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Abstract

The gravitation equations of the general relativity, written for Riemannian
space-time geometry, are extended to the case of arbitrary (non-Riemannian)
space-time geometry. The obtained equations are written in terms of the world
function in the coordinateless form. These equations determine directly the
world function, (but not only the metric tensor). As a result the space-time
geometry appears to be non-Rieamannian. Invariant form of the obtained
equations admits one to exclude in�uence of the coordinate system on solu-
tions of dynamic equations. Anybody, who trusts in the general relativity, is
to accept the extended general relativity, because the extended theory does not
use any new hypotheses. It corrects only inconsequences and restrictions of the
conventional conception of general relativity. The extended general relativity
predicts an induced antigravitation, which eliminates existence of black holes.

1 Introduction

In this paper we consider dynamic equations for the gravitational �eld which are
obtained at the generalization of the relativity theory on the case of the most gen-
eral space-time geometry. The general relativity supposes, that the Riemannian
geometry is the most general space-time geometry. This supposition is based on
our insu¢ cient knowledge of a geometry, when one supposes that any geometry is
axiomatizable. It means, that any geometry is constructed as a logical construc-
tion. In reality there exist nonaxiomatizable space-time geometries [1], which are
constructed by means of the deformation principle [2] as a deformation of the proper
Euclidean geometry. This geometry is described completely by the world function
[3] and only by the world function. Such a geometry is called a physical geometry,

1



because physicists need such a geometry, which is a science on location of geomet-
rical objects and on their shape, (but not as a logical construction). Physicists use
a geometry as a tool for investigation of the space-time properties. Physicists are
indi¤erent to the question, whether or not a geometry is a logical construction.
Physical geometry may be continuous, or discrete. It may be even granular, i.e.

partly continuous and partly discrete. The physical geometry is described by the
same manner in all cases. Properties of the physical geometry are determined only
by properties of the world function (but not by properties of the point set, where
the geometry is given). As a result the physical geometry may be formulated in the
coordinateless form (only in terms of the world function). A good illustration of this
fact is the following example.
Let the proper Euclidean geometry be given in the Cartesian coordinates (x; y)

on the square [0; 1]� [0; 1]. It means, that the world function is given on this square.
Let us map the square [0; 1]� [0; 1] onto the one-dimensional segment [0; 1] described
by the coordinate X. Let the mapping (x; y)! X be one-to-one. It is possible only,
if the mapping is discontinuous at any point. For instance, the mapping can be
realized as follows. Let coordinates x; y, X be presented in the form of decimal
fractions

x = 0:�1�2�3::::; y = 0:�1�2�3::::; X = 0:�1�1�2�2�3�3::: (1.1)

where � and � are decimal ciphers. The formulas (1.1) realizes one-to-one mapping
(x; y)$ X. Now the world function � is given on one-dimensional segment [0; 1].

� (X1;X2) = � (x1; y1;x2; y2)

Nevertheless, considering the world function on the one-dimensional segment [0; 1],
one can reconstruct the proper Euclidean geometry. In particular, one can deter-
mine, that the geometry on the segment [0; 1] is the two-dimensional Euclidean
geometry (in the sense, that the maximal number of linear independent vectors is
equal two), although the geometry is given on one-dimensional segment.
For construction of a physical geometry it is su¢ cient to give a world function

for any pair of points of the point set, where the geometry is given. One does not
need to prove numerous theorems and to test a compatibility of geometric axioms.
The world function � (P;Q) = 1

2
�2 (P;Q) is a function of two points P and Q, where

� (P;Q) is a distance between the two points. The number of possible world functions
is much more, than the number of in�nitesimal intervals dS2 = gik (x) dxidxk, which
are functions of only one point. In particular, there is only one isotropic uniform
geometry (the geometry of Minkowski) in the set of Riemannian geometries. It is
described by the world function �M. In the set of physical geometries any geometry
is isotropic and uniform, if it is described by the world function � = F (�M), where F
is an arbitrary function, having the property F (0) = 0 and �M is the world function
of the geometry of Minkowski.
In particular, the space-time geometry, described by the world function

� = � (�M) = �M + �
2
0sgn (�M) ; �20 =

~
2bc

= const (1.2)
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is uniform and isotropic. Here ~ is the quantum constant, c is the speed of the
light and b is some universal constant. Besides, this geometry is nonaxiomatizable
and discrete. In this space-time geometry any motion of a free pointlike particles is
multivariant (stochastic). Statistical description of this stochastic motion is equiv-
alent to the quantum description in terms of the Schrödinger equation [4]. This
circumstance admits one to obtain a statistical foundation of quantum mechanics
and to interpret quantum e¤ects as geometrical e¤ects. It admits one to exclude
the quantum principles from the set of prime physical principles and to reduce the
number of physical essences, what is important for fundamental physical theories.
By de�nition the special relativity is a consideration of physical phenomena in

the �at uniform isotropic space-time. In the set of Riemannian geometries there is
only one such a geometry. It is the space-time geometry of Minkowski. Description
of physical phenomena in the geometry (1.2) should be quali�ed as an extended
special relativity, because the space-time geometry (1.2) is isotropic and uniform,
but it is non-Riemannian.
Statistical foundation of quantum theory shows also, that the real space-time

geometry may be non-Riemannian, and one cannot restrict oneself, considering only
the Riemannian space-time geometries.
Generalization of the general relativity on the case of physical space-time geom-

etry appears to be possible only at taking into account two essential clauses:

1. Consideration of physical geometries.

2. Use of adequate relativistic concepts, and, in particular, a use of the relativistic
concept of the events nearness.

The reasons of violation of the �rst condition are investigated in [5].
In the beginning of the twentieth century the theoretical physics developed on

the way of geometrization. The special relativity and the general relativity were
only stages of this geometrization. But the physics geometrization appeared to be
restricted by our poor knowledge of geometry, when one knew only axiomatizable
geometries. One was not able to work with discrete geometries and geometries with
restricted divisibility. Quantum e¤ects might be explained easily by multivariance of
the space-time geometry. However, the property of multivariance [6] was not known
in the beginning of the twentieth century, and scientists were forced to introduce
new (quantum) principles of dynamics. As a result the quantum paradigm of the
microcosm physics development appeared. The quantum paradigm dominated dur-
ing the whole twentieth century. The quantum paradigm contains more essences,
than it is necessary.
In the end of the twentieth century, when our knowledge of geometry became

more complete, we may return to the program of further geometrization of physics.
The geometrical paradigm appeared to be possible, when, using classical dynamic
principles, quantum e¤ects are freely explained by the properties of the space-time
geometry. The geometrical paradigm is more attractive, because it uses less essences,

