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Abstract

Extension of the general relativity on the case of non-Riemannian geome-
tries, suitable for description of the space-time geometry, leads to integral
dynamic equations, which are valid for continuous and discrete space-times.
Gravitational field of homogeneous heavy non-rotating sphere is calculated
inside the sphere. The space-time geometry appears to be non-Riemannian.
In the case, when the gravitational radius of the sphere is of the order of the
sphere radius, the induced antigravitation appears inside the sphere. In other
words, the gravitational force inside the sphere appears to be directed from
the sphere center. The antigravitation resists to collapsing of the sphere and
to formation of a black hole.

1 Introduction

The extended general relativity is the general relativity, extended to arbitrary space-
time geometry (Riemannian and non-Riemannian). The question: ”Why does one
consider extended general relativity (instead of the general relativity)?” is an exam-
ple of an incorrect question. The correct question looks as follows. Why was the
general relativity considered usually in the Riemannian space-time? The answer is
as follows. In the twentieth century the Riemannian geometry was considered as
a most general geometry, suitable for the space-time description. Physical geom-
etry [1, 2], described completely by the world function σ [3] (or by distance) was
not known. The physical geometry is nonaxiomatizable geometry, in general. The
scientists thought, that there exist only axiomatizable geometries, which are logical
constructions. Thus, the extended general relativity (EGR) realizes a natural ap-
proach to investigation of the space-time properties, whereas the general relativity
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(GR) realizes such an approach, which is constrained by our imperfect knowledge
of geometry. Presentation of EGR can be found in [4].

From formal mathematical viewpoint the Riemannian geometry is described by
the world function σ, satisfying the equation

∂σ (x, x′)
∂xi

gik (x)
∂σ (x, x′)

∂xk
= 2σ (x, x′) , σ (x, x′) = σ (x′, x) (1.1)

where gik (x) is the metric tensor at the point x, defined via world function by means
of relations

gik (x) gkl (x) = δi
l, gkl (x) =

[
∂σ (x, x′)
∂xk∂xl

]

x′=x

(1.2)

Because of constraint (1.1) the set of all Riemannian geometries is a small part
of the set of all physical geometries. It is quite obscure, why one should consider
only Riemannian geometries, constrained by the condition (1.1).

The gravitational field, calculated in the framework of EGR distinguishes from
the gravitational field, calculated in the framework of GR. In particular, the space-
time geometry, generated by a heavy sphere of radius R and of mass M is different
in EGR and GR, because the space-time geometry appears to be non-Riemannian
in EGR. The difference is small, if the parameter ε = rg/R = 2GM/ (Rc2) is small.
Here rg is the gravitational radius of the sphere. Nevertheless a new gravitational
effect (induced antigravitation) appears inside the sphere, considered in the frame-
work of EGR. In other words, the gravitational force, directed from the sphere
center, appears inside the sphere at some values of ε. This force imitates antigrav-
itation, although it does not mean, that the particles begin to repulse instead of
attraction. The repulsion from the sphere center of a particle inside the sphere is
induced by attraction of particles, which are located farther from the center, than
the considered particle.

Let us consider a hallow uniform heavy sphere of the mass M with internal
radius R1 and external radius R. Let the origin of the Cartesian coordinate system
is at the center of the sphere. According to the Newtonian gravitational theory the
gravitational potential ϕ has the form

ϕ (x) =





3
2

GM
R2

(
1− R2

1

R2 − R3
1

R3

)
if |x| < R1

−GM
R3

(
1
2
|x|2 +

R3
1

|x|

)
+ 3

2
GM
R

(
1− R3

1

R3

)
if R1 < |x| < R

GM
|x|

(
1− R3

1

R3

)
if |x| > R

(1.3)

The gravitational force is proportional to the quantity F = ∇ϕ(x)

F = ∇ϕ(x) =





0 if |x| < R1

−GM
R3

(
1− R3

1

|x|3
)
|x|x if R1 < |x| < R

−GM
|x|2

(
1− R3

1

R3

)
x if |x| > R

(1.4)
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It follows from (1.3), (1.4), that the gravitational potential is maximal in the region
|x| < R1, whereas the gravitational force is minimal in this region. It means that
the variation of the metric tensor δg00 = −2ϕ/c2 is maximal near the sphere center,
where the gravitational force F = 0. The gravitational force vanishes, because the
force is a vector, and the gravitational influence of different parts of the sphere
compensate each other, but not because the gravitational influence on the space-
time geometry vanishes near the sphere center.

