relativity) manifest themselves very well, the papers on further
geometrization of physics, which ignore the quantum principles, are considered usu-
ally as dissident.
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3 Dynamics as a result of the space-time
geometry

Dynamics in the space-time, described by a physical geometry (T-geometry), is
presented in [1]. Here we remind the statement of the problem of dynamics.
Geometrical object O �
 is a subset of points in the point set 
. In the T-

geometry the geometric object O is described by means of the skeleton-envelope
method. It means that any geometric object O is considered to be a set of intersec-
tions and joins of elementary geometric objects (EGO).
The elementary geometrical object E is described by its skeleton Pn and envelope

function fPn. The �nite set Pn � fP0; P1; :::; Png � 
 of parameters of the envelope
function fPn is the skeleton of elementary geometric object (EGO) E � 
. The set
E � 
 of points forming EGO is called the envelope of its skeleton Pn. The envelope
function fPn

fPn : 
! R; (3.1)

determining EGO is a function of the running point R 2 
 and of parameters Pn �

. The envelope function fPn is supposed to be an algebraic function of s arguments
w = fw1; w2; :::wsg, s = (n+2)(n+1)=2. Each of arguments wk = � (Qk; Lk) is the
world function � of two points Qk; Lk 2 fR;Png, either belonging to skeleton Pn,
or coinciding with the running point R. Thus, any elementary geometric object E is
determined by its skeleton Pn and its envelope function fPn. Elementary geometric
object E is the set of zeros of the envelope function

E = fRjfPn (R) = 0g (3.2)

De�nition. Two EGOs EPn and EQn are equivalent, if their skeletons Pn and Qn

are equivalent and their envelope functions fPn and gQn are equivalent. Equivalence
(PneqvQn) of two skeletons Pn � fP0; P1; :::; Png � 
 and Qn � fQ0; Q1; :::; Qng �

 means that

PneqvQn : PiPkeqvQiQk; i; k = 0; 1; :::n; i � k (3.3)

Equivalence of the envelope functions fPn and gQn means, that they have the same
set of zeros. It means that

fPn (R) = � (gPn (R)) ; 8R 2 
 (3.4)

where � is an arbitrary function, having the property

� : R! R; � (0) = 0 (3.5)

Evolution of EGO OPn in the space-time is described as a world chain Cfr of
equivalent connected EGOs. The point P0 of the skeleton Pn = fP0; P1; :::Png
is considered to be the origin of the geometrical object OPn : The EGO OPn is

10



considered to be placed at its origin P0. Let us consider a set of equivalent skeletons
Pn(l) =

n
P
(l)
0 ; P

(l)
1 ; :::P

(l)
n

o
; l = :::0; 1; :::which are equivalent in pairs

P
(l)
i P

(l)
k eqvP

(l+1)
i P

(l+1)
k ; i; k = 0; 1; :::n; l = :::1; 2; ::: (3.6)

The skeletons Pn(l); l = :::0; 1; :::are connected, and they form a chain in the direction
of vector P0P1, if the point P1 of one skeleton coincides with the origin P0 of the
adjacent skeleton

P
(l)
1 = P

(l+1)
0 ; l = :::0; 1; 2; ::: (3.7)

The chain Cfr describes evolution of the elementary geometrical object OPn in the
direction of the leading vector P0P1. The evolution of EGO OPn is a temporal
evolution, if the vectors P(l)0 P

(l)
1 are timelike

���P(l)0 P(l)1 ���2 > 0; l = :::0; 1; ::. The

evolution of EGO OPn is a spatial evolution, if the vectors P(l)0 P
(l)
1 are spacelike���P(l)0 P(l)1 ���2 < 0; l = :::0; 1; ::.

Note, that all adjacent links (EGOs) of the chain are equivalent in pairs, although
two links of the chain may be not equivalent, if they are not adjacent. However,
lengths of corresponding vectors are equal in all links of the chain���P(l)i P(l)k ��� = ���P(s)i P(s)k ��� ; i; k = 0; 1; :::n; l; s = :::1; 2; ::: (3.8)

We shall refer to the vector P(l)0 P
(l)
1 , which determines the form of the evolution

and the shape of the world chain, as the leading vector. This vector determines the
direction of 4-velocity of the physical body, associated with the link of the world
chain.
If the relations

PneqvQn : (PiPk:QiQk) = jPiPkj � jQiQkj ; jPiPkj = jQiQkj ; (3.9)
i; k = 0; 1; 2; :::n (3.10)

QneqvRn : (QiQk:RiRk) = jQiQkj � jRiRkj ; jQiQkj = jRiRkj ;(3.11)
i; k = 0; 1; 2; :::n (3.12)

are satis�ed, the relations

PneqvRn : (PiPk:RiRk) = jPiPkj � jRiRkj ; jPiPkj = jRiRkj ;(3.13)
i; k = 0; 1; 2; :::n (3.14)

are not satis�ed, in general, because the relations (3.13) contain the scalar products
(PiPk:RiRk). These scalar products contain the world functions � (Pi; Rk), which
are not contained in relations (3.9), (3.11).
The world chain Cfr, consisting of equivalent links (3.6), (3.7), describes a free

motion of a physical body (particle), associated with the skeleton Pn. We assume
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that the motion of physical body is free, if all points of the body move free (i.e.
without acceleration). If the external forces are absent, the physical body as a whole
moves without acceleration. However, if the body rotates, one may not consider a
motion of this body as a free motion, because not all points of this body move free
(without acceleration). In the rotating body there are internal forces, which generate
centripetal acceleration of some points of the body. As a result some points of the
body do not move free. Motion of the rotating body may be free only on the average,
but not exactly free.
Conception of non-free motion of a particle is rather inde�nite, and we restrict

ourselves with consideration of a free motion only.
Conventional conception of the motion of extensive (non-pointlike) particle, which

is free on the average, contains a free displacement, described by the velocity 4-
vector, and a spatial rotation, described by the angular velocity 3-pseudovector !.
The velocity 4-vector is associated with the timelike leading vector P0P1. At the
free on the average motion of a rotating body some of vectors P0P

(s)
2 ;P0P

(s)
3 ;...of the

skeleton Pn are not in parallel with vectors P0P(s+1)2 ;P0P
(s+1)
3 ; :::, although at the

free motion all vectorsP0P
(s)
2 ;P0P

(s)
3 ; ::: are to be in parallel withP0P

(s+1)
2 ;P0P

(s+1)
3 ; :::

as follows from (3.6). It means that the world chain Cfr of a freely moving body can
describe only translation of a physical body, but not its rotation.
If the leading vector P0P1 is spacelike, the body, described by the skeleton Pn,

evolves in the spacelike direction. It seems, that the spacelike evolution is prohibited.
But it is not so. If the world chain forms a helix with the timelike axis, such a world
chain may be considered as timelike on the average. In reality such world chains
are possible. For instance, the world chain of the classical Dirac particle is a helix
with timelike axis. It is not quite clear, whether or not the links of this chain are
spacelike, because internal degrees of freedom of the Dirac particle, responsible for
helicity of the world chain, are described nonrelativistically.
Thus, consideration of a spatial evolution is not meaningless, especially if we take

into account, that the spatial evolution may imitate rotation, which is absent at the
free motion of a particle. Further we consider the problem of the spatial evolution.