3



than the quantum paradigm does. To replace the quantum paradigm by the geomet-
rical one, it is necessary to generalize the special relativity and the general relativity
on the case of an arbitrary physical geometry of space-time.
The physical geometry is a geometry, which is described completely by the world

function, (world function is a half of the squared distance). Practically, the physical
geometry is a metric geometry, which is liberated from all constraints on metric
except the constraint, that the world function (or metric) is equal to zero for two
coinciding points. The physical geometry is a very simple construction [1, 2]. For
constructing the physical geometry one does not need to formulate axioms and to
prove numerous theorems. It is su¢ cient to know the proper Euclidean geometry,
which is used as a standard physical geometry. All de�nitions of the proper Euclid-
ean geometry GE may be formulated in terms of the Euclidean world function �E.
Replacing the Euclidean world function �E in all de�nitions of the Euclidean geom-
etry by the world function � of the physical geometry G, one obtains all de�nitions
of the physical geometry G, described by the world function �.
Besides, the physical geometry is a monistic conception, which is described by

the only fundamental quantity �. All other geometrical quantities and concepts
are expressed via fundamental quantity automatically. This circumstance admits
one to modify a physical geometry easily, because all other geometric quantities
concepts are modi�ed automatically at modi�cation of the fundamental quantity
�. [7]. Program of physics geometrization admits one to construct a monistic
conception of physics with the fundamental quantity �.
The set of all Riemannian geometries is only a small part of the set of all physical

geometries. A generalization of the relativity theory on the case of arbitrary phys-
ical geometry admits one to obtain such results, which cannot be obtained in the
framework of the Riemannian geometry. The generalization of the special relativity
(motion of particle in the given space-time geometry) on the case of arbitrary phys-
ical space-time geometry has been made already [8]. A generalization of description
of the matter in�uence on the arbitrary space-time geometry met some problems.
These problems are connected with the fact, that in the relativity theory some ba-
sic concepts are taken from the nonrelativistic physics. Concepts of nonrelativistic
physics are inadequate for consecutive geometric description of the relativity theory
and for generalization of this description on the case of a more general space-time
geometry.
Practically all physical phenomena on the Earth are nonrelativistic. At �rst, we

study nonrelativistic physics with its nonrelativistic concepts. Relativistic e¤ects
appeared as corrections to nonrelativistic physics. In the beginning of the twen-
tieth century the relativistic physics was presented in terms of slightly corrected
nonrelativistic concepts. For instance, the relativity principle has been presented as
invariance of the dynamic equations with respect to Lorentz transformation and as
existence of the supreme speed of the interaction propagation. Such a formulation is
useful for pedagogical goals, when one needs to transit from concepts of nonrelativis-
tic physics to relativistic ones. However, such a formulation is not e¤ective, when
one tries to develop the relativistic physics. In this case one should use concepts,
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which are adequate for relativistic physics. In particular, the relativity principle is
formulated in adequate concepts as follows. The relativistic physics is a physics in
the pseudo-Euclidean space-time geometry of index 1 (geometry of Minkowski or
that of Kaluza-Klein). All other details of description are corollaries of properties of
the space-time geometry. For instance, properties, concerning the role of the light
speed, are pure geometrical properties of the space-time.
Unfortunately, the formulation of the relativity theory in adequate (geometrical)

terms is used rare. The main di¤erence of space-time geometry in a relativistic the-
ory from that in the non-relativistic (Newtonian) physics is as follows. Relativistical
event space (space-time) geometry is described by one invariant (space-time inter-
val), whereas in the Newtonian physics the event space is described by two invariants
(spatial distance and temporal interval). Sometimes one does not mention this dif-
ference in textbooks. Instead one speaks on di¤erence in transformation laws. In
reality, the di¤erence in the number of invariants is a fundamental property, whereas
the di¤erence of the transformation laws is a very special property, because it is es-
sential only for �at space-time geometry. Besides, the transformational properties
are used only at description at some coordinate system. They are useless at the
coordinateless description. This di¤erence of formulations is not essential, when the
theory is used for calculation of concrete physical e¤ects. However, this di¤erence
becomes essential, if one tries to obtain a generalization of the relativity theory on
the case of the arbitrary space-time geometry.
For instance, the concept of a pointlike particle as a point in the con�guration

space is a nonrelativistic concept. It needs concepts of velocity and acceleration
of this particle. These concepts are secondary concepts, which can be introduced
only after introduction of the linear vector space and, in particular of a coordinate
system. These concepts are inadequate in the case of a discrete space-time geometry.
As a result the concept of velocity and that of acceleration cannot be used in an
extension of the relativity theory to the case of arbitrary space-time geometry, which
may be discrete.
In the general relativity all interactions (electromagnetic and gravitational) are

supposed to be short-range interactions. Concept of short-range interaction is based
on the nonrelativistic concept of the events nearness. The events are considered as
points in the event space (space-time). Two events are considered to be near, if they
happen in the same place at the same time moment. This de�nition of nearness of
events is nonrelativistic, because this de�nition refers to a spatial distance and to a
temporal interval at once. A consistent relativistic concept of nearness is to contain
a reference to only quantity: space-time interval, (or world function). For instance,
if a supernew star �ashed very far, and an observer on the Earth observed this �ash,
the event of �ash and the event of this �ash observation on the Earth are near (close)
events.
According to common viewpoint the statement on nearness of the two events

(�ash and observation of this �ash) seems to be rather strange and unexpected.
However, from consistent relativistic viewpoint the two events are near, because
space-time interval between them is equal to zero.
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The problem of relativistic concept of nearness is discussed in [9]. It is known
as the principle of Fokker [10], which is interpreted as a conception of the action at
a distance (but not as a relativistic concept of nearness). The action at a distance
is treated as a direct in�uence of one object onto another one without intermediate
agent circulatory between them.

2 Relativistic concept of nearness

Let us consider the proper Euclidean geometry. Let � (P;Q) be the Euclidean dis-
tance between the points P and Q. The set O" of points P , de�ned by the relation

O" = fP j � (O;P ) < "g ; " > 0 (2.1)

is called "-vicinity of the point O. If the parameter " is small, the points P and O
are near (P ' O). If "! 0, "-vicinity O" degenerates into one point O0 = O. It is
easy to see, that, if P ' Q, then Q ' P .
The relation of nearness in the proper Euclidean geometry has the property of

transitivity: If P 2 O" and Q 2 O", then P 2 Q2" and Q 2 P2". It follows from the
triangle axiom,

� (O;P ) + � (O;Q) � � (Q;P )
which is valid for the proper Euclidean geometry. If " ! 0, then 2" ! 0 also. It
means that, if P ' O and Q ' O, then P ' Q.
The property of transitivity seems to be a natural property of the relation of

nearness. However, the transitivity property of the nearness relation does not take
place in the space-time geometry, for instance, in the geometry of Minkowski. In
this case the "-vicinity O" of the point O is de�ned by the relation

O" = fRj j� (O;R)j < "g ; � (O;R) =
p
2�M (O;R) (2.2)

Here �M (P;Q) = �M (x; x0) is the world function of the space-time of Minkowski

�M (P;Q) = �M (x; x
0) =

1

2
(gM)ik

�
xi � x0i

� �
xk � x0k

�
(2.3)

x; x0 are coordinates of points P and Q in some inertial coordinate system, and
(gM)ik is the metric tensor in this coordinate system.
In this case the points with coordinates P =

�p
a2 + "2; a; 0; 0

	
and

Q =
�p
a2 + "2;�a; 0; 0

	
belong to "-vicinity of the point O = f0; 0; 0; 0g, whereas

P =2 Q2", because
j2� (P;Q)j =

���2 (P;Q)�� = 4a2 (2.4)

As far as the quantity a may be inde�nitely large, the spatial distance between the
points P and Q may be very large, although both points are near to the point O
(P ' O and Q ' O).
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In the space-time of Minkowski the "-vicinity of the point O = f0; 0; 0; 0g is a
region of the space-time between two hyperboloids�

x0
�2 � x2 = "2; �

x0
�2 � x2 = �"2 (2.5)

Formally the relation (2.5) determines a sphere of radius " in the space-time of
Minkowski. At "! 0 this region turns to the light cone with the vertex at the point
O. Thus, at "! 0 in the proper Euclidean geometry the "-vicinity of the point P is
the same point P , whereas in the geometry of Minkowski the "-vicinity of the point
P is the light cone with the vertex at the point P .
In the nonrelativistic physics the "-vicinity O" of the point O = f0; 0; 0; 0g is

de�ned by relations

O" =
��
x0;x

	
j
��x0�� < " ^ jxj < "	 (2.6)

In the limit " ! 0, the "-vicinity (2.6) turns to one point O. Thus, in the non-
relativistic physics there are only one near point, whereas in the relativistic physics
there is a continual set of near points. This di¤erence appears to be very important
in de�nition of short-range interaction between particles.
Let us stress, that introducing cone-shaped "-vicinity and nearness of points on

the light cone to the vertex of the cone, we do not suggest any hypothesis. We
follow only the relativity principle. If we follow the relativity principles, we
should accept the fact of the cone-shaped "-vicinity, because pointlike shape of the
"-vicinity in the limit "! 0 is a remnant of the nonrelativistic theory.

