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Abstract
The Newtonian investigation strategy declares "Hypotheses non �ngo!" In

practice it means that, having problems in the theory development, one looks
for mistakes in papers of predecessors and corrects them. Sometimes such an
investigation strategy admits one to solve the arising problems without a use
of additional hypotheses.
The conventional method of a generalized geometry construction, based

on deduction of all propositions of the geometry from axioms, appears to be
imperfect (incomplete) in the sense, that multivariant geometries cannot be
constructed by means of this method. Multivariant geometry is such a geom-
etry, where at the point P there are many vectors PP0, PP00,... which are
equivalent to the vector QQ0 at the point Q, but they are not equivalent
between themselves. In the conventional (Euclidean) method the equivalence
relation is transitive, whereas in a multivariant geometry the equivalence rela-
tion is intransitive, in general. It is a reason, why the multivariant geometries
cannot be deduced from a system of axioms. The space-time geometry in
microcosm is multivariant. As a rule the multivariant geometry is a granular
geometry, i.e. such a geometry, which is partly continuous and partly discrete.
Multivariance is a mathematical method of the granularity description. The
granularity (and multivariance) of the space-time geometry generates a mul-
tivariant (quantum) motion of particles in microcosm. Besides, the granular
space-time generates some discrimination mechanism, responsible for discrete
parameters (mass, charge, spin) of elementary particles. Dynamics of particles
appears to be determined completely by properties of the granular space-time
geometry. The quantum principles appear to be needless.

Investigation strategy is a very important matter, because, having a ine¢ cient
investigation strategy, one cannot obtain true results of investigation. Conventional
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investigation strategy uses the trial and error method, which traces back to the time
of the quantum mechanics creation. The Newtonian investigation strategy traces
back to the time of Sir Isaac Newton, who declared: "Hypotheses non �ngo." This
slogan means that having a problem in a theory, one should �rst of all to look
for mistakes in papers of the predecessors. Finding mistakes, one should correct
them. After such a correction invention of new hypotheses becomes to be needless
in many cases. The Newtonian investigation strategy is safe, because there is no
necessity to verify the correction. The found mistake must be corrected in any case,
whereas the invented hypothesis must be veri�ed. The Newtonian strategy has some
defects. At �rst, the researcher is to have very high quali�cation to �nd a possible
mistake, and such a high quali�cation is rather rare. Second, other researchers are
rather sceptical with respect to researcher, who declares, that he uses the Newtonian
investigation strategy. They prefer the strategy, which uses the trial and error
method, because this method does not need high quali�cation. Besides, they do
not like, when anybody �nd mistakes in papers of predecessors, because there are
papers founded on these wrong statements, and discovery of mistakes depreciate
these papers. Third, if anybody succeeded to �nd a very serious mistake and to
correct it, such a situation arises, when papers of almost all theorists appear to be
depreciated. In such a situation new papers of the adherer of the Newtonian strategy
are not accepted. However, the third property of Newtonian strategy becomes to
act, only if the mistake and its correction are su¢ ciently fundamental. Although
defects of the Newtonian investigation strategy in the social relation are essential,
This strategy is safe and reliable in the scienti�c relation.
In the end of nineteenth century the physics developed in the direction of its

geometrization, i.e. the more properties of physical phenomena were explained by
properties of the event space (space-time). Explanation of the conservation laws by
means of isotropy and homogeneity of the event space, the special relativity, the
general relativity, explanation of the electric charge discreteness by compacti�ca-
tion of 5-dimensional Kaluza-Klein geometry are consequent stages of the physics
geometrization. Geometrization of physics was a very e¤ective program of the the-
oretical physics development.
However, attempts of this program applications to the microcosm physical phe-