Let us imagine that the real gravitational force distinguishes from the Newtonian
gravitational law. In this case there is possible such a situation, that the gravita-
tional force near the sphere center is not compensated completely. The resulting
gravitational force may be directed from the sphere center. It will be the induced
antigravitation, generated by the attraction of different parts of the sphere.

We are going to calculate correction to the Newtonian gravitational law (and to
the gravitation law of GR). It appears in EGR, that if the parameter ε is not too
small, the corrections to the Newtonian gravitational law dominate over the New-
tonian gravitational force. The induced antigravitation, generated by attraction,
appears inside the gravitating matter, distributed in the space. This antigravitation
prevents from collapsing (when parameter ε increases) of a physical body. As a result
the black hole formation appears to be impossible. Thus, corrections to the gravi-
tational law of Newton (and GR) may be essential at construction of cosmological
models.

A physical geometry is a monistic conception [5], described completely by the
only fundamental geometric quantity σ (world function [3]). All other geometric
quantities are some known functions of the world function σ. To modify a physical
geometry, it is sufficient to modify the world function σ. Other geometrical quanti-
ties are modified automatically, because they are the same known functions of σ. A
form of these functions can be determined at consideration of the proper Euclidean
geometry.

At construction of a Riemannian geometry one uses the pluralistic approach [5],
when there are several independent fundamental geometric quantities (dimension,
vector, scalar product, etc.). There exist connections between these fundamental
quantities, but not all these connections are taken into account at the pluralistic
approach.

Any geometry is a result of modification (generalization) of the proper Euclidean
geometry. The Riemannian geometry is obtained as a result of a modification of
the proper Euclidean geometry, considered as a pluralistic conception. At such a
modification all fundamental quantities are modified independently. As a result
the obtained geometry may appear to be inconsistent. The Riemannian geometry
appears to be inconsistent, indeed [6, 5].

The physical geometry is a result of a modification of the Euclidean geometry,
considered as a monistic conception, described by the only fundamental quantity
(world function). As a result the physical geometry appears to be consistent. Fur-
thermore, the physical geometry cannot be inconsistent, because, in general, it is a
nonaxiomaitzable geometry, whose formalism does not use the formal logic. Instead
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of rules of the formal logic the physical geometry uses the rules of such a logical
construction as the proper Euclidean geometry [7].

Extension of the general relativity to the case of physical space-time geometry has
been produced [4, 8]. As a result of such a generalization one obtains a coordinateless
formalism, which is suitable for any space-time geometry (continuous and discrete),
because it does not use differential equations. This formalism is rather uncustomary,
but it is very simple and effective.

The general relativity, extended to the arbitrary space-time geometry is a rather
radical conception, which is free of defects of the conventional general relativity
theory. The conventional general relativity uses inconsistent Riemannian geometry
and ignores most part of possible space-time geometries. These (physical) space-
time geometries are consistent and nonaxiomatizable, in general. However, scientists
(even mathematicians) are not able to work with nonaxiomatizable geometries, and
they prefer to ignore them. Besides, the general relativity, which is essentially a
geometrization of physics, does not realizes this geometrization completely. In par-
ticular, the general relativity does not take into account the relativistic concept of
nearness [4]. Instead of the relativistic concept of nearness the conventional general
relativity uses the nonrelativistic concept of nearness, which disagrees with the rel-
ativity principles. Formalism of the extended theory is more perfect. Description of
the space-time geometry is non-local. It is realized by means of integral equations,
which are insensitive to continuity of the space-time.

Especially one should stress, that the extended theory does not use any new
hypotheses. It only corrects inconsequences of the conventional conception of general
relativity. It means, that if one trusts to the conventional general relativity, one is
to trust to expanded general relativity, because it does not contain anything, which
is outside the relativity principles. All new results of the expanded general relativity
are results of overcoming of the conventional theory defects and preconceptions.

In this paper we apply the formalism of the extended general relativity theory for
calculation of the space-time geometry, generated by a heavy non-rotating sphere.
Practically we calculate corrections to the Newtonian gravitational potential. We
are going to show, that correction to the Newtonian potential takes place. The
gravitational field component, connected with this correction, corresponds to repul-
sion of particles from the sphere center. This induced antigravitation hinders from
collapsing of the sphere. As a result the Schwarzchild sphere existence becomes to
be impossible.