3 Relativistic concept of a pointlike particle

In the consecutive geometric description any particle is realized by its skeleton.
In the case of a pointlike particle the skeleton is the ordered set of two points
fPs; Ps+1g. The vector PsPs+1 describes the geometric momentum of particle. The
length jPsPs+1j =

p
2� (Ps; Ps+1) of the vectorPsPs+1 describes the geometric mass

of particle. Such a description is a pure geometric one.
Motion of a pointlike particle is described by a world chain C, consisting of

connected links T[PsPs+1]
C =

X
s

T[PsPs+1] (3.1)

Any link T[PsPs+1] is a segment of straight line, determined by the skeleton P
(s)
1 =

fPs; Ps+1g. The link T[PsPs+1] is a set of points, determined by the relation

T[PsPs+1] =
n
Rj
p
2� (Ps; R) +

p
2� (R;Ps+1)�

p
2� (Ps; Ps+1) = 0

o
(3.2)

The length
� =

p
2� (Ps; Ps+1) (3.3)
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of all links is the same. The length � is the geometric mass of the particle, which is
connected with the usual mass m of the particle by the relation

m = b� = b
p
2� (Ps; Ps+1) (3.4)

where b is the same universal constant, which appears in (1.2)
Complicated (not pointlike) particles are described by a more complicated skele-

ton Pn = fP0; P1; :::Png [8].
Description of the particle motion does not need an introduction of a coordinate

system. Details of such a description of the particle motion may be found in [8].
Such a description is generalized easily on the case of arbitrary space-time geometry
(in particular, discrete one). In the microcosm the structure of the world chain
(3.1) is essential, but outside the microcosm one may consider the length � of a link
T[PsPs+1] to be in�nitesimal, and to replace the world chain by a smooth world line.
Let L be a world line of a pointlike particle, and the point P 2 L. A set NP of

events Q, which are near to the point P is di¤erent from the relativistic viewpoint
and from the nonrelativistic one. From nonrelativistic (conventional) viewpoint
NP = fPg, whereas from the relativistic viewpoint NP = CP , where CP is the light
cone with the vertex at the point P .

CP = fRj� (P;R) = 0g (3.5)

It is known, that the electromagnetic interaction between two pointlike charged
particles is carried out only via points, connecting with vanishing space-time interval
(retarding interaction), i.e. via points, which are near from the relativistic viewpoint.
The same is valid for the gravitational interaction. On the other hand, the near
points of the world line L should be interpreted in a sense of points belonging to the
world line. In this sense any interaction of two pointlike particles via near points
may be interpreted as a direct interaction (collision).
The light cones with vertexes at the points P 2 L, may be considered as at-

tributes of the pointlike particle, which is described by the world line L. We shall
consider these light cones, directed into the past, as bunches of isotropic straight
lines H. In other words, any world line L of a pointlike particle is equipped by
bunches CP of hair HP at any point P 2 L. Any hair HP consists of points R 2 HP ,
which are near to the point P 2 L, (� (P;R) = 0; R 2 HP ) on the world line L.
The point P is a footing of the hair HP . The length of the hair HP is equal to zero,
because the hair HP consists of points, which are near to the point P . Although
the length of any hair is equal to zero, nevertheless the hairs of any world line cover
the whole space-time. When some point P 0 2 HP , P 2 L1 of the world line L1 hair
coincides with a point P 0 = P2 2 L2 of other world line L2, the particle L2 transfers
a part of its momentum to the particle L1. See �gure
What part of its momentum does the particle L2 transfer, depends on the point

P 0 2 HP , which is a common point with L2 (P 0 = P2 2 L2).
Although the length of any part of the hair is equal to zero, nevertheless there is

some invariant parameter along any hair H. This parameter lr is the relative length
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of the hair segment. The relative length (r-length) of the point P is the more, the
"farther" the point R 2 HP lies from the footing P of the hair HP . The r-length lr
of the point R 2 HP is de�ned by the relation

lr = lr (P;R) =
(PR:Q0Q1)

jQ0Q1j
(3.6)

where vector Q0Q1 is an arbitrary timelike vector (� (O0; Q1) > 0). The scalar
product (PR:Q0Q1) of vectors PR and Q0Q1 is de�ned by the relation

(PR:Q0Q1) = � (P;Q1) + � (R;Q0)� � (P;Q0)� � (R;Q1) (3.7)

jQ0Q1j =
p
(Q0Q1:Q0Q1) =

p
2� (Q0; Q1) (3.8)

It follows from expressions (3.6) - (3.8), that the relative length is invariant,
because it is expressed in terms of the world function. Numerical value of the r-
length depends on the choice of the timelike vector Q0Q1. Sign of the r-length
depends on the choice of the timelike vector Q0Q1 also. However, the order of
points on the hair, directed to the past, is determined single-valuedly by the value
of the r-length.
If for some choice of the timelike vector Q0Q1

jlr (P;R1)j < jlr (P;R2)j ; R1; R2 2 HP (3.9)

then the relation (3.9) takes place for any other choice of timelike vector Q0Q1. It
means that the point R1 is located between the points P and R2. The quantity of
the transferred momentum is inversely to the r-length lr (P; P 0) between the footing
of the hair P 2 L1 and the point P 0 2 L2, P 0 2 HP .
The concept of the world line hair admits one to consider and to calculate elec-

tromagnetic and gravitational interaction of particles as a direct collision of one

9



particle with a hair of other particle. As far as the hairs of a world line are consid-
ered as attributes of a particle, one may consider electromagnetic and gravitational
interaction of particles as a direct collision of particles. Such a description of the
particle interaction does not mention about gravitational and electromagnetic �elds.
Such a description is a consecutive relativistic description.
In the nonrelativistic theory the electromagnetic and gravitational �elds are

essences, which exist independently of the matter. These essences provide the mo-
mentum transfer from one particle to another one. Introduction of such essences
is necessary, because the nonrelativistic concept of nearness is used. In the consec-
utive relativistic theory, which uses relativistic concept of nearness, one does not
need to consider the electromagnetic and gravitational �elds as additional essences.
It is su¢ cient to consider them as a manner of description of particle interaction.
The less number of essences is contained in a fundamental theory, the more perfect
fundamental theory takes place.
Our conclusion, that gravitational and electromagnetic �elds are not physical

essences (they are only attributes of the world function) seems rather unexpected for
most physicists. It is connected with the fact, that the relativity theory is considered
usually as a correction to the nonrelativistic physics. As a result the relativity theory
is presented almost in all textbooks in terms of concepts of nonrelativistic physics.
The relativity theory is studied after presentation of nonrelativistic physics. It is
natural, that the relativity theory is presented in terms of nonrelativistic concepts.
Such a presentation is clearer for physicists, which know nonrelativistic physics.
New speci�c relativistic concepts are used only in the case, when one cannot ignore
them.
However, the relativity theory is a self-su¢ cient fundamental theory, which can

and must be presented without a mention of nonrelativistic concepts. Furthermore,
the relativity theory can be developed successfully only in terms of adequate (rela-
tivistic) concepts.
Let there be two timelike world lines L1 and L2 of two di¤erent particles. Any

point P 2 L1 corresponds, at least, to one near point P 0 2 L2, i.e. P 0 ' P , because
the timelike world line L2 crosses the light cone with the vertex at the point P 2 L1.
In other words, any point of the world line L1 has a near point on the world line L2
and vice versa.
Let us consider the space-time 
 of Minkowski, which is described by the world

function �M, de�ned by (2.3). Let the inertial coordinate system K be used, and
the world chains C1; C2 be timelike. The world chains C1 and C2 consist of connected
segments T[PlPl+1] and T[P 0lP 0l+1]

