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Abstract

It is shown, that the dominating now quantum paradigm is conditioned
by our insu¢ cient knowledge of geometry, when we cannot work with discrete
geometries and with geometries, having a limited divisibility. Progress in
investigation of geometry admits one to use a more natural and reasonable
geometric paradigm, when classical principles of dynamics are �xed, and the
space-time geometry is varied.

1 Introduction

There are two di¤erent approaches at description of particle dynamics in the micro-
cosm
(1) Quantum paradigm, when the space-time geometry is �xed, but principles of

dynamics are varied to explain quantum e¤ects
(2) The geometric paradigm, when the classical principles of dynamics are �xed,

but the space-time geometry is varied.
The quantum paradigm, dominating now, has been generated by our insu¢ cient

knowledge of geometry, as well as two centuries earlier the axiomatic thermody-
namics on the basis of thermogen has been generated by absence of knowledge on
molecular structure of matter and by absence of a theory on molecular chaotic mo-
tion.
Construction of an e¤ective fundamental physical theory of microcosm is re-

stricted by our poor knowledge of geometry. We can work only with continuous
geometries and with in�nitely divisible geometries. We cannot work with discrete
geometries and with limited divisible geometries. In general, we investigate the
methods of the continuous geometry description, supposing that it is a geometry
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itself. For instance, tie-up of geometrical objects, conditioned by the unlimited
divisibility, is declared as con�nement and generates an appearance of a �ctitious
interaction (gluons).
Physical geometry is a science on the shape and mutual dispositions of geometri-

cal objects. At such an approach the geometry is described completely by a distance
between all pairs of points in the space or in the space-time. This fact has been
known long ago [1, 2]. This fact manifested itself in construction of the metric geom-
etry (metric space), when in the space (on a point set) the distance between all pairs
of points is given. In this case the geometry is described completely. Introduction
of a coordinate system is not necessary. The dimension of the geometry is also a
redundant information, which may disagree with the distance function, because the
dimension, (if it can be introduced) is to be obtained from the distance function.
Mathematical geometry is a logical construction on the basis of a system of ax-

ioms.
Both geometries: physical and mathematical ones have a common source: the

proper Euclidean geometry.
The physical geometry takes the Euclidean geometry in itself from Euclid. It is

obtained as a result of a deformation of the proper Euclidean geometry [3, 4]. The
physical geometry uses the supposition, that one knows the Euclidean geometry.
The mathematical geometry adopts the method of the proper Euclidean geome-

try construction with all its problems (necessity of testing the axioms compatibility
and necessity of proving numerous theorems). However, the construction of the
mathematical geometry does not depend on our knowledge of the proper Euclidean
geometry.
The physical geometry is nonaxiomatizable, in general. It means that the physi-

cal geometry cannot be deduced from some axiomatics, as a mathematical geometry.
Another problem of the physical geometry lies in the fact, that information which

is supplied by the distance function is too abundant. It is not clear, how to use this
information e¤ectively. Even if one knows distances between all points of geometrical
objects in Fig.1a, one cannot use this information e¤ectively. It is not clear, how
one can use a large number of distances between the points of the two objects,
although, in principle, their mutual disposition can be described on the basis of this
information. However, two spheres in Fig.1b may be described e¤ectively, because
description of mutual disposition of the two spheres is carried on by means of three
numbers: two radii of spheres and distance between their centers. The di¤erence
between the two cases is explained very easily. We are able to describe sphere in
terms of distance. However we are not able to describe each of objects in Fig.1a in
terms of only distance.

2 Multivariance and axiomatizability

Axiomatizable (mathematical) geometries form a negligible part of all physical
geometries, i.e. geometries suitable for description of real space-time. Contem-
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porary physicists (and mathematicians) use only axiomatizable geometries. As a
result the real space-time geometry remains outside the region of consideration. For
instance, one considers only geometry of Minkowski among all uniform isotropic
geometries.
The geometry of Minkowski, considered as a physical geometry, is described

completely by the world function �M, The world function

�M (P;Q) =
1

2
�2M (P;Q)

where �M (P;Q) is the distance between points P and Q. In reality there is a lot
of uniform isotropic geometries. Each of them is described by the world function
� = F (�M), where F is an arbitrary function.
Nonaxiomatizability of a physical geometry is conditioned by its multivariance.