2 Statement of the problem

Let there be the space-time geometry, described by the world function σ0. Let us
add a particle in the space-time. The space-time geometry changes. It becomes to
be described by the world function σ = σ0 + δσ. We need to determine δσ.

The particle is described by its world chain
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C =
∑

l

T[PlPl+1] (2.1)

where T[PlPl+1], l = ... − 1, 0, 1, ...are segments of the timelike straight line of the
same length. Any link of the world chain is the segment T[PlPl+1], defined as a set of
points R by means of the relation

T[PlPl+1] =
{

R|
√

2σ (Pl, R) +
√

2σ (Pl+1, R) =
√

2σ (Pl, Pl+1)
}

(2.2)

Here
√

2σ (Pl, R) is a distance between the points Pl and R. In the proper Euclidean
geometry a segment of straight is defined by the relation (2.2). In any physical
geometry a segment of the straight is defined by the same relation (2.2), where σ is
the world function of the physical geometry in question. If the world chain describes
a free motion of a particle, the vectors PlPl+1 and Pl+1Pl+2, describing adjacent
segments T[PlPl+1] and T[Pl+1Pl+2], are equivalent (PlPl+1eqvPl+1Pl+2). It means by
definition, that vectors PlPl+1 and Pl+1Pl+2 are in parallel (PlPl+1·Pl+1Pl+2) and
their modules |PlPl+1| and |Pl+1Pl+2| are equal.

In the proper Euclidean geometry vectors PlPl+1 and Pl+1Pl+2 are in parallel,
if

(PlPl+1·Pl+1Pl+2) : (PlPl+1.Pl+1Pl+2) = |PlPl+1| · |Pl+1Pl+2| (2.3)

where scalar product (P0P1.Q0Q1) of two vectors P0P1 and Q0Q1 is defined by the
relation

(P0P1.Q0Q1) = σ (P0, Q1) + σ (P1, Q0)− σ (P0, Q0)− σ (P1, Q1) (2.4)

In the proper Euclidean geometry the definition of the scalar product coincides
with the conventional definition in terms of the linear vector space, which can be
introduced in the proper Euclidean geometry. The definition of the scalar product
in terms of the world function is useful in the sense, that it does not contain a
reference to a linear vector space and to a coordinate system. It can be used in any
physical geometry, which is described completely by its world function. It is of no
importance, whether or not a linear vector space can be introduced in this geometry.

The equivalence condition (PlPl+1eqvPl+1Pl+2) of two vectors PlPl+1 and Pl+1Pl+2

is written in the form

(PlPl+1eqvPl+1Pl+2) : (PlPl+1.Pl+1Pl+2) = |PlPl+1| · |Pl+1Pl+2| (2.5)

∧ |PlPl+1| = |Pl+1Pl+2| (2.6)

Using (2.4) and

|PlPl+1| =
√

2σ (Pl, Pl+1) (2.7)

one can rewrite two conditions (2.5), (2.6) in the form

(PlPl+1eqvPl+1Pl+2) : 4σ (Pl, Pl+1) = σ (Pl, Pl+2) ∧ σ (Pl, Pl+1) = σ (Pl+1, Pl+2)
(2.8)
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Thus, the world chain of a free particle is described geometrically (in terms of
the world function). The particle mass is described also geometrically as a length
of a link of the world chain. µ = |PlPl+1| is the geometric mass of the particle. The
usual mass m is connected with the geometric mass µ by means of the relation

m = bµ = b |PlPl+1| (2.9)

where b is some universal constant. Such a presentation of the particle mass admits
one to reduce quantum effects to pure geometrical effects. Such a reduction is
possible, if the space-time geometry in microcosm is described by the world function
σd [9]

σd = σM + λ2sgnσM, λ2 =
~

2bc
(2.10)

where σM is the world function of the Minkowski geometry, ~ is the quantum constant
and c is the speed of the light.

Geometrization of the particle mass admits one to obtain completely geometrical
description of the particle motion, when the particle mass is described by the length
of links of its world chain (but not as some external parameter, attributed to the
particle). The space-time geometry, described by the world function σd appears to
be a discrete geometry, although it is given on a continuous manifold of Minkowski.
From the conventional viewpoint, when the discrete geometry is given on a lattice
point set, such a situation seems to be impossible. Discreteness of the geometry
(2.10) manifests itself in the fact, that in the geometry (2.10) there are no vectors
P0P1, whose length |P0P1| lies in the interval

(
0,
√

2λ
)
. The geometry (2.10) is

invariant with respect to space-time rotations, what is impossible for a geometry on
a lattice point set.