C1 =
[
l

T[PlPl+1]; C2 =
[
l

T[P 0lP 0l+1] (3.10)

T[PlPl+1] =
n
Rj
p
2�M (Pl; R) +

p
2�M (Pl+1; R) =

p
2�M (Pl; Pl+1)

o
(3.11)

T[P 0lP 0l+1] =
�
Rj
q
2�M (P 0l ; R) +

q
2�M

�
P 0l+1; R

�
=
q
2�M

�
P 0l ; P

0
l+1

��
(3.12)
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All segments of a world chain have the same geometrical length �, de�ned by the
relation (3.3) The real mass of the particle, described by the world chain, is connected
with the geometric mass � by means of the relation (3.4).
Outside the microcosm the length � is small with respect to characteristic size

of the world chain, and one may consider, that the vectors PlPl+1 of any link have
in�nitesimal length. In the Minkowski space-time 
 the timelike links T[PlPl+1] are
one-dimensional in�nitesimal timelike segments. The timelike world chain C can
be replaced by a smooth timelike world line L, whose points are labelled by a
parameter � . The world line is described by the vector PP0 (�), where P is the
origin of the coordinate system K and P 0 (�) 2 L. The vectors PlPl+1 of links turn
into in�nitesimal vectors P0 (�)P0 (� + d�), which are tangent to the world line.
Let the world lines L1 and L2 be timelike. For timelike world lines the in�nitesi-

mal segments T[PlPl+1] = P0 (�)P0 (� + d�) are timelike, and the geometrical mass �
is real (� (Pl; Pl+1) > 0). In this case the world lines L1 and L2 are one-dimensional,
and all points of a world line can be labelled by a parameter � .
As far as the space-time 
 of Minkowski is a linear vector space, the vectors

PP0 (�) can be represented as a linear combination of basic vectors

PP0 (�) = fk (�) ek; (3.13)

where ek are basic vectors of the inertial coordinate system K with the origin P .
The functions fk (�), k = 0; 1; 2; 3 are coordinates of points of the world line L2.
Four basic vectors ek may be presented in the form

ek = PQk; ei = (gM)
ik ek = (gM)

ikPQk; k = 0; 1; 2; 3 (3.14)

Here and further a summation over repeating Latin indices is produced 0� 3. The
basic vector ek = PQk is determined by the origin point P and by the end point Qk.
Such a representation is necessary to use the scalar product in arbitrary physical
geometry, where there is no linear space, and the scalar product of two vectors PR
and Q0Q1 is de�ned by the relation (3.7). The scalar product (PR:Q0Q1) of two
vectors PR and Q0Q1 is de�ned only via the world function without a reference to
the properties of the linear vector space.
Coordinates of the points P 0 (�) in the coordinate system K can be presented

as follows

L2 : P 0 (�) =
�
fk (�)

	
=
��
PP0 (�) :ek

�	
=
n
(gM)

ik (PP0 (�) :ei)
o
; � 2 R; P 0 2 


(3.15)
or

fk (�) = (gM)
kl (PP0 (�) :el) = (gM)

kl (PP0 (�) :PQl) (3.16)

fk (�) = (gM)kl f
l (�) = (PP0 (�) :PQk) (3.17)

where (gM)
kl is the contravariant metric tensor, which is obtained from the covariant

metric tensor (gM)kl by means of relations

(gM)
il (gM)lk = �

i
k; (gM)lk = (ei:ek) = (PQi:PQk) (3.18)
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In reality the functions fk (�) are piecewise. But for simplicity we shall consider
them as continuous and di¤erentiable

L2 : xk = fk (�) ; _fk (�) � dfk (�)

d�
k = 0; 1; 2; 3; (3.19)

4 Dynamic equations for calculation of world
function of space-time

Variation �gik of the metric tensor, which is generated by particles in the space-time
geometry of Minkowski is described by the relation [11]�

c�2@20 �r2
�
�gik = ��Tik (4.1)

where Tik is the energy-momentum tensor of particles. The constant � = 8�G=c2,
where G is the gravitational constant and c is the speed of the light. Solution of
this equation can be presented in the form

�gik (x) = ��
Z
Gret (x; x

0)Tik (x
0)
p
�gMd4x0; (4.2)

gM = det jj(gM)ikjj ; i; k = 0; 1; 2; 3 (4.3)

where the retarded Green function Gret (x; x0) has the form

Gret (x; x
0) =

1

2�c
�
�
x0 � x00

�
� (2�M (x; x

0)) (4.4)

Here �M is the world function of the Minkowski space-time, de�ned by the relation
(2.3), and the multiplier

� (x) =

�
1 if x > 0
0 if x � 0 (4.5)

Idea of derivation of dynamic equation for world function is very simple. It is
based on the deformation principle [2]. Dynamic equations (4.1) for weak gravi-
tational �eld in the space-time geometry of Minkowski are written in terms of the
world function and only in terms of the world function. As far as these equations
contain only world function, they are declared to be valid for variation of the world
function of any physical space-time geometry under action of the matter added in
the space-time.
The energy-momentum tensor Tik of particles has the form

T ik (x) =
X
s

pi(s) (x)u
k
(s) (x) ; i; k = 0; 1; 2; 3 (4.6)

where uk(s) (x) and p
k
(s) (x) are distributions of the 4-velocity and of the 4-momentum

of the sth particle in the space-time. We have for the particle number s

L(s) : xi = f i(s) (�) ; pi(s) = b
_f i(s) (�) d� ; (gM)

ik p(s)ip(s)k = m
2
(s)c

2; (4.7)
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uk(s) =
_fk (�)q

grl _f r(s) (�)
_f l(s) (�)

(4.8)

p(s)i = (gM)ik b
�
fk(s) (� + d�)� fk(s) (�)

�
= (gM)ik

_fk(s) (�) bd� (4.9)

where the constant b is the proportionality coe¢ cient (3.4) between the length of
the world line link � = jPlPl+1j and the particle mass, described by this link. We
have

p(s)ig
ik
Mp(s)k = gMik

_f i(s) (�)
_fk(s) (�) b

2 (d�)2 = m2
(s)c

2 (4.10)

m(s) =
bd�

c

q
(gM)rl

_f r(s) (�)
_f l(s) (�) (4.11)

Then it follows from (4.7) and (4.11), that

pi(s) =
m(s)c _f

iq
(gM)rl

_f r(s)
_f l(s)

(4.12)

According (4.6) one obtains for the pointlike particles

T ik (x) =
X
s

m(s)c _f
i
(s) (�)

_fk(s) (�)

(gM)rl
_f r(s) (�)

_f l(s) (�)

�=3Y
�=1

��
�
x� � f�(s) (�)

�
(4.13)

where �-function is de�ned by the relationsZ
V

�=3Y
�=1

F (x0) �� (x
0� � f� (�))

p
�gspdx0 =

�
F (f (�)) if x0 2 V

0 if x0 =2 V (4.14)