nomena failed. This failure was conditioned by the very sad circumstance, that
our knowledge of geometry were poor. We can describe only continuous geometries
with unlimited divisibility. We cannot work with granular geometries, i.e. with
geometries, which are partly continuous and partly discrete. We did not know how
one can describe a geometry with limited divisibility. We could not imagine, that
there are multivariant geometries, where at the point P0 there exist many vectors
P0P1, P0P2 ,P0P3,..., which are equivalent to the vector Q0Q1 at the point Q0,
but these vectors P0P1, P0P2 ,P0P3,.. are not equivalent between themselves. We
could not imagine, the geometry in itself may discriminate existence of some geo-
metrical objects. In reality the space-time geometry of microcosm possessed such
exotic properties, however we cannot describe these properties. Our knowledge of
geometry were too poor. However, the multivariance is a very important property
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of the space-time geometry, which is responsible for quantum e¤ects [1].
All generalized geometries are modi�cations of the proper Euclidean geometry,

constructed by Euclid many years ago. Euclid presented two very important mat-
ters: (1) The Euclidean geometry and (2) the Euclidean method of the geometry
construction.
Conventionally one uses the Euclidean method for construction of generalized

geometries. This method is only a half-�nished product (the product is the Euclidean
geometry itself). Using the Euclidean method, one can construct only axiomatizable
geometries. The axiomatizable geometries are such geometries, where all geometrical
objects can be constructed of blocks. Euclid himself used three kinds of such blocks:
point, segment of straight and angle. Formalization of the construction procedure
leads to the statement, that all propositions of the proper Euclidean geometry may
be deduced from a �nite system of axioms. One supposes, that for construction of
a generalized geometry one has to use another system of axioms (i.e. the Euclidean
blocks are to be replaced by another series of blocks). Thus, the Euclidean method
admits one to construct only axiomatizable geometries.
Another method of the generalized geometry construction admits one to con-

struct only physical geometries, i.e. geometries, which can be described completely
by the world function of the geometry in question. The world function � is de-
�ned by the relation � (P;Q) = 1

2
�2 (P;Q), where � (P;Q) is the distance between

the points P and Q. This method uses the already constructed proper Euclidean
geometry as follows. The proper Euclidean geometry GE is a physical geometry.
All propositions P of the proper Euclidean geometry GE are presented in the form
P (�E), where �E is the world function of GE. Thereafter one deform the standard
geometry GE, replacing �E by the world function � of some other physical geometry
G: P (�E) ! P (�). One obtains the set P (�) of all propositions of the physical
geometry G. The physical geometry G, obtained from the standard (proper Euclid-
ean) geometry by means of the deformation is not an axiomatizable geometry, in
general, i.e. it cannot be constructed of any blocks.
Let us demonstrate this fact in a simple model. Let we have only one kind of

cubic plasticine blocks. These blocks are painted by a red paint, in order one can
distinguish boundaries of blocks in a building. Let us construct some building of
these blocks, for instance, a cube. Let us deform this cube in an arbitrary way, for
instance, into a circular cylinder. After such a deformation all cubic blocks, con-
stituting the cube will be deformed. The deformation will be di¤erent for di¤erent
blocks, and they cannot be used for construction of a new building. Of course, one
can reconstruct the cylinder, but this cylinder will be reconstructed of blocks, hav-
ing di¤erent shapes, which they have been obtained as a result of the deformation.
These blocks are not suitable for construction of another buildings.
This model shows, how a deformation destroys the axiomatizability of the ax-

iomatizable geometry.
In any axiomatizable geometry the equivalence relation is transitive. This transi-

tivity is necessary, in order that any deduction leads to a de�nite result. Deformation
destroys the transitivity of the equivalence relation, and the geometry becomes to
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be nonaxiomatizable. Let us demonstrate this in the example of two vector equiv-
alence. In the proper Euclidean geometry GE the equivalence of two vectors P0P1
and Q0Q1 is de�ned as follows. Vectors P0P1 and Q0Q1 are equivalent (P0P1eqv
Q0Q1), if vectors P0P1 and Q0Q1 are in parallel (P0P1 "" Q0Q1) and their lengths
jP0P1j and jQ0Q1j are equal. Mathematically these two conditions are written in
the form