Note, that the electrical charge is also geometrized. It is the component of the
particle momentum along the fifth direction in the 5D geometry of Kaluza-Klein.
Spin of elementary particle can be geometrized also [10]. However, in this case
the elementary particle should be considered as a geometrical object, described by
its skeleton Pn = {P0, P1, ...Pn}, consisting of n + 1 space-time points P0, P1, ...Pn.
In this case the motion of an elementary particle is described as a world chain,
consisting of connected skeletons [11]. Such an approach admits one to geometrize
completely the particle description and to reduce the fundamental particle physics
to consideration of space-time points and distances (world functions) between them.
At the description of a particle by its skeleton Pn such a problem appears. What
reasons (or fields) do connect different points of the skeleton between themselves?
Such a question appears, because we are used to consider the space-time geometry
as an infinitely divisible geometry. However, the space-time geometry of microcosm
may be a restrictedly divisible geometry. In this case there is no necessity to explain
connections between the points of a skeleton. The restrictedly divisible space-time
geometry is completely described by the world function as well as the infinitely
divisible one.

For instance, for explanation of the quarks confinement there is no necessity
to introduce gluons. It is sufficient to refer to the restrictedly divisible space-time
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geometry in microcosm.
In this connection it is worth to note, that the relativity theory is essentially a ge-

ometrization of physics. However, this geometrization is incomplete. Particle mass,
particle charge and some other particle characteristics remain to be not geometrized.
This incomplete geometrization was connected with insufficient knowledge of geom-
etry, when nonaxiomatizable geometries were unknown. Now, having a more perfect
knowledge of geometry, we hope to succeed in a complete geometrization of physics,
when on the fundamental level all physical phenomena can be described in terms
of the particle skeletons and world function of the space-time. Realization of the
physics geometrization program admits one to construct a monistic conception of
fundamental physics, when all physical phenomena are described in terms of one
fundamental quantity (world function). All other physical quantities will appear
to be derivative quantities of the world function. In particular, the force fields
(electromagnetic and gravitational and other) appear to be attributes of the space-
time geometry (world function), but not independent essences. Such an approach is
very uncustomary (Einstein dreamed on united field theory, where the fields were
some fundamental essences). We shall speak on the physics geometrization pro-
gram instead of the united field theory. The geometrization program is a monistic
conception, or at least, it is less pluralistic conception, than the united field theory.

If the space-time geometry is described by the world function σ, the space-time
geometry with additional particles is described by the world function σ = σ0 + δσ,
where the variation δσ of the world function is described by the relation (see details
in [4])

δσ (S1, S2) = −G

c2

∑
s

m(s)

θ ((P′
lP.PQ0))

(
P′

lP
′
l+1.PQ0

)
(
P′

lP.P′
lP

′
l+1

) |PQ0|

×
((

P′
lP

′
l+1.PS1

)− (
P′

lP
′
l+1.PS2

))2

(
P′

lP
′
l+1.P

′
lP

′
l+1

) (2.11)

where S1 and S2 are arbitrary points of the space-time, m(s) is the mass of sth
particle, G is the gravitational constant. Summation is produced over all additional
particles. All scalar products in rhs of (2.11) are calculated by means of the relation
(2.4) with the world function σ = σ0 + δσ, which is unknown at first. As a result
the relation (2.11) is an equation for determination of δσ (or σ = σ0 + δσ).

The point P is the middle of the segment S1S2, determined by the relations

4σ (P, S1) = σ (S1, S2) , 4σ (P, S2) = σ (S1, S2) (2.12)

The point P ′
l is the point of the world line of sth particle P ′

l ∈ L(s), which is
determined by the relation

σ (P, P ′
l ) = 0, P ′

l ∈ L(s) (2.13)

The point P ′
l+1 ∈ L(s) is infinitely close to the point P ′

l , lying on the same world line
L(s).
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In the case of continuous distribution of particles the summation in (2.11) is to be
substituted by integration over Lagrangian coordinates ξ, labelling the perturbing
particles. One obtains