A geometry is multivariant with respect to a point P and a vector AB, if at the
point P there are many vectors PQ;PQ0;PQ00; :::, which are equivalent to the vector
AB, but they are not equivalent between themselves. Multivariance of a geometry is
connected with its nonaxiomatizability, which in turn is connected with intransitivity
of the equivalence relation.
Multivariance of a geometry is a very important property, which was not known

before, as well as the concept of inertia was not known in the Aristotelian mechanics
The equivalence relation is transitive in any mathematical geometry, as well as

in any logical construction. For this reason the mathematical geometry cannot be
multivariant. Deformation of the Euclidean geometry destroys the transitivity of
the equivalence relation. The obtained physical geometry secures new properties
(multivariance, nonaxiomatizability). The proper Euclidean geometry has not these
properties, as well as any mathematical (axiomatizable) geometry.
Construction of a physical geometry is carried out by means of the proper Euclid-

ean geometry GE, which plays a role of a standard geometry. All propositions P of
the proper Euclidean geometry GE are presented in the form P (�E), where �E is the
world function of GE. Thereafter one deforms the standard geometry GE, replacing
�E by the world function � of some other physical geometry G: P (�E) ! P (�).
One obtains the set P (�) of all propositions of the physical geometry G. The physi-
cal geometry G, obtained from the standard (proper Euclidean) geometry by means
of the deformation is not an axiomatizable geometry, in general. Any statement of
the new physical geometry associates with some statement of the proper Euclidean
geometry. The physical geometry, obtained by means of such a deformation appears
to be multvariant and, hence, nonaxiomatizable.
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The multivariance is a very important property of the space-time geometry, which
is responsible for quantum e¤ects [5].
In the proper Euclidean geometry GE the equivalence of two vectors P0P1 and

Q0Q1 is de�ned as follows. VectorsP0P1 andQ0Q1 are equivalent (P0P1eqvQ0Q1),
if vectors P0P1 and Q0Q1 are in parallel (P0P1 "" Q0Q1) and their lengths jP0P1j
and jQ0Q1j are equal. Mathematically these two conditions are written in the form

(P0P1 "" Q0Q1) : (P0P1:Q0Q1) = jP0P1j � jQ0Q1j (2.1)

jP0P1j = jQ0Q1j ; jP0P1j =
p
2� (P0; P1) (2.2)

where (P0P1:Q0Q1) is the scalar product of two vectors, de�ned by the relation

(P0P1:Q0Q1) = � (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) (2.3)

Here � is the world function of the proper Euclidean geometry GE. The length jPQj
of vector PQ is de�ned by the relation

jPQj = � (P;Q) =
p
2� (P;Q) (2.4)

Using relations (2.1) - (2.4), one can write the equivalence condition in the form.

P0P1eqvQ0Q1 : � (P0; P1) = � (Q0; Q1)

^� (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) = � (P0; P1) (2.5)

The equivalence relation is used in any physical geometry. The de�nition of
equivalence (2.5) is a satisfactory geometrical de�nition, because it does not con-
tain a reference to a dimension of the space and to a coordinate system. It contains
only points P0; P1; Q0; Q1, determining vectors P0P1 andQ0Q1 and distances (world
functions) between these points. The de�nition of equivalence (2.5) coincides with
the conventional de�nition of two vectors equivalence in the proper Euclidean geom-
etry. If in the proper Euclidean geometry one �xes points P0; P1; Q0 in the relations
(2.5) and solve these equations with respect to the point Q1, one �nds that these
equations always have one and only one solution. This statement follows from the
properties of the world function of the proper Euclidean geometry. It means that
the proper Euclidean geometry is single-variant with respect any pairs of its points.
It means also, that the equivalence relation is transitive in the proper Euclidean
geometry. By de�nition the transitivity of the equivalence relation means, that

if P0P1eqvQ0Q1 ^Q0Q1eqvR0R1; then P0P1eqvR0R1 (2.6)