(P0P1 "" Q0Q1) : (P0P1:Q0Q1) = jP0P1j � jQ0Q1j (1)

jP0P1j = jQ0Q1j ; jP0P1j =
p
2� (P0; P1) (2)

where (P0P1:Q0Q1) is the scalar product of two vectors, de�ned by the relation

(P0P1:Q0Q1) = � (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) (3)

Here � is the world function of the proper Euclidean geometry GE. The length jPQj
of vector PQ is de�ned by the relation

jPQj = � (P;Q) =
p
2� (P;Q) (4)

Using relations (1) - (4), one can write the equivalence condition in the form

P0P1eqvQ0Q1 : � (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1)
= � (P0; P1) ^ � (P0; P1) = � (Q0; Q1) (5)

The equivalence relation is used in any physical geometry. The de�nition of
equivalence (5) is a satisfactory geometrical de�nition, because it does not contain
a reference to the dimension of the space and to the coordinate system. It contains
only points P0; P1; Q0; Q1, determining vectors P0P1 andQ0Q1 and distances (world
functions) between these points. The de�nition of equivalence (5) coincides with the
conventional de�nition of two vectors equivalence in the proper Euclidean geometry.
If one �xes points P0; P1; Q0 in the relations (5) and solve them with respect to the
point Q1, one �nds that these equations always have one and only one solution. This
statement follows from the properties of the world function of the proper Euclidean
geometry. It means that the proper Euclidean geometry is single-variant with respect
any pairs of its points. It means also, that the equivalence relation is transitive in
the proper Euclidean geometry.
In the arbitrary physical geometry the equivalence relation has the same form

(5) with another world function �, satisfying the constraints

� : 
� 
! R; � (P; P ) = 0; 8P;Q 2 
 (6)

Here 
 is the set of all points, where the geometry is given.
In the case of arbitrary world function one cannot guarantee, that equations (5)

have always an unique solution. There may be many solutions. In this case one has a
multivariant geometry. There may be no solution. In this case one has a zero-variant
(discriminating) geometry. In both cases the equivalence relation is intransitive, and
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geometry is nonaxiomatizable. There may be such a situation, that the geometry
is multivariant with respect to some points and vectors, and it is zero-variant with
respect to other points and vectors.
One sets conventionally, that the world function of the space-time is symmetric

� (P;Q) = � (Q;P ) ; 8P;Q 2 
 (7)

This condition means that the future and the past are geometrically equivalent.
However, the physical geometry can be constructed for asymmetric world function
� [2]

� (P;Q) = G (P;Q) + A (P;Q) ; (8)

G (P;Q) = G (Q;P ) ; A (P;Q) = �A (Q;P ) (9)

The time is considered as an attribute of the event space (space-time). The time
arrow can be taken into account in the technique of asymmetric space-time geometry.
The asymmetric geometry with asymmetric world function may appear in the

microcosm, however, its application is especially interesting in the cosmology, where
the future and the past of our universe may appear to be not equal. Besides, the
gravitational law in asymmetric space-time geometry distinguishes from gravita-
tional law in the symmetric one. Maybe, reasonable supposition on asymmetry of
the space-time geometry will be able to explain de�ection of astronomical observa-
tions from predictions of the general relativity. In this case the invention of the dark
matter will be needless. However, such a possibility is not investigated yet properly.
The granular space-time geometry Gg, given on the manifold of Minkowski is

described approximately by the world function �g

�g = �M + �
2
0

�
sgn (�M) if j�Mj > �0
�M
�0

if j�Mj � �0
; �20; �0 = const � 0 (10)

where �M is the world function of the geometry GM of Minkowski, �0 is a elementary
length. The world function �M of the Minkowski geometry GM is Lorentz-invariant,
and the world function �g of the granular geometry Gg is Lorentz-invariant also,
because it is a function of �M. If �0 = 0, the geometry Gg is discrete, although it is
given on the continuous manifold of Minkowski. Indeed, if �0 = 0, in the geometry
Gg there are no close points separated by a distance less, than

p
2�0. This statement

follows from (10). Discrete Lorentz-invariant geometry on a continuous manifold!
This fact seems to be very unexpected in the conventional approach to geometry,
where discreteness of geometry depends on the structure of the point set 
, where
the geometry is given.
In the physical geometry discreteness and continuity of the geometry is deter-

mined by the world function and only by the world function, whereas the structure
of the point set 
 is important only in such extent, in which it in�uences on the
world function.
Granularity of the geometry Gg becomes more clear, if one considers the relative

density � (�g) =
d�M(�g)

d�g
of points in GM with respect to the density of points in Gg.
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One obtains from (10)