δσ (S1, S2) = −G

c2

∫

V

ρ (ξ) dξ
θ ((P′

lP.PQ0))
(
P′

lP
′
l+1.PQ0

)
(
P′

lP.P′
lP

′
l+1

) |PQ0|

×
((

P′
lP

′
l+1.PS1

)− (
P′

lP
′
l+1.PS2

))2

(
P′

lP
′
l+1.P

′
lP

′
l+1

) (2.14)

where ρ (ξ) is mass density of additional particles. V is the volume in the space of
Lagrangian coordinates ξ, labelling the additional particles. The total mass M of
additional particles is defined by the relation

∫

V

ρ (ξ) dξ =M (2.15)

The points S1 and S2 are arbitrary points of the space-time. The point P is to be
some function P = P (S1, S2) of points S1 and S2, which determined by relations
(2.12). The function P (S1, S2) is symmetric

P (S1, S2) = P (S2, S1) (2.16)

The point P is the origin of a coordinate system with basic vectors PQi, i = 0, 1, 2, 3.
Vector PQ0 is timelike.

It is supposed, that the motion of additional particles is fixed (their world lines
are fixed), and one needs to determine the world function, generated by them. We
know only one method of the equation (2.14) solution. It is the method of successive
approximations. One gives the zero approximation σ0 of the world function and
calculate δσ1, using σ0 in rhs of (2.14). One obtains σ1 = σ0 + δσ1. It is the first
approximation of the world function. One calculates rhs of (2.14), using σ1, and
obtains δσ2. The world function σ2 = σ0 + δσ2 is the second approximation. In
the same way one calculates the third approximation σ3 = σ0 + δσ3, where δσ3 is
calculated by means of σ2 and so on, When σn+1 coincides with σn, one obtains
solution of the equations (2.14), (2.13).

3 World function of non-rotating body

In the case of non-rotating physical body, which is at rest, one can obtain three
integral equations for calculation of the world function for the points S1 = {t1,y1},
S2 = {t2,y2}. The world function is taken in the form of the second order polynomial
[4] of (t2 − t1)

σ (t1,y1; t2,y2) =
1

2
A (y1,y2) c2 (t2 − t1)

2 + B (y1,y2) c (t2 − t1) + C (y1,y2) (3.1)
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Functions

A (y1,y2) = 1−V (y1,y2) , B (y1,y2) , C (y1,y2) = −1

2
(y1 − y2)

2+δC (y1,y2)

(3.2)
should be determined from the integral equations, written for variables V, B, δC

The form of the world function in the form of the second order polynomial of
(t2 − t1) is conserved after a use of the equation (2.14) [4]. As a result one can
obtain equations for the quantities V,B, δC in the form

V (y1,y2) =
2G

c2

∫

V

ρ (ξ) A (ξ,x)
(
1− 1

2
(V (ξ,y2) + V (ξ,y1))

)2

A (ξ, ξ)
√

A (x,x)
√

B2 (ξ,x) + A (ξ,x)
(
(x− ξ)2 − 2δC (ξ,x)

)dξ

(3.3)

B (y1,y2) = −2
G

c2

∫

V

ρ (ξ) A (ξ,x)
(
1− 1

2
(V (ξ,y2) + V (ξ,y1))

)

A (ξ, ξ)
√

A (x,x)
√

B2 (ξ,x) + A (ξ,x)
(
(x− ξ)2 − 2δC (ξ,x)

)dξ

× ((V (ξ,y2)− V (ξ,y1)) r + (B (ξ,y1)−B (ξ,y2))) (3.4)

δC (y1,y2) = −G

c2

∫

V

ρ (ξ) A (ξ,x) ((V (ξ,y2)− V (ξ,y1)) r + (B (ξ,y1)−B (ξ,y2)))
2

A (ξ, ξ)
√

A (x,x)
√

B2 (ξ,x) + A (ξ,x)
(
(x− ξ)2 − 2δC (ξ,x)

) dξ

(3.5)
where

x =
y1 + y2

2
, (3.6)

r =
−B (ξ,x) +

√
B2 (ξ,x) + A (ξ,x)

(
(x− ξ)2 − 2δC (ξ,x)

)

A (ξ,x)
(3.7)

In the special case, when y1 = y2, one obtains from (3.3) - (3.6), that

y1 = y2 = x, B (y1,y1) = 0, δC (y1,y1) = 0 (3.8)

The equation (3.3) takes the form

(1− A (x,x))
√

A (x,x)

=
2G

c2

∫

V

ρ (ξ) A (ξ,x) (1− V (ξ,x))2

A (ξ, ξ)
√

B2 (ξ,x) + A (ξ,x)
(
(x− ξ)2 − 2δC (ξ,x)

)dξ (3.9)

It follows from (3.9) that the component g00 (t,x) = c2A (x,x) of the metric tensor
gik cannot be negative because of the factor

√
A (x,x).