Here
gsp = det

������(gM)�������� ; �; � = 1; 2; 3 (4.15)

Integral (4.2) over

d4x0 = d3x0dt0 = d3x0
dt0

d�
d� = d3x0 _f 0 (�) d�

can be presented in the form

�gik (x) = ��
Z
Gret (x; x

0)T ik (x0)
p
�gMd4x0

= ��
Z X

s

m(s)
_f i(s) (�)

_fk(s) (�)

2� (gM)rl
_f r(s) (�)

_f l(s) (�)

�=3Y
�=1

��
�
x0� � f�(s) (�)

�p
�gMd3x0

��
�
�M(x; f(s) (�)

�
_f 0(s) (�) d� (4.16)

Integration over x gives

�gik (x) = ��
Z X

s

m(s)
_f i(s) (�)

_fk(s) (�)

2� (gM)rl
_f r(s) (�)

_f l(s) (�)

r
gM
gsp
�
�
2�M(x; f(s) (�)

�
_f 0(s) (�) d�

(4.17)
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Integration over d� gives

�gik (x) = �
�

4�

X
s

m(s) (gM)ij
_f j(s) (� s) (gM)kl

_f l(s) (� s)

(gM)rl
_f r(s) (� s)

_f l(s) (� s)
�� d
d�
�M (x; f (� s))

��
r
gM
gsp

_f 0(s) (� s) (4.18)

where � s = � s (t;x) is a root of the equation

2�M (x; f (� s)) = (gM)ik
�
xi � f i(s) (� s)

� �
xk � fk(s) (� s)

�
= 0 (4.19)

which can be written in the form

� (P; P 0l ) = 0 (4.20)

We have

d

d�
�M (x; f (� s)) = �gMik

�
xi � f i(s) (� s)

�
_fk (� s) = �

�
PP0l:P

0
lP

0
l+1

�
d�

(4.21)

Using relations (3.16), (3.17) one can rewrite the relation (4.18) in the form

�gik (x) = �
�

4�

X
s

m(s)

�
P0lP

0
l+1:PQi

� �
P0lP

0
l+1:PQk

����PP0l:P0lP0l+1��� �P0lP0l+1:P0lP0l+1� �P0lP0l+1:PQs

�
(gM)

0s

r
gM
gsp
(4.22)

In the case, when all basic vectors PQk are unite and orthogonal, the determinants
gM and gsp are connected by the relation

gM = det jjgMikjj = gsp (gM)00 ; (gM)00 = (PQ0:PQ0) = jPQ0j
2 (4.23)

Besides �
P0lP

0
l+1:PQs

�
(gM)

0s =
�
P0lP

0
l+1:PQ0

�
(gM)

00 (4.24)

Then the last multipliers of (4.22) can be written in the form

(gM)
00

r
gM
gsp

= ((gM)00)
�1
q
(gM)00 =

1

jPQ0j
(4.25)

The constant � is connected with the gravitational constant G by means of the
relation � = 8�G=c2. Using (4.25) and (3.18), the relation (4.22) can be rewritten
in terms of scalar products

�gik (P ) = � ((PQi:PQk))

= �2G
c2

X
s

m(s)
� ((P0lP:PQ0))�
P0lP:P

0
lP

0
l+1

� �P0lP0l+1:PQi

� �
P0lP

0
l+1:PQk

� �
P0lP

0
l+1:PQ0

��
P0lP

0
l+1:P

0
lP

0
l+1

�
jPQ0j

(4.26)
� (P; P 0l ) = 0 (4.27)

where vectors PQi; i = 0; 1; 2; 3 are basic vectors of the coordinate system at the
point P . Vector PQ0 is timelike. The points P

0
l and P

0
l+1 are on the world line L(s)
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of sth particle. The points P 0l and P
0
l+1 are separated by in�nitesimal distance. All

scalar products are taken in the space-time geometry of Minkowski. Besides, one
uses the fact, that the metric tensor gik (P ) at the point P can be presented in the
form

gik (P ) = (PQi:PQk) ; i; k = 0; 1; 2; 3 (4.28)

and the scalar product is expressed via the world function by means of the relation
(3.7).
To determine world function � from relations (4.26), (4.27), let us use the relation

(PS1:PS2) = � (P; S2) + � (S1; P )� � (P; P )� � (S1; S2) (4.29)

where S1 and S2 are arbitrary points of the space-time. As far as � (P; P ) = 0, it
may rewritten in the form

� (S1; S2) = � (P; S2) + � (S1; P )� (PS1:PS2) (4.30)

Using (3.8) the relation (4.30) may be rewritten in terms of scalar products

� (S1; S2) =
1

2
((PS1:PS1) + (PS2:PS2)� 2 (PS1:PS2)) (4.31)

Replacing Qi; Qk; i; k 6= 0 in relation (4.26) by S1, S2 and substituting in (4.31),
one obtains after transformations

�� (S1; S2) = �G
c2

X
s

m(s)

� ((P0lP:PQ0))
�
P0lP

0
l+1:PQ0

��
P0lP:P

0
lP

0
l+1

�
jPQ0j

�
��
P0lP

0
l+1:PS1

�
�
�
P0lP

0
l+1:PS2

��2�
P0lP

0
l+1:P

0
lP

0
l+1

� (4.32)

The relations (4.32), (4.27) are completely geometric relations, written in terms
of the world function �M of the Minkowski geometry. According to the deformation
principle the relations (4.32), (4.27) are valid in any physical space-time geometry
(i.e. for any world function �). It means, that, if the space-time geometry without
additional particles is described by the world function �0, then appearance of addi-
tional particles perturbs the space-time geometry, and it becomes to be described
by the world function � = �0 + ��, where perturbation �� of the world function is
determined by the relations (4.32), (4.27). Scalar products in rhs of (4.32) should be
calculated by means of the world function �, which is unknown at �rst. As a result
equations (4.32), (4.27) form equations for determination of the world function �.
In the case of continuous distribution of particles the summation in (4.32) is to be

substituted by integration over Lagrangian coordinates �, labelling the perturbing
particles. One obtains

�� (S1; S2) = �G
c2

Z
V

� (�) d�
� ((P0lP:PQ0))

�
P0lP

0
l+1:PQ0

��
P0lP:P

0
lP

0
l+1

�
jPQ0j

�
��
P0lP

0
l+1:PS1

�
�
�
P0lP

0
l+1:PS2

��2�
P0lP

0
l+1:P

0
lP

0
l+1

� (4.33)
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where the total mass M is de�ned by the relationZ
V

� (�) d� =M (4.34)

The points S1 and S2 are arbitrary points of the space-time.