� (�g) =
d�M (�g)

d�g
=

�
1 if j�gj > �0 + �20
�0

�0+�
2
0
if j�gj � �0 + �20

(11)

One can see from (11), that at �0 = 0 there is no points in the interval �g 2�
��20; �20

�
. If �0 6= 0, one can see from (11), that the relative density of points

in the interval �g 2
�
��20 � �0; �20 + �0

�
is less, than unity but it is not equal to

zero. We have some intermediate situation between the continuity (when � = 1)
and discreteness (when � = 0). Such a situation is treated as granularity.
In the granular space-time geometry the elementary particle is described by its

skeleton Pn = fP0; P1; ::; Png, consisting of n + 1 points. The pointlike particle
is described by the skeleton P1 = fP0; P1g, consisting of two points, or by the
vector P0P1. The vector P0P1 represents the momentum of the pointlike particle,
whereas its length jP0P1j = � is the geometrical mass of the pointlike particle. The
geometrical mass � is connected with its usual mass m by means of the relation

m = b� (12)

where b is some universal constant.
Evolution of the elementary particle is described by the world chain, consisting

of connected skeletons ...P(0)n ;P(1)n ; :::;P(s)n :::

P(s)n =
n
P
(s)
0 ; P

(s)
1 ; ::P

(s)
n

o
; s = :::0; 1; ::: (13)

The adjacent skeletons P(s)n ;P(s+1)n of the chain are connected by the relations P (s)1 =

P
(s+1)
0 , s = :::0; 1; ::: The vector P(s)0 P

(s)
1 = P

(s)
0 P

(s+1)
0 is the leading vector, which

determined the world chain direction.
Dynamics of free elementary particle is determined by the relations

P(s)n eqvP(s+1)n : P
(s)
i P

(s)
k eqvP

(s+1)
i P

(s+1)
k ; i; k = 0; 1; ::n; s = :::0; 1; :::

(14)
which describe equivalence of adjacent skeletons.
Thus, dynamics of a free elementary particle is described by a system of algebraic

equations (14). Speci�c of dynamics depends on the elementary particle structure
(disposition of particles inside the skeleton) and on the space-time geometry.
In the simplest case, when the space-time geometry is the 5-dimensional Kaluza-

Klein geometry, the dynamic equations (14) for the pointlike particle are reduced to
conventional di¤erential dynamic equations, describing motion of the charged point-
like particle in the given electromagnetic and gravitational �elds. Thus, dynamic
equations (14) can be considered as a generalization of classical di¤erential dynamic
equations for the particle motion on the case of the granular space-time geometry. It
is quite reasonable, that the dynamic equations in the granular space-time geometry
cannot be di¤erential equations.
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Let the elementary length �0 have the form

�20 =
~
2bc

(15)

where ~ is the quantum constant, c is the speed of the light and b is the universal
constant, de�ned by (12). Let the constant �0 in (11) be small enough. Then
the motion of a pointlike particle in the granular space-time geometry (11) appears
to be multivariant (stochastic). Statistical description of this multivariant particle
motion coincides with the quantum description in terms of the Schrödinger equation.
Quantum constant appears in the description via elementary length (15), which is
a parameter of the granular space-time geometry.
Motion of elementary particles, which are not pointlike is not yet investigated

properly. There is only some information on the Dirac particle, whose skeleton
consists of three points and leading vector is spacelike [3]. In this case the world
chain is a spacelike helix with the timelike axis. Such a spacelike helix cannot exist in
the granular geometry (10). However, if the world function (10) is modi�ed slightly
at small distances �g ! �gm