It is well known, that the Schwarzchield surface, determining existence of a black
hole, is defined by the relation

g00 (t,x) = c2A (x,x) = 0 (3.10)
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It means, that any non-rotating body, consisting of motionless particles cannot
generate a black hole.

What is a reason of such an unexpected result, different from the result of the
general relativity? Apparently, it is the induced antigravitation, which has been
discussed in Introduction. The antigravitation hinders from collapsing of the body.
We are going to show, that the antigravitation takes place, indeed.

4 World function of the homogeneous heavy sphere

We consider homogeneous sphere of radius R and of the mass M . Two first approx-
imations of solution of the equations (3.3) - (3.7) will be calculated. Integrals in
these equations are transformed into integrals of the form

∫ R

0

ξ2dξ

∫ π/2

−π/2

sin θdθ

∫ 2π

0

ρ0 (.) dϕ (4.1)

where

ρ (ξ) = ρ0 =
3M

4πR3
= const (4.2)

The quantity ε = rg/R = 2GM/Rc2 is considered to be a small quantity.

ε =
2GM

c2R
=

8πGR2

3c2
ρ0 ¿ 1 (4.3)

As a zeroth approximation one takes the empty space-time, described by the geom-
etry of Minkowski. In this case

A0 (y1,y2) = 1, V0 (y1,y2) = 0, B0 (y1,y2) = 0, (4.4)

C0 (y1,y2) = −1

2
(y1 − y2)

2 , δC0 (y1,y2) = 0 (4.5)

It follows from (3.3) - (3.5), that

V1 (y1,y2) = O (ε) , B1 (y1,y2) = O (
ε2

)
, δC1 (y1,y2) = O (

ε3
)

(4.6)

The equation (3.3) has the form

V1 (y1,y2) =
2G

c2

∫ R

0

ξ2dξ

∫ π/2

−π/2

sin θdθ

∫ 2π

0

3M

4πR3

dϕ√
(x− ξ)2

(4.7)

As a result in the first approximation the world function has the form

σ1 (t1,y1; t2,y2) =
1

2
(1− V1 (y1,y2)) c2 (t2 − t1)

2 − 1

2
(y2 − y1)

2 (4.8)

where

V1 (y1,y2) =

{ 2GM
c2|x| if |x| > R

3GM
c2R

− GM
c2R3 |x|2 if |x| < R

, x =
y1 + y2

2
(4.9)
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One can see, that already in the first approximation the space-time geometry is non-
Riemannian, although component g00 (x) = c2 (1− V1 (x,x)) of the metric tensor
coincides with the Newtonian approximation c2 − 2ϕ (x), where ϕ is determined by
relation (1.3). Other components of the metric tensor coincide also.

In the second approximation equations (3.3) -(3.7) take the form

V2 (y1,y2) =
2G

c2

∫

V

ρ0

√
A1 (ξ,x)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)2

A1 (ξ, ξ)
√

A1 (x,x)
√

(x− ξ)2
dξ (4.10)

B2 (y1,y2) = −2
G

c2

∫

V

ρ0

√
A1 (ξ,x)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)

A1 (ξ, ξ)
√

A1 (x,x)
√

(x− ξ)2
dξ

× ((V1 (ξ,y2)− V1 (ξ,y1)) r1) (4.11)

δC2 (y1,y2) = −G

c2

∫

V

ρ0

√
A1 (ξ,x) ((V1 (ξ,y2)− V1 (ξ,y1)) r1)

2

A1 (ξ, ξ)
√

A1 (x,x)
√

(x− ξ)2
dξ (4.12)

r1 =

√
(x− ξ)2

A1 (ξ,x)
(4.13)