In the arbitrary physical geometry the equivalence relation has the same form
(2.5) with another world function �, satisfying the constraints

� : 
� 
! R; � (P; P ) = 0; 8P;Q 2 
 (2.7)
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Here 
 is the set of all points, where the geometry is given.
In the case of arbitrary world function one cannot guarantee, that equations

(2.5) have always a unique solution. There may be many solutions. In this case
one has a multivariant geometry. There may be no solution. In this case one has
a zero-variant (discriminating) geometry. In both cases the equivalence relation is
intransitive, and geometry is nonaxiomatizable. There may be such a situation,
that the geometry is multivariant with respect to some points and vectors, and it is
zero-variant with respect to other points and vectors. Such a geometry will be also
quali�ed as a multivariant geometry.
The geometry of Minkowski is single-variant with respect to timelike vectors, and

it is multivariant with respect to spacelike vectors. In the relativistic dynamics the
spacelike vectors are not used (superlight velocities are forbidden by the relativity
principles). For this reason the multivariance with respect to the spacelike vectors
remains to be unknown for physicists.
Let us consider an example of a slightly deformed space-time geometry of Minkowski,

given on the manifold of Minkowski. This geometry Gd is described by the world
function �d

�d = �M + �
2
0

�
sgn (�M) if j�Mj > �0
�M
�0

if j�Mj � �0
; �20; �0 = const � 0 (2.8)

where �M is the world function of the geometry GM of Minkowski, �0 is an elementary
length. The world function �M of the Minkowski geometry GM is Lorentz-invariant,
and the world function �d of the granular geometry Gg is Lorentz-invariant also,
because it is a function of �M. If �0 = 0, the geometry Gd is discrete, although it is
given on the continuous manifold of Minkowski. Indeed, if �0 = 0, in the geometry
Gg there are no close points separated by a distance less, than

p
2�0. This statement

follows from (2.8). Discrete Lorentz-invariant geometry on a continuous manifold!
This fact seems to be very unexpected at the conventional approach to geometry,
where discreteness of geometry depends on the structure of the point set 
, where
the geometry is given, and where the geometry is formulated in some coordinate
system.
Granularity (discreteness and continuity at the same time) of the geometry Gd

becomes more clear, if one considers the relative density � (�d) =
d�M(�d)
d�d

of points
in GM with respect to the density of points in Gd. Such a density can be introduced,
if both geometries Gd and GM are uniform, and �d is a function of �M. One obtains
from (2.8)

� (�d) =
d�M (�d)

d�d
=

�
1 if j�dj > �0 + �20
�0

�0+�
2
0
if j�dj � �0 + �20

(2.9)

One can see from (2.9), that

the space-time is continuous � = 1; if �d =2
�
��0 � �20; �0 + �20

�
the space-time is discrete � = 0, if �0 = 0 ^ �d 2

�
��20; �20

�
the space-time is granular, if �0 6= 0
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The intermediate situation, when � = 1 for large values of �d and 0 � � < 1 for
small values of �d is treated as a granularity.
In the Fig.2a the function (2.8) is presented. The large values of the world

function �d are responsible for multivariance of timelike vectors in the space-time
geometry Gd. In the Fig.2b we see timelike world lines of pointlike particle in the
Minkowski space-time (on the right) and the same world lines in the deformed space-
time (on the left). The particle motion in the deformed space-time Gd is multivariant.
Statistical description of this multivariant motion leads to quantum description in
terms of the Schrödinger equation [5].
Thus, quantum e¤ects are described by means multivariance of the space-time

geometry with respect to timelike vectors.