�gm = �M + �
2
0

(
sgn (�M) if j�Mj > �0�
�M
�0

�3
if j�Mj � �0

; �20; �0 = const � 0 (16)

such a spacelike helix becomes possible. The spacelike helix is possible also for other
space-time geometries, where the the world function in interval (��0; �0) has the
form f (�M=�0), j�Mj < j�0j. It is to satisfy the condition jf (�M=�0)j < j�M=�0j.
Identi�cation of the elementary particle with the world chain, having a shape of

the spacelike helix, with the Dirac particle is founded on the following fact. In the
classical limit the Dirac equation for a free particle describes a classical dynamic
system having 10 degrees of freedom. Solution of dynamic equations describes a
helical world line with the timelike axis [4]. It is not quite clear, whether this helix
is spacelike, or timelike, because the internal degrees of freedom, responsible for
circular motion, are described nonrelativistically (i.e. incorrectly), although external
degrees of freedom are described relativistically [5].
Such an approach to dynamics of the elementary particles seems to be very

reasonable, because the structure of the elementary particle is de�ned by its skeleton
structure. Description does not contain wave functions, branes, strings and other
exotic matters, which are very far from the space-time geometry. It is important
also the fact, that the description in the granular geometry is described on the
Kaluza-Klein manifold, and the granular space-time geometry can be reduced to
the description in terms of the Kaluza-Klein geometry with addition of some force
�elds, which describe de�ection of the granular geometry from the Kaluza-Klein one.
A use of the Kaluza-Klein geometry needs a compacti�cation of the �fth coor-

dinate, responsible for the electric charge of the particle. Compacti�cation of the
Kaluza-Klein geometry means a modi�cation of its topology. However, in the phys-
ical geometry the topology is determined completely by the world function. One
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cannot change the topology independently of a corresponding change of the world
function. The modi�cation of the world function, which corresponds to compacti�-
cation, leads to constraints, imposed on the electric charge of the particle [6]. This
constraint has nothing to do with quantum principles.
The presented conception is completely orthodox, because it does not use any

new principles. Introducing into consideration nonaxiomatizable geometries, one
removes only incompleteness in description of the space-time geometry. Orthodoxy
of the conception evidences in behalf of this conception.
In general, the geometric dynamics (14) is a classical dynamics in the granular

space-time geometry. The granularity of the space-time generates two new proper-
ties, which are absent in the axiomatizable geometries: (1) multivariance, which is
responsible for quantum properties, (2) zero-variance (discrimination mechanism),
which is responsible for discreteness of the elementary particles parameters. The
multivariance of the granular space-time geometry can be taken into account by
means of the statistical description. Quantum theory can imitate multivariance
(and statistical description) on the level of dynamics, but it cannot imitate the
zero-variance (discrimination mechanism). As a result the contemporary theory of
elementary particles has no key to explanation of discrete parameters of the elemen-
tary particles.
Let us note in conclusion that we did not use any new hypotheses. Our concep-

tion is not a conceptually new theory. It is simply a generalization of the classical
dynamics onto the case of granular space-time geometry, which was ignored by con-
temporary mathematicians (and physicists). Using granular space-time, we do not
use any new hypotheses or principles. We have overcame simply the preconcep-
tion, that the space-time geometry may be only axiomatizable. Besides, we reduce
the number of principles in the theory in the sense, that the quantum principles
are not used. Quantum e¤ects are described now by multivariance of the granular
space-time geometry.
The generalization of classical physics on the case of the granular space-time

geometry is not yet accomplished in the sense, that only generalization of dynamic
equations for the particle motion in the given external �elds has been obtained.
Another part of the classical physics, which describes in�uence of the matter on the
space-time geometry (gravitation equations and Maxwell equations) has not been
generalized yet on the case of the granular space-time geometry.
The considered conception may be quali�ed as the point 3 in the program of

the physics geometrization: (1) special relativity in the framework of axiomatizable
geometries, (2) general relativity in the framework of axiomatizable geometries, (3)
special relativity in the framework of granular geometries, (4) general relativity in
the framework of granular geometries. The point 4 is not yet realized.
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