4 Dynamics of classical Dirac particle

Dirac particle SD is the dynamic system, described by the Dirac equation. The free
Dirac particle SD is described by the free Dirac equation

i~l@l �m = 0 (4.1)

where  is the four-component complex wave function, and l, l = 0; 1; 2; 3 are 4�4
complex matrices, satisfying the relations

ik + ki = 2Igik; i; k = 0; 1; 2; 3;

12



I is the 4�4 unit matrix, gik is the metric tensor. Expressions of physical quantities:
the 4-�ux jk of particles and the energy-momentum tensor T kl have the form

jk = � k ; T kl =
i

2

�
� k@l � @l� � k 

�
; k; l = 0; 1; 2; 3 (4.2)

where � =  �0,  � is the Hermitian conjugate to  . The classical Dirac particle
is a dynamic system SDcl, which is obtained from the dynamic system SD in the
classical limit.
To obtain the classical limit, one may not set the quantum constant ~ = 0 in the

equation (4.1), because in this case we do not obtain any reasonable description of
the particle.
The Dirac particle SD is a quantum particle in the sense, that it is described by a

system of partial di¤erential equations (PDE), which contain the quantum constant
~. The classical Dirac particle SDcl is described by a system of ordinary di¤erential
equations (ODE), which contain the quantum constant ~ as a parameter. May
the system of ODE carry out the classical description, if it contains the quantum
constant ~? The answer depends on the viewpoint of investigator. If the investigator
believes that the quantum constant is an attribute of quantum principles and only of
quantum principles, he supposes that, containing ~, the dynamic equations cannot
realize a classical description, where the quantum principles are not used. However,
if the investigator consider the classical description simply as method of investigation
of the quantum dynamic equations, it is of no importance, whether or not the system
of ODE contains the quantum constant. It is important only, that the system of
PDE is approximated by a system of ODE. The dynamic system, described by PDE,
contains in�nite number of the freedom degrees. The dynamic system, described by
ODE, contains several degrees of freedom. It is simpler and can be investigated
more e¤ectively.
Obtaining the classical approximation, we use the procedure of dynamic disquan-

tization [8]. This procedure transforms the system of PDE into the system of ODE.
The procedure of dynamic disquantization is a dynamical procedure, which has no
relation to the process of quantization or disquantization in the sense, that it does
not refer to the quantum principles. The dynamic disquantization means that all
derivatives @k in dynamic equations are replaced by the projection of vector @k onto
the current vector jk

@k �!
jk
jljl

js@s (4.3)

This dynamical operation is called the dynamic disquantization, because, applying
it to the Schrödinger equation, we obtain the dynamic equations for the statistical
ensemble of classical nonrelativistic particles. These dynamic equations are ODE,
which do not depend on the quantum constant ~.
Applying the operation (4.3), to the Dirac equation (4.1), we transform it to the

form
i~l

jl
jkjk

js@s �m = 0; jk = � k (4.4)
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The equation (4.4) is the dynamic equation for the dynamic system system EDqu.
The equation (4.4) contains only derivative js@s =

�
� s 

�
@s in the direction of the

current 4-vector jk. In terms of the wave function  the dynamic equation (4.4) for
EDqu looks rather bulky. However, in the properly chosen variables the action for
the dynamic system EDqu has the form [8]

ADqu[x; �] =
Z (

��0m
p
_xi _xi + ~

( _� � �)z
2(1 + �z)

+ ~
( _x� �x)�

2
p
_xs _xs(

p
_xs _xs + _x0)

)
d4� (4.5)

where the dot means the total derivative _xs � dxs=d� 0. The quantities x = fx0;xg =
fxig, i = 0; 1; 2; 3, � = f��g, � = 1; 2; 3 are considered to be functions of the
Lagrangian coordinates � 0, � = f� 1; � 2; � 3g. The variables x describe position of
the Dirac particle. Here and in what follows the symbol � means the vector product
of two 3-vectors. The quantity z is the constant unit 3-vector, �0 is a dichotomic
quantity �0 = �1, m is the constant (mass) taken from the Dirac equation (4.1). In
fact, variables x depend on � as on parameters, because the action (4.5) does not
contain derivatives with respect to ��, � = 1; 2; 3. Lagrangian density of the action
(4.5) does not contain independent variables � explicitly. Hence, it may be written
in the form

ADqu[x; �] =
Z
ADcl[x; �]d� ; d� = d� 1d� 2d� 3 (4.6)

where

SDcl : ADcl[x; �] =
Z (

��0m
p
_xi _xi + ~

( _� � �)z
2(1 + �z)

+ ~
( _x� �x)�

2
p
_xs _xs(

p
_xs _xs + _x0)

)
d� 0

(4.7)
The action (4.6) is the action for the dynamic system EDqu, which is a set of simi-

lar independent dynamic systems SDcl. Such a dynamic system is called a statistical
ensemble. Dynamic systems SDcl are elements (constituents) of the statistical en-
semble EDqu. Dynamic equations for each SDcl form a system of ordinary di¤erential
equations. It may be interpreted in the sense, that the dynamic system SDcl may
be considered to be a classical one, although Lagrangian of SDcl contains the quan-
tum constant ~. The dynamic system SDcl will be referred to as the classical Dirac
particle.
The dynamic system SDcl has ten degrees of freedom. It describes a composite

particle [6]. External degrees of freedom are described relativistically by variables
x. Internal degrees of freedom are described nonrelativistically [7] by variables �.
Solution of dynamic equations, generated by the action (4.7), gives the following
result [6]. In the coordinate system, where the canonical momentum four-vector Pk
has the form

Pk = fp0;pg =
�
�
�
2� 1



�
�0m; 0; 0; 0

�
(4.8)

the world line of the classical Dirac particle is a helix, which is described by the
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relation

ft;xg = ft; R sin (
t) ; R cos (
t) ; 0g (4.9)

R =
~
p
2 � 1
2m

; 
 =
2m

~2
(4.10)

where the speed of the light c = 1, and  is an arbitrary constant (Lorentz factor of
the classical Dirac particle). The velocity v = dx=dt of the classical Dirac particle
is expressed as follows

v2 = 1� 1

2
;  =

1p
1� v2

(4.11)

Helical world line of the classical Dirac particle means a rotation of the particle
around some point. On the one hand, such a rotation seems to be reasonable,
because it explains freely the Dirac particle spin and magnetic moment. On the
other hand, the description of this rotation is nonrelativistic. Besides, it seems
rather strange, that the world line of a free classical particle is a helix, but not a
straight line. Attempt of consideration of the Dirac particle as a rotator, consisting
of two particles [6], meets the problem of con�nement of the two particles.
Although the pure dynamical methods of investigation are more general and

e¤ective, than the investigation methods, based on quantum principles, the purely
dynamical methods of investigation meet incomprehension of most investigators,
who believe, that the Dirac particle must be investigated by quantum methods. The
papers, devoted to investigation of the Dirac equation by the dynamic methods, are
considered as dissident. They are rejected by the peer review journals (see discussion
in [9, 10]).
Suddenly it is discovered that the helical world line, which is characteristic for

the classical Dirac particle, can be obtained as a result of a spatial evolution of
geometric objects in the framework of properly chosen space-time geometry.

5 Existence of such a space-time geometry, where
a spatial evolution may look as world line of
classical Dirac particle

Let us consider the �at homogeneous isotropic space-time Vd = f�d;R4g, described
by the world function

�d = �M + d � sgn (�M) (5.1)

d = �20 = const > 0 (5.2)

sgn (x) =

8<:
1 if x > 0
0 if x = 0
�1 if x < 0

; (5.3)
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where �M is the world function of the 4-dimensional space-time of Minkowski. �0 is
some elementary length. In such a space-time geometry two connected equivalent
timelike vectors P0P1 and P1P2 are described as follows [1]

P0P1eqvP1P2 : P0P1 = f�; 0; 0; 0g ; P1P2 =

8<:�+ 3�20� ; �0

s
6 +

9�20
�2
n

9=;
(5.4)

where n is an arbitrary unit 3-vector. The quantity � is the length of the vector
P0P1 (geometrical mass, associated with the particle, which is described by the
vector P0P1). We see that the spatial part of the vector P1P2 is determined to

within the arbitrary 3-vector of the length �0
q
6 + 9�20

�2
. This multivariance generates

wobbling of the links of the world chain, consisting of equivalent timelike vectors
:::P0P1, P1P2, P2P3,... Statistical description of the chain with wobbling links
coincides with the quantum description of the particle with the mass m = b�, if
the elementary length �0 = ~1=2 (2bc)�1=2, where c is the speed of the light, ~ is
the quantum constant, and b is some universal constant, whose exact value is not
determined [11], because the statistical description does not contain the quantity b.
Thus, the characteristic wobbling length is of the order of �0.
To explain the quantum description of the particle motion as a statistical de-

scription of the multivariant classical motion, we should use the world function
(5.3). However, the form of the world function (5.3) is determined by the coinci-
dence of the two descriptions only for the value �M > �0, where the constant �0 is
determined via the mass mL of the lightest massive particle (electron) by means of
the relation