3 Dynamics in physical space-time geometry

In the physical space-time geometry the elementary particle is described by its skele-
ton Pn = fP0; P1; ::; Png, consisting of n+1 points. The pointlike particle is described
by the skeleton P1 = fP0; P1g, consisting of two points, or by the vector P0P1. The
vector P0P1 represents the momentum of the pointlike particle, whereas its length
jP0P1j = � is the geometrical mass of the pointlike particle. The geometrical mass
� is connected with its usual mass m by means of the relation

m = b� (3.1)

where b is some universal constant.
Evolution of the elementary particle is described by the world chain, consisting

of connected skeletons ...P(0)n ;P(1)n ; :::;P(s)n :::

P(s)n =
n
P
(s)
0 ; P

(s)
1 ; ::P

(s)
n

o
; s = :::0; 1; ::: (3.2)

The adjacent skeletons P(s)n ;P(s+1)n of the chain are connected by the relations P (s)1 =

P
(s+1)
0 , s = :::0; 1; ::: The vector P(s)0 P

(s)
1 = P

(s)
0 P

(s+1)
0 is the leading vector, which
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determined the world chain direction. If the leading vector is timelike, the world
chain is timelike. If the leading vector is spacelike, the world chain is spacelike.
Dynamics of free elementary particle is determined by the relations [6]

P(s)n eqvP(s+1)n : P
(s)
i P

(s)
k eqvP

(s+1)
i P

(s+1)
k ; i; k = 0; 1; ::n; s = :::0; 1; :::

(3.3)
which describe equivalence of adjacent skeletons.Thus, dynamics of a free elementary
particle is described by a system of algebraic equations (3.3). Speci�c of dynamics
depends on the elementary particle structure (number and disposition of particles
inside the skeleton) and on the space-time geometry.
In the simplest case, when the space-time geometry is the 5-dimensional Kaluza-

Klein geometry [7, 8], the dynamic equations (3.3) for the pointlike particle are
reduced to conventional di¤erential dynamic equations, describing motion of the
charged pointlike particle in the given electromagnetic and gravitational �elds. Thus,
dynamic equations (3.3) can be considered as a generalization of classical di¤erential
dynamic equations for the particle motion on the case of the granular space-time
geometry. It is a very important fact, which shows, that description of free particles
by means of a world chain, consisting of connected skeletons, is simply a generaliza-
tion of conventional relativistic dynamics of particles, which do not interact between
themselves. This generalization does not contain any new principles. It is simply
a generalization of the particle dynamics onto the case of the granular space-time
geometry.
According to de�nition of dynamics (3.3) all vectors of the skeleton are trans-

ported along the chain in parallel with itself (translation), i.e. without a rotation. It
means a stronger de�nition of a free particle, than that, which is used conventionally.
Usually the rotating particle, moving in the absence of external �elds, is considered
to be free, although some parts of the particle move with acceleration, generated
by the rotation. In the free motion, de�ned by the relation (3.3), all points of the
skeleton move without an acceleration, and all vectors of the skeleton do not rotate.
The particle rotation appears as a special kind of motion with superlight speed (with
spacelike leading vector of the world chain). This property seems rather unexpected
from conventional viewpoint [9, 10, 11]. However, this property may take place in
some special form of the granular geometry. Then the composite particle rotation
is realized in the helical shape of the world chain.

7



In the case of timelike world chain the ends of vectors, which are equivalent to
a vector, are placed on the proper Euclidean sphere of radius

p
2�0, as it shown

in Fig.2b. As a result the ends of di¤erent vectors are placed rather close (at the
distance of the order of �0). Analogous, in the case of spacelike world chain the ends
of equivalent vectors are placed on the sphere of the radius 0 in the pseudo-Euclidean
space of index 1. If coordinates of the vector P0P1 = f0; 1; 0; 0g, coordinates of
equivalent vectors at the point P0 are P0Q =

np
a22 + a

2
3; 1; a2; a3

o
, where a2; a3 are

arbitrary numbers. The sphere of radius 0 in the pseudo-Euclidean space of index
1 is a light cone, whose points may be inde�nitely far one from another. It means,
that �uctuation of links of the multivariant spacelike world chain may be very large.
Such a world chain is not observable. It means, that such a world chain cannot
exist.
However, if the world function has the form, shown in Fig.4b, the spacelike world