The quantity V1 (y1,y2) is a small quantity of the order ε. The quantity A1 =
1−V1 = 1+O (ε). The quantities V2, B2, δC2 are calculated to within ε2. Expanding
(4.11), (4.12) over powers of ε and taking into account that, 2 G

c2

∫
V

ρ0dξ is a quantity
of the order ε, one obtains to within ε2

B2 (y1,y2) = −2
G

c2

∫

V

ρ0 (V1 (ξ,y2)− V1 (ξ,y1)) dξ+O (
ε3

)
(4.14)

δC2 (y1,y2) = −G

c2

∫

V

ρ0

√
(x− ξ)2 (V1 (ξ,y2)− V1 (ξ,y1))

2

A1 (ξ, ξ)
√

A1 (x,x) A1 (ξ,x)
dξ =O (

ε3
)

(4.15)

V2 (y1,y2) = V1 (y1,y2) +
G

c2

∫

V

ρ0 (2V1 (ξ, ξ)− V1 (ξ,x) + V1 (x,x))√
(x− ξ)2

dξ

−2G

c2

∫

V

ρ0 (V1 (ξ,y2) + V1 (ξ,y1))√
(x− ξ)2

dξ +O (
ε3

)
(4.16)

where according to (4.7)

V1 (y1,y2) =
2G

c2

∫

V

ρ0√(
|y1+y2|2

4
− ξ

)2
dξ (4.17)
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Let us consider the case, when the points y1,y2 lie inside the sphere, i.e. |y1| , |y2| , |x| <
R. Then, using

V1 (y1,y2) =
3GM

c2R
− GM

c2R3

∣∣∣∣
y1 + y2

2

∣∣∣∣
2

= ε

(
3

2
− 1

2

x2

R2

)
(4.18)

the relation (4.16) is reduced to the form

V2 (y1,y2) = V1 (y1,y2)− 6
G2M

c4R

∫

V

ρ0dξ√
|x− ξ|2

+
G2M

4c4R3

∫

V

ρ0

(
10xξ − 3ξ2 − 3x2 + 2y2

2+2y2
1

)
√
|x− ξ|2

dξ+O (
ε3

)
(4.19)

This relation is transformed to the form

V2 (y1,y2) = V1 (y1,y2)

(
1− 3

GM

c2R
+

GM (2 (y2
2+y2

1)− 3x2)

8c2R3

)

+
5G2M

2c4R3

∫

V

ρ0xξ√
|x− ξ|2

dξ − 3G2M

4c4R3

∫

V

ρ0ξ
2

√
|x− ξ|2

dξ+O (
ε3

)
(4.20)

Calculation of integrals in (4.20) gives
∫

V

ρ0xξ√
|x− ξ|2

dξ =
2π

3
ρ0 |x|2 R2 − 2π

5
ρ0 |x|4 , |x| < R (4.21)

∫

V

ρ0ξ
2

√
|x− ξ|2

dξ =πρ0 |x|4
((

R

|x|
)4

− 1

5

)
, |x| < R (4.22)

Substituting (4.21), (4.22) in (4.20) and expressing M and ρ0 via ε by means of
(4.3), one obtains for (4.20)

V2 (y1,y2)

= ε

(
3

2
− 1

2

x2

R2

)
− ε2 153

64
+ ε2

(
17

16

x2

R2
+

3

2

(5x2 − 4 (y2y1))

16R2

)

−ε2 51

320

|x|4
R4

− ε2 1

32

x2

R2

(5x2 − 4 (y2y1))

R2
+O (

ε3
)
, |x| , |y1| , |y2| < R(4.23)

If besides, y1 = y2 = x, then

V2 (x,x) = ε

(
3

2
− 1

2

x2

R2

)
− ε2 153

64
+ ε2 37

32

x2

R2
− ε2 61

320

|x|4
R4

+O (
ε3

)
(4.24)

The gravitational force inside the region |x| < R has the form

F = ∇V2 (x,x) = − ε

R2
x+

ε2

R2

37

16
x−61

80

ε2

R2

|x|2
R2

x, |x| < R (4.25)
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If ε > 16
37
≈ 0.43, the region, where the gravitational force is directed from the center,

appears near the point x = 0. If ε ≥ 0.65, the gravitational force is directed from
the center of the sphere in the whole region |x| < R.