�0 �
�2L
2
� d =

m2
L

2b2
� d =

m2
L

2b2
� ~
2bc

(5.5)

where �L = mL=b is the geometrical mass of the lightest massive particle (elec-
tron). The geometrical mass �LM of the same particle, considered in the space-time
geometry of Minkowski, has the form

�LM =
q
�2L � 2d

As far as �0 > 0, and, hence, m2
L � b~c�1 > 0, we obtain the following estimation

for the universal constant b

b <
m2
Lc

~
� 2:4� 10�17g/cm: (5.6)

Intensity of wobbling may be described by the multivariance vector bm, which
is de�ned as follows. Let P1P2, P1P02 be two vectors which are equivalent to the
vector P0P2. Let

P1P2 =

8<:�+ 3�20� ; �0

s
6 +

9�20
�2
n

9=; ; P1P
0
2 =

8<:�+ 3�20� ; �0

s
6 +

9�20
�2
n0

9=;
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Let us consider the vector

P2P
0
2 =

8<:0; �0
s
6 +

9�20
�2
(n0 � n)

9=; (5.7)

which is a di¤erence of vectors P1P2, P1P02. We consider the length jP2P02jM of the
vector P2P02 in the Minkowski space-time. We obtain

jP2P02j
2
M = ��

2
0

�
6 +

9�20
�2

�
(2� 2nn0) (5.8)

The length of the vector (5.7) is minimal at n = �n0. At n = n0 the length of
the vector (5.7) is maximal, and it is equal to zero. By de�nition the vector P2P02
at n = �n0 is the multivariance 4-vector bm, which describes the intensity of the
multivariance. We have

bm =

8<:0; 2�0
s
6 +

9�20
�2
n

9=; jbmj2 = (bm:bm) = �4�20
�
6 +

9�20
�2

�
(5.9)

where n is an arbitrary unit 3-vector. The multivariance vector bm is spacelike
In the case, when �� �0, the corresponding wobbling length

�w =
1

2

p
j(bm:bm)j �

p
6�0 =

p
6

r
~
2bc

>
p
3
~
mLc

=
p
3�com

where �com is the electron Compton wave length.
The relation (5.6) means that

�d = �M + d; if �M > �0 (5.10)

For other values �M < �0 the form of the world function �d may distinguish from
the relation (5.10). However, �d = 0, if �M = 0.
Two equivalent connected spacelike vectors Q0Q1, Q1Q2 have the form [1]

Q0Q1 = f0; l; 0; 0g ; Q1Q2 =

8<:
s
22 + 23 + 6�

2
0 +

9�40
l2
; l; 2; 3

9=; (5.11)

where constants 2 and 3 are arbitrary. The result is obtained for the space-time
geometry (5.1). Arbitrariness of constants 2; 3 generates multivariance of the
vector Q1Q2 even in the space-time geometry of Minkowski, where �0 = 0.
Vectors Q1Q2, Q1Q

0
2

Q1Q2 =

8<:
s
22 + 23 + 6�

2
0 +

9�40
l2
; l; 2; 3

9=; ;

Q1Q
0
2 =

8<:
s
022 + 023 + 6�

2
0 +

9�40
l2
; l; 02; 

0
3

9=;
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are equivalent to the vectorQ0Q1. The di¤erence Q2Q
0
2 of two vectors Q1Q2, Q1Q

0
2

has the form

Q2Q
0
2 =

8<:
s
022 + 023 + 6�

2
0 +

9�40
l2
�

s
22 + 23 + 6�

2
0 +

9�40
l2
; 0; 02 � 2; 

0
3 � 3

9=;
The vector Q2Q

0
2 may be spacelike and timelike. Its length has an extremum, if

02 = 2 and 
0
3 = 3. In this case the length jQ2Q

0
2j
2 = 0

However, the length

jQ2Q
0
2j
2
=

0@s022 + 023 + 6�
2
0 +

9�40
l2
�

s
22 + 23 + 6�

2
0 +

9�40
l2

1A2

� (02 � 2)
2 � (03 � 3)

2

has neither maximum, nor minimum, and one cannot introduce the multivariance
vector of the type (5.9). The multivariance of the spacelike vectors equality is not
introduced by the distortion d, de�ned by (5.2). It takes place already in the space-
time of Minkowski. In the conventional approach to the geometry of Minkowski one
does not accept the multivariance of spacelike vectors equivalence. Furthermore,
the concept of multivariance of two vectors parallelism (and equality) is absent
at all in the conventional approach to the geometry. For instance, when in the
Riemannian geometry the multivariance of parallelism of remote vectors appears, the
mathematicians prefer to deny at all the fernparallelism (parallelism of two remote
vectors), but not to introduce the concept of multivariance. This circumstance is
connected with the fact, that the multivariance may not appear, if the geometry is
constructed on the basis of a system of axioms .
The world chain, consisting of timelike equivalent vectors, imitates a world line

of a free particle. This fact seems to be rather reasonable. Considering the vectors
Q0Q1 and Q1Q2 in (5.11) from the viewpoint of the geometry of Minkowski, we see
that the vector Q1Q2 is obtained from the vector Q0Q1 as a result of spatial rota-
tion and of an addition of some temporal component. One should expect, that the
world chain, consisting of spacelike equivalent vectors, imitates a world line of a free
particle, moving with a superluminal velocity. The motion with the superluminal
velocity seems to be unobservable. Such a motion is considered to be impossible.
However, if the spacelike world line has a shape of a helix with timelike axis, such a
situation may be considered as a free rotating particle. The fact, that the particle
rotates with the superluminal velocity is not so important, if the helix axis is time-
like. The world line of a classical Dirac particle is a helix. It is not very important,
whether the rotation velocity is tardyon or not. Especially, if we take into account
that the Dirac equation describes the internal degrees of freedom (rotation) nonrel-
ativistically, (i.e. the description of internal degrees of the classical Dirac particle is
incorrect from the viewpoint of the relativity theory).
We investigate now, whether a world chain of equivalent spacelike vectors may

form a helix with timelike axis. If it is possible, then we try to investigate, under

18



which world function such a situation is possible. We consider the world function
�d of the form

�d = �M+ d � f
�
�M
�0

�
; f (x) = sgn (x) ; if jxj > 1; d = �20 = const > 0

(5.12)

where the function f
�
�M
�0

�
should be determined from the condition, that the world

chain, consisting of spacelike links, forms a helix with timelike axis.
To estimate the form of �d as a function of �M at �M < �0, we consider the chain,

consisting of equivalent spacelike vectors ... P0P1, P1P2, P2P3;... We suppose that
the chain is a helix with timelike axis in the space-time. Let the points :::P0; P1; ::.
have the coordinates

Pk = fkl0; R cos (k'� '0) ; R sin (k'� '0) ; 0g ; k = :::0; 1; 2; ::: (5.13)

All points (5.13) lie on a helix with timelike axis. In the space-time of Minkowski
the step of helix is equal to 2�l0=', and R is the radius of the helix. The constants
' and '0 are parameters of the helix. All vectors PkPk+1 have the same length.
Introducing designations

� =
'

2
; l1 = 2R sin�; '0 = �� �

2
(5.14)

we obtain coordinates of vectors PkPk+1 in the form

Pk�1Pk = fl0; l1 cos (2k�) ; l1 sin (2k�) ; 0g ; k = :::0; 1; ::: (5.15)

where l0; l1; � are parameters of the helix.
Let us investigate, under which conditions the relation Pk�1PkeqvPkPk+1 takes

place. We suppose that all vectors of the helix are spacelike jPkPk+1j2 < 0. It is
evident, that it is su¢ cient to investigate the situation for the case k = 1, when
P0P1eqvP1P2. Let coordinates of vectors P0P1, P1P2 be

P0P1 = fl0; l1; 0; 0g ; P1P2 = fl0; l1 cos (2�) ; l1 sin (2�) ; 0g (5.16)

In this case the coordinates of the points P0; P1; P2 may be chosen in the form

P0 = f0; 0; 0; 0g ; P1 = fl0; l1; 0; 0g ; P2 = f2l0; l1 (1 + cos (2�)) ; l1 sin (2�) ; 0g ;
(5.17)

and the vector P0P2 has coordinates

P0P2 = f2l0; l1 (1 + cos (2�)) ; l1 sin (2�) ; 0g (5.18)