chain may have a shape of a helix with timelike axis. In this case the skeleton is
to contain more than, two points and the links of the chain must have rather short
lengths [11]. This world chain is shown in Fig.4a. Such a world chain associates
with fermion (the Dirac particle) [9, 10]
It is quite reasonable, that the dynamic equations in the granular space-time

geometry cannot be di¤erential equations. The dynamic equations can be only
di¤erence equations.

4 Incomplete knowledge and false knowledge

Let us imagine an investigator, who knows only axiomatizable geometries and does
not know about existence of nonaxiomatizable geometries. He uses the mathematical
(axiomatizable) geometries for description of the space-time. The fact, that the
investigator does not know physical (nonaxiomatizable) geometries, is not a mistake.
It is only incomplete knowledge of geometry. However, if the investigator thinks,
that the space-time can be described only in terms of mathematical geometries, and
nonaxiomatizable geometries do not exist at all, it becomes to be a mistake. The
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knowledge of geometry becomes to be a false knowledge. Thus, the false knowledge
is not the fact, that we do not know nonaxiomatizable geometries, but the fact, that
we do not admit nonaxiomatizable geometries.
Ancient Egyptians believed, that all rivers �ow northwards. It was a false knowl-

edge, because ancient Egyptians considered incomplete knowledge (knowledge on
one river) as a complete knowledge (knowledge on all rivers), and this self-assurance
led to a mistake.
In the same way the fact, we do not know nonaxiomatizable geometries, leads to

the quantum paradigm only, if we are very self-con�dent and believe, that we know
geometry very well.
Comprehension of incompleteness of our geometrical knowledge , based on this

knowledge, opens the door for progress of our geometrical knowledge and for progress
of the microcosm physics, based on this knowledge. Extraneous self-assurance and
con�dence to completeness and trueness of our geometrical knowledge shut the door
for a progress and push us to the path of invention of hypotheses, which compensate
incompleteness of our geometrical knowledge. To do it justice the way of compen-
sation may lead to some success, However, �nally it leads to blind alley.

5 Concluding remarks

The obtained dynamics is a simple generalization of relativistic dynamics in the
Riemannian space-time on the case of the space-time with arbitrary geometry and
of a particle with complicated internal structure. This generalization does not use
any new ideas and hypotheses. In the case of a pointlike particle and of the Rie-
mannian space-time geometry dynamic equations (3.3) turn into dynamic equations
for motion of pointlike particle in the given electromagnetic and gravitational �elds.
The mass and the charge of the particle are geometrized, i.e. they are some lengths.
The particle spin is expressed also via the particle structure (its skeleton). It is
very important, that the dynamics of the elementary particle is expressed only in
terms of primary (geometrical) quantities. Secondary (derivative) quantities such as
wave function, isospin, color an so on do not appear in dynamics. However, these
quantities are to be introduced in order a comparison with experiment be possible.
Now results of a theory and those of an experiment are formulated in terms of the
secondary concepts.
Di¤erent elementary particles di¤er only by its geometrical structure (skele-

ton).The obtained dynamics is very simple and general.
Generalization of the relativistic dynamics on the case of arbitrary space-time

geometry became to be possible due to progress of our geometrical knowledge. This
knowledge includes our ability of working with a discrete geometry and with a
geometry of unlimited divisibility. Concept of multivariance is an evidence of our
progress in geometry and in dynamics, as well as the concept of inertia was an
evidence of progress in mechanics in the time of Newton.
This circumstance is formulated in the form: the geometric paradigm is a neces-
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sity but not a hypothesis. Note that the geometric paradigm is not a new conception.
In the end of the nineteenth century the geometric paradigm was a dominating par-
adigm (without a knowledge of multivariant geometry). Physicists were forced to
accept the quantum paradigm (although rather reluctantly).
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