It is interesting to calculate the external gravitational potential Vext2, generated
by the hallow sphere with internal radius R1 and external radius R. It is obtained
by modifying the expression (4.10) by means of the replacement of the volume V
(|ξ| < R) by the volume V1 (R1 < |ξ| < R ). One obtains

Vext2 (y1,y2) =
2G

c2

∫

V1

ρ0

√
A1 (ξ,x)

(
1− 1

2
(V1 (ξ,y2) + V1 (ξ,y1))

)2

A1 (ξ, ξ)
√

A1 (x,x)
√

(x− ξ)2
dξ (4.26)

Calculation of (4.26) for y1 = y2 = x, |x| < R1 gives the following result.

Vext2 (x,x) = ε

(
1− R2

1

R2

)(
3

2

(
1− 3

2
ε

)
− 9

64
ε

(
1 +

R2
1

R2

))

+
13

32
ε2

(
1− R2

1

R2

) |x|2
R2

+O (
ε3

)
, |x| < R1 (4.27)

Corresponding gravitational force Fext has the form

Fext2 =
13

16
ε2

(
1− R2

1

R2

)
x

R2
(4.28)

One can see from (4.28), that the external gravitational force appears only in
the second approximation. It is always directed from the center of the sphere. The
total gravitational force (4.25) contains a component, directed from the center, and
this component is larger, than the external gravitational force (4.28)

Calculation of the potential V2 for the case, when |x|, |y1|, |y2| À R, leads to
the following result

V2 (y1,y2) = V1 (y1,y2) +
6

5
ε2 R

|x| − ε2 R2

2 |x|2
(

1 +
2 |x|
|y1| +

2 |x|
|y2|

)
+O (

ε3
)

(4.29)

V2 (x,x) = V1 (x,x) +
6

5
ε2 R

|x| −
5

2
ε2 R2

|x|2 +O (
ε3

)
(4.30)

F = ∇V2 (x,x) = −ε
R

|x|3x−
6

5
ε2 R

|x|3x + 5ε2 R2

|x|4x (4.31)

Two last terms in (4.31) describe the second order correction to the gravitational
force outside the sphere. The antigravitation (repulsion) dominates in this correction
only for |x| < 4.17R. Influence of antigravitation is less, than that of gravitation for
|x| À R.

Calculation of B2 (y1,y2) gives the following result

B2 (y1,y2) = −2
G2M2

c4R

y2
1 − y2

2

R2
= −2ε2y

2
1 − y2

2

R
+O (

ε3
)

(4.32)

B2 (x,x) = O (
ε3

)
, δC (y1,y2) = O (

ε3
)

(4.33)
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5 Discussion

Let us imagine a sphere of radius R, filled uniformly by gravitating dust. Let the
total mass of the dust be M . Under influence of gravitation the radius of the
sphere is reduced, and the parameter ε = 2GM/c2R increases. When the parameter
approaches the value ε = 0.43, a region of antigravitation arises near the center of
the sphere. In this region there is a gravitational force, which is directed from the
center of the sphere. Collapsing of the dust cloud will be reduced, and at the value
ε ≥ 0.65 antigravitation will take place inside the whole sphere.

Of course, it is a simplified consideration. In reality a collapsing of the dust
cloud will be not uniform, and this nonhomogeneity should be taken into account at
the calculation of the gravitational field inside the sphere. Besides, one should take
into account the dust motion, which can influence on the gravitational field also.

However, in the Newtonian theory of gravitation, as well as in the general rela-
tivity the region of antigravitation does not appear inside the spherical cloud of dust
under any circumstances. If a gravitation theory predicts a possibility of antigravi-
tation, which could resist to collapsing of a dust cloud, it would be very important
for construction of correct cosmological models.

Note, that the approach to gravitation from the dynamic viewpoint and that from
the geometric viewpoint are different. From the geometric viewpoint an influence of
gravitation is maximal at the point x = 0. Variation of the metric tensor component
g00 = c2(1−V (x,x) is maximal at the point x = 0, as it follows from (1.3). However,
from the dynamic viewpoint an influence of gravitation is minimal at the point
x = 0, because the gravitational force (1.4) vanishes at this point. Such a difference
is connected with the fact, that the dynamitic description is local (differential),
whereas the geometrical description is non-local (integral). It is a reason, why it is
difficult to distinguish between the gravitation and antigravitation at the geometric
description.

Already in the first (Newtonian) approximation the world function σ1, deter-
mined by relations (4.8), (4.9), appears to be non-Riemannian (integral difference),
although the metric tensor coincides in this approximation with the metric tensor
of the Schwarzchild solution in the case of very small ε = rg/R = 2GM/ (c2R)
(differential coincidence).
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