We choose the world function (5.12) in the form

�d = �M + �20

(
sgn (�M) if j�Mj > �0 > 0�
�M
�0

�3
if j �Mj < �0

(5.19)
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and introduce the quantity
{ =

�0

�20
(5.20)

Thus, we have

�d = �M + d (�M) ; d (�M) = �20f

�
�M
�0

�
; f (x) =

8<:
1 if x � 1
x3 if �1 < x < 1
�1 if x � �1

(5.21)
The space-time geometry (5.21) is a special case of the space-time geometry (5.10).
We do not pretend to the claim, that (5.21) is the world function of true space-time
geometry. We shall show only that in the space-time geometry (5.21) the spacelike
vectors (5.16) may be equivalent at some proper choice of parameters l0, l1 and '.
In our calculations we shall use two geometries: the geometry GM of Minkowski

and the space-time geometry Gd, described by the world function �d, determined by
(5.21). Then expressions of the geometry Gd may be reduced to expressions of the
geometry GM by means of relations

jP0P1j2 = jP0P1j2M + 2d (�M (P0; P1)) (5.22)

(P0P1:Q0Q1) = (P0P1:Q0Q1)M + w (P0; P1; Q0; Q1) (5.23)

w (P0; P1; Q0; Q1) = d (�M (P0; Q1)) + d (�M (P1; Q0))

�d (�M (P0; Q0))� d (�M (P1; Q1)) (5.24)

The geometrical relations in Gd are expressed via the same relations, written in GM
with additional terms, containing the distortion d. This additional terms in dynamic
relations are interpreted as additional metric interactions, acting on a particle, when
the real space-time geometry Gd is considered to be the geometry GM. Appearance of
additional interactions reminds appearance of inertial forces at a use of accelerated
coordinate systems instead of inertial ones.
Condition P0P1eqvP1P2 of equivalence of vectors P0P1, P1P2 is written in the

form of two equations

(P0P1:P1P2) = (P0P1:P1P2)M + w (P0; P1; P1; P2) = jP0P1j2M + 2d (�M (P0; P1))
(5.25)

jP0P1j2M + 2d (�M (P0; P1)) = jP1P2j
2
M + 2d (�M (P1; P2)) (5.26)

where index �M�means, that the corresponding quantities are calculated in GM. The
function d is determined by the relation (5.21), and the quantity w is determined
by the relation

w (P0; P1; P1; P2) = d (�M (P0; P2))� d (�M (P0; P1))� d (�M (P1; P2)) (5.27)

which follows from the de�nition of the scalar product (5.24). Using the conventional
relations for the scalar product in GM, we can rewrite the relations (5.25), (5.26) in
the form

l20 � l21 cos (2�) + w (P0; P1; P1; P2) = l20 � l21 + 2d (�M (P0; P1)) (5.28)
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l20 � l21 = l20 � l21
�
cos2 (2�) + sin2 (2�)

�
(5.29)

where

w (P0; P1; P1; P2) = d
�
2l21 sin

2 �+ 2
�
l20 � l21

��
� 2d

�
l20 � l21
2

�
(5.30)

To obtain the relation (5.30) from (5.27), we use the relations

jP0P1j2M = jP1P2j
2
M = 2�M (P0; P1) = l20 � l21 � l2 (5.31)

1

2
jP0P2j2M = �M (P0; P2) = 2l

2
0 � l21 (1 + cos (2�)) = 2l

2
1 sin

2 �+ 2l2 (5.32)

The equation (5.29) is the identity.
Let us introduce pure quantities �, a, de�ning them by relations

l2 = l20 � l21 = �2��0; � > 0 (5.33)

a =
2l21
�0
sin2 �; { =

�0

�20
(5.34)

Then the equation (5.28) takes the form

{a+ f (a� 4�) = �4f (�) (5.35)

where the function f is de�ned by the relation (5.21)

f (�) =
1

�20
d (�0�) =

�
sgn (�) if j�j > 1
�3 if j�j < 1 (5.36)

and the constant { is de�ned by the relation (5.20).
Let us note, that in the case, when f (�) is a linear function f (�) = �, for

� 2 [�1; 1], the equation (5.35) has the unique solution a = 0. The solution with
a =

2l21
�0
sin2 � = 0 describes a straight but not a helix.

Considering solutions of equation (5.35) with respect to a = a (�), we are in-
terested in positive values of a, because the quantity a is nonnegative by de�nition
(5.34). At { = 1 numerical solutions of equation (5.35) with respect to a are pre-
sented in the form

� a (�)
0 0
0:1 0:04191
0:2 0:19236
0:3 0:40137

� a (�)
0:4 0:63701
0:5 0:5
0:6 0:136
0:63 0

� a (�)
�0:63 0
�0:7 0:372
�0:8 1:048
�0:9 1: 916

� a (�)
�0:956 47 2
�0:974 35 2:7
�0:991 60 2:9
�1 3

According to (5.14), (5.33) and (5.34) we have the following relations for the
helix radius R

sin� =

r
a�0
2l21

; R =
l1

2 sin�
=

l21p
2a�0

(5.37)
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We obtain the helix step S in the form

S =
�

�
l0 =

�l0

arcsin
q

a�0
2l21

=
�
p
l21 � 2�0�

arcsin
q

a�0
2l21

(5.38)

Negative values of � correspond to helix with timelike vectors Pk�1Pk. Positive
solutions of equation (5.35) take place only for � 2 (0; 0:63) (spacelike vectors) and
� 2 (�0:63;�1) (timelike vectors). The values of parameter a belong to intervals

a 2 [0; 0:695] ; a 2 (0; 3) (5.39)

for spacelike and timelike vectors correspondingly.
Thus, we see that in the space-time geometry with the world function (5.21) the

spatial evolution, determined by the spacelike vectors PkPk+1, may lead to a helical
world chain with timelike axis. However, equivalence of spacelike vectors PkPk+1
is multivariant even in the space-time of Minkowski. It is valid for the space-time
geometry (5.21) also. As a result the wobbling of the spacelike vectors appears. It
may lead to destruction of the helix.
In reality the conditions P0P1eqvP1P2 determines vector P1P2 to within the

vector � = f�0;�g, and we have instead of equations (5.16)

P0P1 = l; P1P2 = q + � (5.40)

where l, q, � are 4-vectors with coordinates

l = fl0; l1; 0; 0g ; q = fl0; l1 cos (2�) ; l1 sin (2�) ; 0g ; � = f�0; �1; �2; �3g
(5.41)

Instead of equations (5.28) �(5.30) we have the following equations

�2 + 2 (q:�) = 0 (5.42)

2l21 sin
2 �+ (l:�) + �20f

�
2l2 + 2l21 sin

2 �+ (l:�)

�0

�
� 4�20f

�
l2

2�0

�
= 0 (5.43)

where (l:�) and (q:�) mean scalar products of vectors l; q; � in the space-time of
Minkowski. The relation (5.35) is the necessary condition of the fact, that � = 0 is
a solution of equations (5.42), (5.43). We obtain from (5.42)

�0 = �q0 �
q
q20 +�

2 + 2q� = �l0 �
q
l20 +�

2 + 2q� (5.44)

where q� means the scalar product of 3-vectors q and �.
Taking into account the relation (5.35), we obtain from relation (5.43)

(l:�) + �20

�
f

�
2l2 + 2l21 sin

2 �+ (l:�)

�0

�
� f

�
2l2 + 2l21 sin

2 �

�0

��
= 0 (5.45)
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Supposing, that (l:�) is a small quantity we obtain from (5.45) by means of (5.44)�
l0

�
�l0 �

q
l20 +�

2 + 2q�

�
� l�

��
1 +

�20
�0
f 0
�
2l2 + 2l21 sin

2 �

�0

��
= 0 (5.46)

The relation (5.46) may be transformed to the equation�
1� l

2

l20

� 
�k +

qk � 2l
1� l2

l20

!2
+(�? + q?)

2 =

�
qk � 2l

�2�
1� l2

l20

� + q2? (5.47)

where

� = �k+�?; �k =
l (l�)

l2
; qk =

l (lq)

l2
; q? = q� qk (5.48)

As far as l2 > l20, we obtain, that 1�l2=l20 < 0, and the surface (5.47) is a hyperboloid
in the 3-space of quantities �1; �2; �3. It means that solutions of the equations (5.44),
(5.45) may de�ect arbitrarily far from the helix solution (5.16). This de�ection is a
manifestation of the multivariance of the space-time geometry.