5 World function of non-rotating body

Let us consider a physical body, which is concentrated in a space volume V . Its den-
sity is � (�), where � are Lagrangian coordinates of the body points. The body does
not rotate. We shall use the inertial coordinate system x = ft;xg = ft; x1; x2; x3g.
We shall search for solution of equations (4.33), (4.27) in the form of a second

order polynomial of (t1 � t2)

� (t1;y1; t2;y2) =
1

2
A (y1;y2) c

2 (t2 � t1)2 +B (y1;y2) c (t2 � t1) + C (y1;y2) (5.1)

A (y1;y2) = 1� V (y1;y2) ; C (y1;y2) = �
1

2
(y1 � y2)2 + �C (y1;y2) (5.2)

where functions A;B and C should be determined as a result of solution of equations
(4.33), (4.27). In the zeroth order approximation, when the space-time is the space
of Minkowski, one has

A0 (y1;y2) = 1; V0 (y1;y2) = 0; B0 (y1;y2) = 0; �C0 (y1;y2) = 0 (5.3)

Let coordinates of points have the form

P 0l =
n
t� r

c
; �
o
; P 0l+1 =

n
t� r

c
+ dT; �

o
;

P = ft;xg S1 = ft1;y1g S2 = ft2;y2g
Q0 = ft+ dt;xg ; Q1 =

�
t; x1 + dx1; x2; x3

	
;

Q2 =
�
t; x1; x2 + dx2; x3

	
; Q3 =

�
t; x1; x2; x3 + dx3

	
(5.4)

where coordinates � label points of the body. The point P is chosen such, that

t =
t1 + t2
2

; x =
y1 + y2
2

(5.5)

Vectors PQ in scalar products of the expression (4.33) are described by coordi-
nates of points P and Q: PQ = fx (P ) ; x (Q)g, where x (P ) are coordinates of the
point P . By means of (5.4) we have the following coordinates for vectors in (4.33):

P0lP =
n
t� r

c
; �; t;x

o
; PQ0 = ft;x;t+ dt;xg ; P0lP

0
l+1 =

n
t� r

c
; �;t� r

c
+ dT; �

o
;

PS1 = ft;x;t1;y1g ; PS2 = ft;x;t2;y2g (5.6)

The quantity dT is supposed to be in�nitesimal.
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In the �rst approximation the world function has the form

�1 (t1;y1; t2;y2) =
1

2
A1 (y1;y2) c

2 (t2 � t1)2 +B1 (y1;y2) c (t2 � t1) + C1 (y1;y2)
(5.7)

As far as �1 = �M + ��1, it follows from (5.7)

��1 (t1;y1; t2;y2) = �
1

2
V1 (y1;y2) c

2 (t2 � t1)2 +B1 (y1;y2) c (t2 � t1) + �C1 (y1;y2)
(5.8)

where
�C1 (y1;y2) = C1 (y1;y2) +

1

2
(y2 � y1)2 (5.9)

At t2 ! t1 the world function �1 (t1;y1; t2;y1) tends to 0. Then it follows from (5.7)

C1 (y1;y1) = 0 (5.10)

Taking into account the symmetry of the world function with respect to transposition
(t1;y1)$ (t2;y1), we conclude from (5.7), that

B1 (y1;y1) = 0 (5.11)

According to equation (4.27), we obtain from (5.7), (5.6)

1

2
jP0lPj

2
=
1

2
A1 (�;x) c

2
�r
c

�2
+B1 (�;x) r + C1 (�;x) = 0 (5.12)

Solution of (5.12) has the form

r =
�B1 (�;x) +

p
B21 (�;x)� 2C1 (�;x)A1 (�;x)
A1 (�;x)

= � 2C1 (�;x)

B1 (�;x) +
p
B21 (�;x)� 2C1 (�;x)A1 (�;x)

(5.13)

Calculation of other scalar products gives the results

jPQ0j
2 = A1 (y1;y2) c

2 (dt)2 (5.14)�
P0lP

0
l+1:P

0
lP

0
l+1

�
= A1 (�; �) c

2 (dT )2 (5.15)

�
P0lP

0
l+1:P

0
lP
�
= � (P 0l ; P ) + �

�
P 0l+1; P

0
l

�
� 0� �

�
P 0l+1; P

�
= �

�
P 0l+1; P

0
l

�
� �

�
P 0l+1; P

�
(5.16)

�
�
P 0l+1; P

�
= �

�
t� r

c
+ dT; �;t;x

�
(5.17)

=
1

2
A1 (�;x) c

2
�r
c
� dT

�2
+ cB1 (�;x)

�r
c
� dT

�
+ C1 (�;x)
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�
P0lP

0
l+1:P

0
lP
�
= �

�
P 0l+1; P

0
l

�
� �

�
P 0l+1; P

�
(5.18)

=
1

2
A1 (�; �) c

2 (dT )2 �
�
1

2
A1 (�;x) c

2
�r
c
� dT

�2
+ cB1 (�;x)

�r
c
� dT

�
+ C1 (�;x)

�
= �1

2
A1 (�;x) r

2 + A1 (�;x) crdT �B1 (�;x) r +B1 (�;x) cdT � C1 (�;x) +O
�
dT 2

�
Taking into account, the relation (5.12) one obtains�

P0lP
0
l+1:P

0
lP
�
= A1 (�;x) crdT +B1 (�;x) cdT +O

�
dT 2

�
(5.19)

Calculation of
�
P0lP

0
l+1:PS1

�
�
�
P0lP

0
l+1:PS2

�
gives�

P0lP
0
l+1:PS1

�
�
�
P0lP

0
l+1:PS2

�
= �1 (P

0
l ; S1) + �1

�
P 0l+1; P

�
� �1 (P 0l ; P )� �1

�
P 0l+1; S1

�
�
�
�1 (P

0
l ; S2) + �1

�
P 0l+1; P

�
� �1 (P 0l ; P )� �1

�
P 0l+1; S2

��
= �1 (P

0
l ; S1)� �1

�
P 0l+1; S1

�
�
�
�1 (P

0
l ; S2)� �1

�
P 0l+1; S2

��
= �dT @

@dT
�1
�
P 0l+1; S1

�
+ dT

@

@dT
�1
�
P 0l+1; S2

�
= dT

@

@dT

�
�1
�
P 0l+1; S2

�
� �1

�
P 0l+1; S1

��
+O

�
dT 2

�
(5.20)

Using (5.1) and

P0lS1 =
n
t� r

c
; �;t1;y1

o
; P0l+1S1 =

n
t� r

c
+ dT; �;t1;y1

o
(5.21)

one obtains from (5.20)�
P0lP

0
l+1:PS1

�
�
�
P0lP

0
l+1:PS2

�
= +A1 (�;y1) c

2t1dT � A1 (�;y2) c2t2dT + (A1 (�;y2)� A1 (�;y1)) c2
�
t� r

c

�
dT

+(B1 (�;y1)�B1 (�;y2)) cdT +O
�
dT 2

�
(5.22)

Let us take into account, that the time coordinate t of the point P has the form
(5.5). The relation (5.22) takes the form�

P0lP
0
l+1:PS1

�
�
�
P0lP

0
l+1:PS2

�
= +

1

2
(A1 (�;y1) + A1 (�;y2)) c

2 (t1 � t2) dT � (A1 (�;y2)� A1 (�;y1)) rcdT

+(B1 (�;y1)�B1 (�;y2)) cdT (5.23)

Using (5.2), the relation (5.23) can be written in the form�
P0lP

0
l+1:PS1

�
�
�
P0lP

0
l+1:PS2

�
=

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�
c2 (t1 � t2) dT + (V1 (�;y2)� V1 (�;y1)) rcdT

+(B1 (�;y1)�B1 (�;y2)) cdT (5.24)
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Calculation gives the following result for scalar product (P0lP:PQ0)

(P0lP:PQ0) = (2A1 (�;x) r +B1 (�;x)) cdt (5.25)

This scalar product is positive, if r, de�ned by the relation (5.13), is positive and
A1 (�;x) > 0.
After substitution of expressions (5.11), (5.12), (5.15), (5.19) and (5.24), the

expression (4.33) takes the form

�� (S1; S2)

= �G
c2

Z
V

� (�) d�
� ((P0lP:PQ0))A1 (�;x) c

2dtdTp
A1 (x;x)cdt

�

� �
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�
c (t1 � t2)

+ (V1 (�;y2)� V1 (�;y1)) r + (B1 (�;y1)�B1 (�;y2))

�2
(cdT )2

(A1 (�;x) r +B1 (�;x))A1 (�; �) c2 (dT )
2 cdT

(5.26)

After cancellation of multiplier dT and dt, we obtain

�� (S1; S2)

= �G
c2

Z
V

� (�) d�
A1 (�;x)p

A1 (x;x) (A1 (�;x) r +B1 (�;x))A1 (�; �)

�
� �

1� 1
2
(V1 (�;y2) + V1 (�;y1))

�
c (t1 � t2)

+ (V1 (�;y2)� V1 (�;y1)) r + (B1 (�;y1)�B1 (�;y2))

�2
(5.27)

where

r =
�B1 (�;x) +

p
B21 (�;x)� 2C1 (�;x)A1 (�;x)
A1 (�;x)

(5.28)

One can see, that rhs of (5.27) is the second order polynomial of (t1 � t2). Thus,
our supposition that the world function is the second order polynomial of (t1 � t2)
is not changed after variation of the world function under in�uence of additional
particles.