6 Stabilization of the spacelike world chain

Suppression of multivariance and stabilization of the world chain, consisting of space-
like vectors, can be achieved, if we consider the world chain with composed links,
whose skeleton consists of three points fPk; Pk+1; Qk+1g, k = :::1:2; ::: (see �gure 1).
Let PkPk+1 be a spacelike vector, whereas the vector PkQk+1 be a timelike vector
in GM. To investigate the e¤ect of stabilization, it is su¢ cient to consider the points
P0; P1; P2; Q1; Q2, having coordinates

P0 = f0g ; P1 = flg ; P2 = fl+q + �g ;
Q1 = fsg ; Q2 = fs+ �+ l + �g (6.1)

The following vectors are associated with these points of the skeletons

P0P1 = l; P1P2 = q + �; P0P2 = l+q + �; (6.2)

P0Q1 = s; P1Q2 = s+ �+ �; P0Q2 = s+ �+ l + �; (6.3)

P1Q1 = s� l; P2Q2 = s+ �� q + ; Q1Q2 = �+ l + �; (6.4)

Q1P2 = l + q � s+ �;  = � � �

where the quantities l; q; s; � are the given 4-vectors, whereas the quantities �; �;  =
� � � are 4-vectors, which are to be determined from the condition

fP0; P1; Q1g eqv fP1; P2; Q2g (6.5)
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Expressions for 4-vectors q and � are chosen in such a way, that vectors P1P2
and P1Q2 (at � = � = 0) were a result of rotation of vectors P0P1 and P0Q1 in
the plane x1x2 by the angle 2�. The quantities

s = fs0; s? cos�; s? sin�; s3g q = fl0; l1 cos (2�) ; l1 sin (2�) ; 0g (6.6)

� = f0;�2s? sin� sin (2�) ; 2s? sin� cos (2�) ; 0g ; l = fl0; l1; 0; 0g (6.7)

are supposed to be given. The 4-vectors

� = f�0; �1; �2; �3g = f�0;�g ; � = f�0; �1; �2; �3g = f�0;�g (6.8)

are to be determined from the relations (6.5).
The 4-vectors l and q coincide with vectors (5.16). We are interested in the

following question, whether the stabilizing vector P0Q1 = s can be chosen in such a
way, that equations (6.5) have the unique solution � = � = 0. If such a stabilizing
vector exists, the world chain will have a shape of a helix without wobbling. It may
be, that the complete stabilization is impossible. Then, maybe, a partial stabiliza-
tion is possible, when the quantities �, � are small, although they do not vanish.
In any case the problem of the stabilizing vector existence is a pure mathematical
problem.
Solving this problem, we shall use relations (5.22), (5.23) to reduce all geometrical

relations to the geometrical relations in the space-time of Minkowski. Working in
the space-time of Minkowski, we shall use the conventional covariant formalism,
where the expressions of the type �2 and (�:�) mean

�2 � �20 ��2 � �20 � �21 � �22 � �23; (6.9)

(�:�) � �0�0 ��� ��0�0 � �1�1 � �2�2 � �3�3 (6.10)

Index "M" will be omitted for brevity.
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It follows from the condition P0P1eqvP1P2

l2 = (q + �)2 (6.11)

(l:q + �) + w (P0; P1; P1; P2) = l2 + 2d

�
s2

2

�
(6.12)

where

w (P0; P1; P1; P2)

= d (�M (P0; P2)) + d (�M (P1; P1))� d (�M (P0; P1))� d (�M (P1; P2))

= �20f

 
(l+q + �)2

2�0

!
� 2�20f

�
l2

2�0

�
(6.13)

After transformations we obtain

�2 + 2 (q:�) = 0 (6.14)

2l21 sin
2 �+ (l:�) + �20f

�
2l2 + 2l21 sin

2 �+ (l:�)

�0

�
� 4�20f

�
l2

2�0

�
= 0 (6.15)

These equations coincide with (5.42), (5.43). If � = 0 the equations (6.14), (6.15)
coincide with (5.29), (5.35) respectively.
We obtain from the condition P0Q1eqvP1Q2

s2 = (s+ �+ �)2 (6.16)

(s+ �+ �:s) + w (P0; Q1; P1; Q2) = s2 + 2d

�
s2

2

�
(6.17)

where

w (P0; Q1; P1; Q2)

= d (�M (P0; Q2)) + d (�M (Q1; P1))� d (�M (P0; P1))� d (�M (Q1; Q2))

= d

 
(s+ �+ l + �)2

2

!
+ d

 
(s� l)2

2

!
� d

�
l2

2

�
� d

 
(�+ l + �)2

2

!

The equations (6.16) and (6.17) are transformed to the form

�2 + 2 (�:s) + 2 (s+ �:�) + �2 = 0 (6.18)

(�+ �:s) + d

 
(s+ �+ l + �)2

2

!
+ d

 
(s� l)2

2

!
� d

�
l2

2

�

�d
 
(�+ l + �)2

2

!
� 2d

�
s2

2

�
= 0 (6.19)
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Let us suppose that the stabilizing vector s is long in the sense that

s2 � �0 (6.20)

Then in (6.19) the functions d, which contains s in its argument will be equal to �20
and all terms, containing s compensate each other. The necessary condition of the
fact, that � = 0 is a solution of equations (6.18), (6.19), has the form

�2 + 2 (�:s) = 0 (6.21)

(�:s)� d

�
l2

2

�
� d

 
(�+ l)2

2

!
= 0 (6.22)

The equation (6.21) is satis�ed identically by the choice (6.6), (6.7) of vectors s and
�.
We obtain from the condition P1Q1eqvP2Q2

(s� l)2 = (s+ �� q + )2 (6.23)

(s� l:s+ �� q + ) + w (P1; Q1; P2; Q2) = (s� l)2 + 2d

 
(s� l)2

2

!
(6.24)

w (P1; Q1; P2; Q2) = d (�M (P1; Q2))+d (�M (Q1; P2))�d (�M (P1; P2))�d (�M (Q1; Q2))

= d

 
(s+ �+ �)2

2

!
+ d

 
(l + q � s+ �)2

2

!
� d

�
l2

2

�
� d

 
(�+ l + �)2

2

!
(6.25)

The necessary conditions of the fact, that  = ��� = 0 is a solution of equations
(6.23), (6.24), have the form

(s� l)2 = (s+ �� q)2 (6.26)

(s� l:s+ �� q)� d

�
l2

2

�
� d

 
(�+ l)2

2

!
= 0 (6.27)

The equation (6.26) is satis�ed identically by the relations (6.6), (6.7). The
di¤erence of equations (6.22) and (6.27) leads to the equation

(�:s) = (s� l:s+ �� q) (6.28)

Let us substitute expressions for �; s; l; q , determined by the relations (6.6), (6.7),
in (6.28). After transformations we obtain the connection between the quantities
s?; l1 and � in the form

s? = l1
1� 2 sin2 ��

1� 4 sin2 �
�
cos�

(6.29)
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The equation (6.22) by means of (6.29) is reduced to the form

2l21
�
1� 2 sin2 �

�2�
1� 3 sin2 �

�2 �
1� sin2 �

� sin2 �� �20f

�
l2

2�0

�

��20f

0BB@ l
2 + 4l21

(1�2 sin2 �)
(1�3 sin2 �)

sin2 �� 16l21
(1�2 sin2 �)

2

(1�3 sin2 �)
2
(1�sin2 �)

sin2 �

2�0

1CCA = 0(6.30)

where according to (5.21) the function d (x) is substituted by �20f (x=�0).
Setting

y = sin2 � (6.31)

and using designations (5.33), (5.34), we transform the equation (6.30) to the form

{
a (1� 2y)2

(1� 3y)2 (1� y)
+ f (�) + f

�
� + 2a

(1� 2y) (3 + y)

(1� 3y) (1� y)

�
= 0 (6.32)

The equations (5.35) and (6.32) form a system of two necessary conditions, im-
posed on parmeters of the helical world chain. Each link of the chain consists of two
vectors: leading vector PsPs+1 and stabilizing vector PsQs. Parameter { = �0=�

2
0

is determined by the space-time geometry. The quantity � = �2l2=�0 describes the
length of the spacelike leading vector PsPs+1. Parameter a=y = 2l21=�0 describes
the length of the projection of the leading vector PsPs+1 on the plane of rotation.
Finally, y = sin2 � describes the angle 2� of rotation of the leading vector in the
plane of rotation.
Numerical solutions of equations (5.35) and (6.32) are presented for the parame-

ter { = 1

� a y s2?=�0
0:1 4:191 5� 10�2 0:392 41 0:129 57
0:15 0:106 61 0:444 36 2:409 8� 10�2
0:2 0:192 36 0:462 67 1:432 4� 10�2
0:3 0:401 37 0:474 61 1:155 3� 10�2
0:4 0:637 01 0:478 89 1:193 1� 10�2

0:5 0:5
0:468 09
0:398 99

2:502 3� 10�2
1:096 7

0:6 0:136 0:406 67 0:202 86
0:615 6:956 7� 10�2 0:375 28 0:582 94

7 Estimation of wobbling of leading vector

Solutions of equations, which describe the necessary conditions of the fact, that
the world chain may be a helix, are not unique. There may be solutions of (6.5),
described by nonvanishing � and �, which generate wobbling and violate the helical
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character of world chain. We write six equation (6.5) as equation for �; � with
parameters l; q; s; �, satisfying the necessary conditions (5.35) and (6.32). We obtain
instead of equations (6.14), (6.15) the following two equations

�2 + 2 (q:�) = 0 (7.1)

(l:�)

�
1 +

�20
�0
f 0
�
2l2 + 2l21 sin

2 �

�0

��
= 0 (7.2)

where the quantities l; q satisfy the necessary conditions (6.32) (5.35), and f 0 is a
derivative of the function (5.36), which is always nonnegative. Then it follows from
(7.2)

(l:�) = l0�0 � l1�1 = 0 (7.3)

Equations (7.1), (7.3) contain only the variable � (but not �) and coincide with
the equations (5.42), (5.43). However, there are additional constraints, containing
�. As a result the constraints on � distinguish from the relation (5.47), describing
values of � without the stabilizing vector PsQs.
In the developed form the relations (6.18), (6.19) have the form

�20��2+2
�
s0�0 � �1s? cos�

�
1� 4 sin2 �

�
� �2s? sin� (1 + 2 cos (2�))

�
= 0 (7.4)

(�0s0 � �s)
 
1 +

�20
�0
f 0

 
(�+ l)2

2�0

!!
� �20
�0
f 0

 
(�+ l)2

2�0

!
(l:�) = 0 (7.5)

They contain only the variable � (but not �)
Finally the relations (6.23), (6.24) in the developed form can be written as follows

20 � 2 + 2 (s0 � l0) 0 � 1
�
s? cos�

�
1� 4 sin2 �

�
� l1 cos (2�)

�
�22 (s? sin� (1 + 2 cos (2�)) + l1 sin (2�)) = 0 (7.6)

l0�0 � l1�1 + s0�0 � s� = 0 (7.7)

The relation (7.7) is a linear combination of equations (6.19) and (6.24), which does
not contain the function f . Relations (7.6) and (7.7) contain both quantities �; �
and  = � � �. The constraints (7.6) and (7.7) modify the constraints (5.47),
transforming the hyperboloid into ellipsoid.
We suppose for simplicity, that the vector PsQs is very long (s0 � �0). We

suppose, that s0 !1. In this case we obtain from the relation (7.5), that �0 = 0.
It follows from (7.7), that �0 = 0. Besides, it follows from (7.3), that �1 = 0. Thus,
solutions of the equations (7.5), (7.7) and (7.3) have the form

�0 = �0 = 0; �1 = 0 (7.8)

At the constraints (7.8) three other equations (7.1), (7.4) and (7.6) take the form

�22 + �23 + 2l1 sin (2�)�2 = 0 (7.9)
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�21 + �22 + �23 + 2�1s? cos�
�
1� 4 sin2 �

�
� 2�2s? sin� (1 + 2 cos (2�)) = 0 (7.10)

21 + 22 + 23 + 21
�
s? cos�

�
1� 4 sin2 �

�
� l1 cos (2�)

�
+22 (s? sin� (1 + 2 cos (2�))� l1 sin (2�)) = 0 (7.11)

Solution of equation (7.9) has the form

�1 = 0; �2 = �l1 sin (2�) (1� cos �) ; �3 = l1 sin (2�) sin � (7.12)

where � is an arbitrary angle.
Solution of equation (7.10) has the form

�1 = �s? cos�
�
1� 4 sin2 �

�
+ s? cos �1 cos �2 (7.13)

�2 = �s? sin� (1 + 2 cos (2�)) + s? cos �1 sin �2 (7.14)

�3 = s? sin �1 (7.15)

where the quantities �1; �2 are arbitrary. and the quantity s? is determined by the
relation (6.29).
Substituting (7.12) - (7.15) in (7.11), one obtains a constraint on the quantities

�; �1; �2. Independently of this constraint the 3-vector

q+� = fl1 cos (2�) ; l1 sin (2�) cos �; l1 sin (2�) sin �g (7.16)

has the same 3-length l1, as the length of 3-vector l = fl1; 0; 0g. The angle between
the 3-vectors q+� and l is equal to 2�. If � = 0, then � = 0, and vectors PsPs+1
and Ps+1Ps+2 are elements of the same helix.
We see that the stabilizing vector PsQs reduces wobbling of vector PsPs+1.

In the case of equation (5.47) the spatial component � of the 4-vector � may be
in�nite. In the case of the equation (7.9) the length j�j of the spatial component �
of the 4-vector � is less, than jl1 sin (2�)j : Thus, the stabilizing vector PsQs reduces
the wobbling of the world chain. One cannot be sure, that this wobbling does not
destroy the helical character of the world chain. However, The main question is,
whether or not the evolution of the world chain in the spacelike direction lead to
the world chain, which is timelike on the average.
Any next point Pl of the world chain jumps along the timelike direction at the

distance l0 and in the 3-space, which is orthogonal to this direction, the point jumps
at the distance l1 > l0. Direction of the jump in the 3-space is described by the
vector q+�, which is given by the relation (7.16). The length of q+� is l1. If the
direction of jump is completely random, the displacement Ln for n steps (n � 1)
is proportional to

p
nl1, whereas displacement in the temporal direction is nl0. It

means that the mean velocity

hvi =
p
nl1
nl0

=
l1p
nl0

< 1; n� 1

tends to zero for n ! 1, although l0 < l1. In the case, if � = 0 and the 3-vector
q+� determined by (7.16) is not random, the world chain form a helix with timelike

29



axis. In this case the mean velocity tends to zero also. It should expect that in the
case, when the vector (7.16) is stochastic, but its stochasticity is restricted by the
relation (7.16) (the angle � is completely random), the mean world chain will be
also timelike on the average. We cannot prove this fact strictly now, but this result
seems to be very probable.

8 Discussion

The obtained classical helical world chain (5.13) associates with the classical Dirac
particle, which has alike world line (4.9), (4.10). The direction of the mean momen-
tum distinguishes from the direction of the 4-velocity. This fact is characteristic for
both particles (the Dirac particle, and the particle, described by the world chain
(5.13)). Both particles have angular moment. For the Dirac particle the mass m,
which enters in the Dirac equation, distinguishes from the mass M of the particle
moving along the world line (4.9), (4.10) [6]. As to the mass of the particle, de-
scribed by the world chain (5.13), it is not yet determined. For determination of
the mass, one needs to consider the world chain (5.13) of charged particle with the
skeleton fPk; Pk+1; Qk+1g in the distorted space-time of Klein-Kaluza, containing
electromagnetic �eld.
Existence of helical world chain with timelike axis seems to be rather unexpected,

because leading vectors PkPk+1 of the chain are spacelike, and it corresponds to
superluminal motion of a particle. Superluminal motion seems to be incompatible
with the relativity principle, which admits only motion with the speed less, than
the speed of the light. However, this constraint is valid only for continuous space-
time geometry, which admits unlimited divisibility. In a discrete geometry there are
no distances less, than some elementary length, and it is di¢ cult to formulate the
relativity principle statement on impossibility of superluminal motion. One needs
another more adequate formulation of the relativity principle.
Is the space-time geometry (5.19) discrete? At �0 ! 0 the space-time geometry

(5.19) turns to the space-time geometry

�d = �M + �20sgn (�M) (8.1)

which is certainly discrete, because in the space-time there no timelike intervals

jPQj, which are less, than �0, and there are no spacelike intervals
q
� jPQj2, which

are less, than �0. In such a space-time geometry there are no particles, whose
geometrical mass � is less than �0.
However, if �0 > 0, is the space-time geometry discrete? To answer this question,

we introduce the parameter of discreteness: the relative density of points in the
space-time with respect to the point density in the space-time of Minkowski. Let us
de�ne the quantity � (�d) by means of the relation

� (�d) =
d�M (�d)

d�d
(8.2)
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In the case (5.19) we have for �M 2 [��0; �0]

�M + �20

�
�M
�0

�3
� �d = 0 (8.3)

Resolving (8.3) with respect to �M, we obtain

�M = �0g
1=3 (�d)�

�20
3�20

g�1=3 (�d) (8.4)

where

g (�d) =

s
�30
27�60

+
�2d
4�40

+
�d

2�20
(8.5)

Taking into account (8.4) we obtain the world function �M as a function of �d

�M =

(
�d � �20sgn (�d) if j�dj > �0 + �20
�0g

1=3 (�d)� �20
3�20
g�1=3 (�d) if j�dj � �0 + �20

(8.6)

The relative density of points in the space-time geometry Gd with respect to the
standard geometry GM of Minkowski is given by the relation (8.2). The expression
for � (�d) is given by the relation

� (�d) =

(
1 if j�dj > �0 + �20

g0 (�d)
�
�0
3
g�2=3 (�d) +

�20
9�20
g�4=3 (�d)

�
if j�dj � �0 + �20

(8.7)

where g0 (�d) is given by the relation

g0 (�d) =
�d

4�40

q
1
27

�30
�60
+ 1

4�40
�2d

+
1

2�20
(8.8)

If �0 ! 0 and �0 � �20, we have approximately

g (�d) =
�d

�20
; g0 (�d) =

1

�20
(8.9)

In the limit �0 ! 0, when the world function (5.19) turns into the world function
(8.1) of the completely discrete geometry, we obtain for the relative density

lim
�0!0

� (�d) =

�
1 if j�dj > �20
0 if j�dj � �20

(8.10)

Thus, � (�d) = 0 for �d 2
�
��20; �20

�
, and this fact correspond to the space-time

geometry (8.1), where close points, for which j�dj � �20, are absent. The relative
density � (�d) of points may serve as quantity, describing the discreteness of the
space-time geometry and the character of this discreteness. The discreteness may
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be complete, when the density � (�d) vanishes in some region as in the case (8.10).
But the discreteness may be incomplete, as in the case (8.7). In this case for �0 = �20
we have

� (�d) =
1

6
q

4
27
�40 + �2d

 
3
p
g1 (�d) +

1

3

1
3
p
g1 (�d)

!
; �d 2

�
�2�20; 2�20

�
(8.11)

where

g1 (�d) =
1

2�20

 
�d +

r
4

27
�40 + �2d

!
(8.12)

The expression (8.11) is a symmetric function of �d, as one can see from (8.3). It
is symmetric, indeed, although it does not look formally as a symmetric function of
�d. Numerical values of � (�d) ; �d 2

�
�2�20; 2�20

�
are presented in the table

�d �
0 0:5
0:2�20 0:449 82
0:4�20 0:362 72
0:8�20 0:243 63

�d �
1:0�20 0:208 62
1:2�20 0:182 85
1:4�20 0:163 20
1:6�20 0:147 74

�d �
1:8�20 0:135 28
2:0�20 0:125
�0:2�20 0:449 82
�0:4�20 0:362 72

The relative density � (�d) is less, than unity. It may be interpreted in the sense,
that the space-time geometry is discrete only partly. Nevertheless the incompletely
discrete space-time geometry discriminates most of world chains with spatial leading
vector, remaining only some of them.
Multivariance of particle motion and discrimination of some states of motion

play the crucial role in structure of elementary particles, as well as in the structure
of atoms. Let us explain this circumstance in the example of the hydrogen atom.
According to laws of the classical mechanics the electron of the hydrogen atom is
to fall onto the nucleus due to the Coulomb attraction. Two reasons prevent from
this falling: (1) multivariant (stochastic) motion of the electron, and (1) rotation of
electron around the nucleus.
The multivariant motion of the electron leads to escape of the electron from the

nuclear surface. This process has the same nature, as an escape of dust from the
Earth surface. Moving multivariantly (as Brownian particles), the �ecks of dust
form a stationary distribution in the gravitational �eld of the Earth. If multivari-
ance of their motion is cut out, the �ecks of the dust fall onto the surface of the
Earth. Statistical description of the electron distribution and the dust distribution
are di¤erent, because the multivariant electron motion is conceptually relativistic,
whereas the Brownian particles motion is nonrelativistic. One may describe Brown-
ian particles by means of probabilistic statistical description, whereas one may use
only dynamical conception of statistical description for statistical description of mul-
tivariant motion of relativistic particles.
Rotation of the electron around the nucleus creates the �eld of centrifugal force,

which is added to the Coulomb force. As a result additional distributions of the elec-
trons appear. If the obtained distribution of electrons is nonstationary, the electrons
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emanate the electromagnetic radiation until the electron distribution becomes to be
stationary. Thus, the electromagnetic radiation carries out discrimination of non-
stationary states (electron distributions). The multivariance of the electron motion
and mechanism of discrimination of non-stationary states generates the structure
of the hydrogen atom and discrete character of the radiation spectra. From the
mathematical viewpoint the discrete character of the electron states is conditioned
by procedure of the eigenstates determination. Only eigenstates of the Hamilton
operator appear to be stationary and stable.
The multivariance of the particle motion and some mechanism of discrimination

play also the crucial role in the understanding of the structure of elementary par-
ticles. However, in the case of the elementary particle structure the discrimination
mechanism is conditioned by some metric (geometric) forces, which appear, when
we use space-time geometry of Minkowski instead of the real multivariant space-time
geometry. Formally these forces have the form of additional terms of the type (5.27)
in dynamic equations. These additional terms are expressed via the space-time
distortion d. They describe both multivariance of motion and the discrimination
mechanism. The multivariance of motion is associated with the multivariance of the
vector equivalence de�nition (2.7), whereas the discrimination mechanism is associ-
ated with the zero-variance of the same de�nition (2.7) for some vectors. Besides, as
we have seen, the zero-variance (discrimination) is associated with the discreteness
(or partial discreteness) of the space-time geometry.
It is very important, that consideration of multivariant space-time geometry is

not a hypothesis, which needs an experimental test. Consideration of the multi-
variant space-time geometry is a corollary of correction of our imperfect conception
of geometry. Conception of geometry, based on supposition that any space-time
geometry may be axiomatized (i.e. may be concluded from some system of axioms),
is imperfect, because it does not admit one to construct multivariant geometry
conceptually. However, the motion of electrons and other elementary particles is
multivariant. Multivariance of this motion is an experimental fact, which cannot
be ignored. As far as the imperfect conception of geometry did not admit one
to construct multivariant space-time geometry, investigators were forced to ascribe
multivariance to dynamics, introducing quantum principles with all their attributes.
The quantum principles look enigmatic and arti�cial, because multivariance is

ascribed to dynamics, whereas it should be ascribed to the space-time geometry.
Multivariance and zero-variance as properties of the space-time geometry look as
quite natural properties of the de�nition (2.7). Indeed, it does not follow from
anywhere, that equations (2.7) are to have unique solution for arbitrary world func-
tion, which determines the form of these equations. Absence of any hypotheses
is a very important property of the geometrical approach to the structure of el-
ementary particles. Besides, the geometrical dynamics is very general and simple.
Dynamic equations of the geometric dynamics do not use even di¤erential equations.
Formulation of dynamic equations does not contain a reference to the coordinate
system. On the other hand, when the geometric dynamics in the real space-time
is described in terms of the space-time of Minkowski, one obtains additional metric
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forces, which look rather exotic. They can be obtained hardly in the framework of
the conventional approach.
The conventional approach to the theory of elementary particles contains a lot of

secondary concepts and properties. One may not see any discrimination mechanism
in wave functions, �eld equations, branes, symmetries and other remote corollaries
of the unknown structure of elementary particles. But it is impossible to obtain
and to understand the discrete properties of elementary particles without a reliable
mechanism of discrimination.
Even if investigating and systematizing these remote corollaries, one succeeds to

obtain a perfect systematization of elementary particles, one can obtain structure of
elementary particles from the perfect systematization with the same success, as one
can obtain the atomic structure from the periodical system of chemical elements.