��2 (t1;y1; t2;y2) = �
1

2
V2 (y1;y2) c

2 (t2 � t1)2 +B2 (y1;y2) c (t2 � t1) + �C2 (y1;y2)
(5.29)

On the other side, it follows from (5.27)

��2 (S1; S2)

= �
Z
V

D (x; �)

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�2
c2 (t1 � t2)2 d�

�2
Z
V

D (x; �)

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�
c (t1 � t2)

� ((V1 (�;y2)� V1 (�;y1)) r + (B1 (�;y1)�B1 (�;y2))) d�

�
Z
V

D (x; �) (V1 (�;y2)� V1 (�;y1)) r + (B1 (�;y1)�B1 (�;y2))2 d�(5.30)
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where

D (x; �) =
G

c2
� (�)A1 (�;x)

A1 (�; �)
p
A1 (x;x) (A1 (�;x) r +B1 (�;x))

=
G

c2
� (�)A1 (�;x)

A1 (�; �)
p
A1 (x;x)

p
B21 (�;x)� 2C1 (�;x)A1 (�;x)

(5.31)

Here
C1 (�;x) = �

1

2
(x� �)2 + �C1 (�;x) (5.32)

Comparing (5.29) and (5.30), one concludes

V2 (y1;y2) = 2

Z
V

D (x; �)

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�2
d� (5.33)

B2 (y1;y2) = �2
Z
V

D (x; �)

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�
� ((V1 (�;y2)� V1 (�;y1)) r + (B1 (�;y1)�B1 (�;y2))) d� (5.34)

�C2 (y1;y2) = �
Z
V

D (x; �) (V1 (�;y2)� V1 (�;y1)) r + (B1 (�;y1)�B1 (�;y2))2 d�
(5.35)

Substituting V2; B2; �C2 in rhs of equations (5.33) - (5.35) instead of V1; B1; �C1,
we obtain the quantities V3; B3; �C3. Continuing this process, we obtain in the limit,
that the quantities Vn; Bn; �Cn, appear to be equal in both sides of equations (5.33)
- (5.35). In the developed form these equations are written as follows

V (y1;y2) =
2G

c2

Z
V

� (�)A (�;x)
�
1� 1

2
(V (�;y2) + V (�;y1))

�2
A (�; �)

p
A (x;x)

q
B2 (�;x) + A (�;x)

�
(x� �)2 � 2�C (�;x)

�d�
(5.36)

B (y1;y2) = �2
G

c2

Z
V

� (�)A (�;x)
�
1� 1

2
(V (�;y2) + V (�;y1))

�
A1 (�; �)

p
A (x;x)

q
B2 (�;x) + A (�;x)

�
(x� �)2 � 2�C (�;x)

�d�
� ((V (�;y2)� V (�;y1)) r + (B (�;y1)�B (�;y2))) (5.37)

�C (y1;y2) = �
G

c2

Z
V

� (�)A (�;x) ((V (�;y2)� V (�;y1)) r + (B (�;y1)�B (�;y2)))2

A (�; �)
p
A (x;x)

q
B2 (�;x) + A (�;x)

�
(x� �)2 � 2�C (�;x)

� d�
(5.38)

where
x =

y1 + y2
2

; A (y1;y2) = 1� V (y1;y2) (5.39)

r =
�B (�;x) +

q
B2 (�;x) + A (�;x)

�
(x� �)2 � 2�C (�;x)

�
A (�;x)

(5.40)
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It follows from (5.37) - (5.38), that for y1 = y2 = x

B (x;x) = 0; �C (x;x) = 0 (5.41)

Equations (5.36) - (5.38) are three integral equations for determination of three
quantities V (y1;y2) ; B (y1;y2) ; �C (y1;y2), which determine the world function

� (t1;y1; t2;y2) =
1

2
c2 (t2 � t1)2 �

1

2
(y1 � y2)2 �

1

2
V (y1;y2) c

2 (t2 � t1)2

+B (y1;y2) c (t2 � t1) + �C1 (y1;y2) (5.42)

6 Dynamic equations for world
function, generated by non-rotating sphere.

Let the shape of the physical body be a sphere of radius R. Let us introduce
parameter " = rg=R, where rg = 2GM=c2 is so called gravitational radius. Let

" =
2G

c2

Z
V

� (�)

R
d� �1 (6.1)

Then it follows from equations (5.36) - (5.38), that

V (y1;y2) = O (") ; B (y1;y2) = O
�
"2
�
; �C (y1;y2) = O

�
"3
�

(6.2)

If "� 1, equations (5.36) - (5.38) can be solved by means of successive approx-
imations. In the �rst approximation one obtains

V1 (y1;y2) =
2G

c2

Z
V

� (�)r�
jy1+y2j2

4
� �

�2d�+O �"2� (6.3)

B1 (y1;y2) = 0; �C1 (y1;y2) = 0 (6.4)

If � (�)

� (�) =

�
�0 if j�j < R
0 if j�j > R ; �0 =

3M

4�R3
= const (6.5)

where M is the sphere mass, then

V1 (y1;y2) =

� 2GM
c2jxj if jxj > R

3GM
c2R

� GM
c2R3

jxj2 if jxj < R
; x =

y1 + y2
2

(6.6)

In the second approximation one obtains

V2 (y1;y2) =
2G

c2

Z
V

�0 (�)
p
A1 (�;x)

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�2
A1 (�; �)

p
A1 (x;x)

q
(x� �)2

d�+O
�
"3
�

(6.7)
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B2 (y1;y2) = �2G
c2

Z
V

�0 (�)
p
A1 (�;x)

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�
A1 (�; �)

p
A1 (x;x)

q
(x� �)2

d�

� (V1 (�;y2)� V1 (�;y1)) r (6.8)

where

r =

q
(x� �)2p
A1 (�;x)

B2 (y1;y2) = �2
G

c2

Z
V

�0 (�) (V1 (�;y2)� V1 (�;y1)) d�+O
�
"3
�

(6.9)

�C2 (y1;y2) = �
G

c2

Z
V

�0 (�)
p
A1 (�;x)

�
(V1 (�;y2)� V1 (�;y1))

p
(x��)2p
A1(�;x)

�2
A1 (�; �)

p
A1 (x;x)

q�
(x� �)2

� d�

= �G
c2

Z
V

�0 (�)
q
(x� �)2 (V1 (�;y2)� V1 (�;y1))2

A1 (�; �)
p
A1 (x;x)A1 (�;x)

d� =O
�
"3
�

(6.10)

We obtain

V2 (y1;y2) =
2G

c2

Z
V

�0 (�)
p
A1 (�;x)

�
1� 1

2
(V1 (�;y2) + V1 (�;y1))

�2
A1 (�; �)

p
A1 (x;x)

q
(x� �)2

d�+O
�
"3
�

(6.11)