9 Concluding remarks

Consideration of T-geometry as a space-time geometry admits one to obtain dynam-
ics of a particle as corollary of its geometrical structure. Evolution of the geometrical
object in the space-time is determined by the skeleton fP0; P1; ::Png of the geomet-
rical object and by �xing of the leading vector P0P1. The skeleton and the leading
vector determine the world chain, which describes the evolution completely. The
world chain may wobble, it is manifestation of the space-time geometry multivari-
ance. Quantum e¤ects are only one of manifestation of the multivariance. It is
remarkable, that for determination of the world chain one does not need di¤erential
equations, which may be used only on the space-time manifold. One does not need
space-time continuity (continual geometry). Of course, one may introduce the con-
tinual coordinate system and write dynamic di¤erential equation there. One may,
but it is not necessary. In general, the geometrical dynamics (i.e. dynamics gener-
ated by the space-time geometry) is a discrete dynamics, where step of evolution is
determined by the length of the leading vector. It is possible, that one will need a
development of special mathematical technique for the geometrical dynamics.
The real space-time geometry contains the quantum constant ~ as a parameter.

As a result the geometric dynamics explains freely quantum e¤ects, but not only
them. The particle mass is geometrized (the particle mass is simply a length of
some vector). As a result the problem of mass of elementary particles is simply
a geometrical problem. It is a problem of the structure of elementary geometrical
object and its evolution. One needs simply to investigate di¤erent forms of skeletons
of simplest geometrical objects. In general, not all skeletons are possible, because at
the spatial evolution the world chain is observable (helical) only for several skeletons.
Additional points of skeleton lead to additional (sometimes unexpected) properties
of corresponding elementary geometrical objects (elementary particles).
Note that the geometric dynamics does not contain a rotational motion. It

contains only a shift. All vectors of the skeleton
n
P
(s)
0 ; P

(s)
1 ; ::P

(s)
n

o
of the link Ls
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are equivalent to vectors of the skeleton
n
P
(s+1)
0 ; P

(s+1)
1 ; ::: P

(s+1)
n

o
of the adjacent

link Ls+1. Such a situation is quite reasonable, because the geometrical dynamics
describes evolution of free particles. The rotating particle cannot be completely
free, because in the rotating particle there is centripetal acceleration. However,
acceleration of all parts of the body has to be absent for completely free motion.
On the other hand, the geometric dynamics contains the spatial evolution, which
absent in the conventional dynamics. From the geometrical viewpoint we may not
discriminate spatial evolution on the basis, that the leading vector P0P1 is spacelike
and its length is imaginary. In fact the spatial evolution discriminates itself, by the
fact, that the corresponding world chain is unobservable, in general. It appears to
be observable only for some complex skeletons, consisting of more, than two points.
The world chain, describing the spatial evolution is observable only in the case, when
it may be localized near the world chain of the observer. It takes place, when the
world chain has a shape of a helix with timelike axis, or some other shape, which
may be localized near the world chain of the observer. As a result not all skeletons
appear to be observable.
Although the geometric dynamics does not contain a rotation, but the corollaries

of the rotation (angular momentum, magnetic momentum) may be obtained as a
result of the spatial evolution, when the world chain is a helix. Apparently, the fact,
that such a "particle rotation" is a corollary of the spatial evolution, leads to the
spin discreteness of the Dirac particle. Of course, such statements are to be tested
by exact mathematical investigations of di¤erent types of skeletons and of di¤erent
space-time geometries. However, such a statement of the problem is quite concrete
and realizable.
Note, that the geometric dynamics in the real (non-Minkowskian) space-time

contains additional terms with respect to dynamics in the space-time of Minkowski.
From viewpoint of the space-time of Minkowski these additional terms may be in-
terpreted as some (metric) interactions, which take place inside the elementary par-
ticles. From the conventional viewpoint these interactions look very exotic and
strange. It is impossible (or very di¢ cult) to guess at them, starting from con-
ventional conception of the space-time and dynamics. In the geometric dynamics
there are no additional interactions, if we use the true space-time geometry. How-
ever, additional interactions appear, if we use inadequate geometry (for instance,
geometry of Minkowski, or Riemannian geometry). In other words, it is possible to
compensate false space-time geometry by introduction of additional interactions. It
is well known from the general relativity, that the motion of free body in the curved
space-time looks as a motion in the gravitational �eld, if one interprets this motion
as a motion in the space-time of Minkowski.
Description of conceptually new unknown phenomena by means of a change of

the space-time geometry is simpler, than an introduction of additional interactions,
because the space-time geometry is described by the world function, which is a func-
tion of two points. The form of the world function for large distances is determined
by the necessity of obtaining the nonrelativistic quantum mechanics. Restrictions,
imposed on the world function at small distances, are determined by the condition,
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that the spatial evolution may describe the Dirac particle. (Very many elementary
particles are the Dirac particles). Besides, the condition of localization of the world
chain (helical world chain) imposes restrictions on parameters of the particle. Not
all parameters of particles appear to be possible. This condition is a condition of
"peculiar quantization" of the particle parameters, which include the particle mass.
Let us note that the contemporary theory of elementary particles returns to

geometrical considerations (strings, branes). However, these considerations are re-
stricted by the framework of the Riemannian geometries and geometries close to the
Riemannian geometry. For instance, the quantum geometry, which uses operators
instead of the point coordinates. This is some way of introduction of multivariance
in the geometry. However, this geometry is developed on the basis of the linear
vector space, which is a restriction on the space-time geometry. In any case the con-
ventional approach to the space-time geometry considers only a part of all possible
space-time geometries. One cannot be sure, that the class of considered geome-
tries contains true space-time geometry. Of course, if one uses a false space-time
geometry, there is a possibility to correct the false space-time geometry by means of
additional interaction, generated by di¤erence with the true space-time geometry.
But such a correction is di¢ cult, especially if the true geometry is discrete or close
to the discrete geometry.
Note, that the geometry (5.1) is discrete, although it is given on the continuous

manifold of Minkowski. It is discrete, because the module of distance between any
two points is more, than �0. It is very unexpected, because it is a common practice to
consider any geometry on the manifold as a continuous geometry, although in reality
the geometry is determined by the world function and only by the world function. A
discrete geometry is associated with a grid. Of course, a geometry, given on a grid,
cannot be continuous. However, a geometry, given on the continuous set of points
(manifold), may be discrete.
Why the microcosm physics of the twentieth century did leave the successful pro-

gram of the physics geometrization and choose the alternative program of quantum
theory? Discovery of the electron di¤raction need of multivariance of the microcosm
physics. Multivariance may be taken into account either on the level of the space-
time geometry, or on the level of dynamics. The multivariant space-time geometry
was not known in the thirtieth, when the electron di¤raction was discovered. The
nonrelativistic quantum mechanics had been constructed already, and it was applied
successfully for explanation of the electron di¤raction.
The space-time geometry is a basis of dynamics. Introducing multivariance in

dynamics, one can describe not only nonrelativistic phenomena of microcosm. One
can describe also relativistic phenomena and that part of the microcosm physics,
which is known as the theory of elementary particles. The principles of quantum
mechanics, which introduce multivariance in the microcosm physics, were invented
for the Newtonian conception of the space-time, and their extrapolation to the rel-
ativistic phenomena appeared to be problematic. Of course, some properties of the
true space-time geometry may be taken into account by introduction of additional
interactions. However, it is very di¢ cult to invent and introduce additional inter-
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actions without understanding of these innovations. Capacities of the geometrical
approach are very large, especially if one takes into account all possible space-time
geometries. The theory of elementary particles returns to the geometrical descrip-
tion, but this description is burthened by such concepts as wave function, string,
brane, which have very abstracted relation to the structure of elementary particles
and microcosm physics.
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