V2 (y1;y2) = V1 (y1;y2) +
G

c2

Z
V

�0 (�) (�V1 (�;x) + 2V1 (�; �) + V1 (x;x))q
(x� �)2

d�

�G
c2

Z
V

�0 (�) (V1 (�;y2) + V1 (�;y1))q
(x� �)2

d�+O
�
"3
�

(6.12)

V2 (y1;y2) = V1 (y1;y2) +
2G

c2

Z
V

�0 (�)V1 (�; �)q
(x� �)2

d� +O
�
"3
�

(6.13)

+
G

c2

Z
V

�0 (�) (�V1 (�;x) + V1 (x;x)� V1 (�;y2)� V1 (�;y1))q
(x� �)2

d�

Estimation of (6.13) in the case, when jy1j ; jy2j ; jxj � R, has the form

V2 (y1;y2) = V1 (y1;y2) +
6

5
"2
R

jxj �
"2

2

R2

jxj2
�
1 +

2 jxj
jy1j

+
2 jxj
jy2j

�
+O

�
"3
�

(6.14)

where V1 (y1;y2) is determined by the relation (6.6), and

" =
2GM

c2R
� 1 (6.15)
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In the case, when y1 = y2 = x, we have

V2 (x;x) = V1 (x;x) +
6

5
"2
R

jxj �
5

2
"2
R2

jxj2
+O

�
"3
�

(6.16)

We obtain for the quantity B2 (y1;y2) for jy2j ; jy1j � R

B2 (y1;y2) = �2G
c2

Z
V

�0 (�) (V1 (�;y2)� V1 (�;y1)) d�+O
�
"3
�

= �2GM
c2

(V1 (0;y2)� V1 (0;y1))+O
�
"3
�

= �"2R2
�
1

jy2j
� 1

jy1j

�
+O

�
"3
�

(6.17)

B2 (x;x) = 0 (6.18)

Thus, for small " = 2GM= (Rc2) and jxj � R, the calculated value of metric ten-
sor, determined by the quantities V1 (y1;y1) ; B1 (y1;y1) ; �C1 (y1;y1) coincides with
the metric tensor, calculated in Newtonian approximation of the general relativity.
At large values of parameter " the quantity V (x;x) remains to be less, than

unity. Indeed, setting y1 = y2 = x in exact equations (5.36) - (5.38), we obtain

V (x;x) =
2G

c2

Z
V

� (�)A (�;x)
�
1� 1

2
(V (�;x) + V (�;x))

�2
A (�; �)

p
A (x;x)

q
B2 (�;x) + A (�;x)

�
(x� �)2 � 2�C (�;x)

�d�
(6.19)

B (x;x) = 0; �C (x;x) = 0

Rewriting equation (6.19) in the form

V (x;x)
p
1� V (x;x)

=
2G

c2

Z
V

� (�)A (�;x)
�
1� 1

2
(V (�;x) + V (�;x))

�2
A (�; �)

q
B2 (�;x) + A (�;x) (x� �)2 � 2A (�;x) �C (�;x)

d� (6.20)

we conclude, that equation (6.20) contains only solutions with V (x;x) � 1. In
other words, component g00 = c2 (1� V (x;x)) of the metric tensor cannot change
its sign. It means that non-rotating physical body of any size and of any mass cannot
generate a black hole.
This result disagrees with the result of general relativity, but it agrees with the

common sense. To obtain the reason of such unexpected result, we calculate the
quantities A;B; �C inside the uniform heavy sphere of radius R and mass M . At
calculation we suppose that the quantity

" =
rg
R
=
2GM

c2R
� 1 (6.21)

where rg is the gravitational radius of the sphere.
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For jxj < R results of calculations looks as follows (Details of calculations are
rather bulky, and we omit them)

V2 (x;x) = "

�
3

2
� 1
2

x2

R2

�
� "2153

64
+ "2

37

32

x2

R2
� "2 61

320

jxj4

R4
+O

�
"3
�

(6.22)

The gravitational force inside the region jxj < R has the form

F =rV2 (x;x) = �
"

R2
x+

"2

R2
37

16
x�61
80

"2

R2
jxj2

R2
x; jxj < R (6.23)

It follows from (6.23), that if " > 16
37
� 0:43, the region, where the gravitational

force is directed from the center, appears near the point x = 0. If " � 0:65, the
gravitational force is directed from the center of the sphere in the whole region
jxj < R.
Thus, inside the heavy sphere the regions of antigravitation may appear at large

values of ". To understand this unexpected circumstance, let us note, that dynam-
ical (not completely relativistic) approach and geometrical (completely relativistic)
approach to gravitational phenomena disagree in some points.
The Newtonian gravitational potential of a uniform heavy sphere of radius R

has the form

' (x) =

� GM
jxj if jxj > R

3GM
2R

� GM
2R3

jxj2 if jxj < R
(6.24)

whereM is the of the sphere. The gravitational potential ' is maximal at the point
x = 0, whereas the gravitational force F =r' is minimal at the point x = 0 (F = 0
at x = 0). The space-time geometry is connected with the gravitational potential
g00 = (c

2 � 2'), but not with the gravitational force F.
Gravitational potential ' inside the hallow sphere of mass M is proportional

to the mass M , but ' =const, and the gravitational force F = 0 inside the sphere.
From dynamic (di¤erential) viewpoint this fact is explained as follows. Gravitational
in�uence of di¤erent parts of the hallow sphere compensate inside the sphere. If the
gravitational law distinguishes from the Newtonian one, such a compensation may
disappear, and an induced antigravitation may appear, because the attraction force,
generated by any part of the hallow sphere, is directed from the center of the sphere.
From the geometric (integral) viewpoint an appearance of the induced antigravi-

tation regions is natural, because the gravitational potential increases in such regions
with increase of amount of the matter. As to the gravitational force, it may have
any direction.

7 Concluding remarks

Thus, the extended general relativity (EGR) is the next stage of the physics geometriza-
tion. At this stage we have the monistic conception, containing only one fundamen-
tal quantity: world function �. The gravitational �eld, which is one of fundamental
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quantities of the general relativity (GR), is now only an attribute of the world func-
tion. From viewpoint of extended general relativity (EGR) the gravitational �eld is
not a physical essence. It is only a manner of the particle interaction description.
In particular, from viewpoint of EGR the gravitational �eld cannot exist separate
from the matter. Such a change of approach to the gravitational �eld is connected
with a usage of the relativistic concept of the events nearness.
Any monistic conception is a result of development of the preceding pluralistic

conception, and the monistic conception is more perfect as a rule, than the preced-
ing pluralistic one. The extended general relativity (EGR) is obtained as a result of
overcoming of defects of the general relativity (GR): (1) usage of only inconsistent
Riemannian space-time geometry, (2) use of inadequate (nonrelativistic) concepts
and quantities. EGR is to be considered as a more perfect conception, than GR.
Results obtained in the framework of EGR are more dependable, than results, ob-
tained in the framework of GR. In particular, conclusion on impossibility of the dark
hole existence in EGR is more dependable, than existence of the black holes in the
framework of GR. Besides, impossibility of the gravitational collapsing, leading to
a formation of a black hole, is con�rmed by appearance of induced antigravitation
in EGR.
Besides, the mathematical technique of EGR is the same for all (continuous and

discrete) geometries. Dynamic equations for the world function are written in the
coordinateless form. This circumstance admits one to eliminate consideration of any
coordinate transformation.
There is a possibility, that some problems of contemporary cosmology (dark

matter, dark energy) are a result of imperfect theory of gravitation. More correct
results of EGR, concerning dark holes, admit to hope, that EGR will be able to
solve di¢ cult problems of contemporary cosmology.
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