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Abstract

It is shown that the Euler system of hydrodynamic equations for inviscid
barotropic �uid for density and velocity is not a complete system of dynamic
equations for the inviscicd barotropic �uid. It is only a closed subsystem of
four dynamic equation. The complete system of dynamic equation consists of
seven dynamic equations for seven dependent variables: density, velocity and
labeling (Lagrangian coordinates, considered as dependent variables). Solu-
tion of the Cauchy problem for the Euler subsystem is unique. Solution of
the Cauchy problem for the complete hydrodynamic system, containing seven
equations, is unique only for irrotational �ows. For vortical �ows solution of
the Cauchy problem is not unique. The reason of the nonuniqueness is an
interfusion, which cannot be taken into account properly in the framework of
hydrodynamics. There are some arguments in favour of connection between
interfusion and turbulence.

1 Introduction

Describing a �uid �ow, one labels particles of the �uid by means of Lagrangian coor-
dinates � = f�1; �2; �3g. One supposes, that any Lagrangian coordinates � label the
same �uid particle all the time. Applying laws of Newtonian dynamics to any �uid
particle, one obtains hydrodynamic equations for the �uid �ow in the Lagrangian
representation (in the Lagrangian coordinates). The Lagrangian representation is
sensitive to the correct labeling of the �uid particles in the sense, that there are situ-
ations, when in di¤erent time moments the same Lagrangian coordinates � describe
di¤erent �uid particles. For instance, if two like gas beams, consisting of nonin-
teracting molecules, pass one through another, the particle labeling changes after
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"collision" of the two beams. The picture is shown in the �gure, which describes
world lines of gas particles in the space-time. The solid lines shows gas particle with
the same labeling �, whereas dashed lines show world lines of real gas molecules.
In this example a violation of the �uid particle labeling after "collision" is evident.

The stream lines, represented by solid lines, do not describe motion of real �uid
particles.
Is it important? Can we observe stream lines of a �uid? Let us imagine that

we introduce several �ecks of dust in one of gas �ows and follow their motion. We
suppose that the size of �ecks is larger, than the size of gas molecules, and any
�eck interacts with many gas molecules. Then we may think, that any �eck of dust
moves along stream line of the �uid. As far as collision of any �eck of dust with gas
molecules is random, the �ecks of dust after "collision" appear in both gas beams,
although before the "collision" they were placed only in one of them. On the other
hand, it is generally assumed, that �ecks of dust moves together with the gas, and
any �eck moves along the stream line of the �uid. Observation of �ecks of powder
is a usual method of the stream lines investigation.
The hydrodynamic description of a �uid is valid at the supposition, that one

stream of a �uid can penetrate into the other one only to the depth of the mean
length of collision path. In this case the interfusion of di¤erent streams of a �uid
will be in�nitesimal. However, such a small interfusion will take place, and this
interfusion may appear to be essential for the shape of stream lines.
Such a physical phenomenon as turbulence can be discovered only, if one traces

the irregular behavior of stream lines. In other words, for observation of turbulence
a displacement of �uid particles is important, but not only their velocities. The
velocities are important only as a source of displacement.
A motion of the inviscid barotropic �uid is described by the Euler equations

@v

@t
+ (vr)v = �1

�
rp; p = p (�) = �2

@E

@�
(1.1)

@�

@t
+r (�v) = 0 (1.2)
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where � = � (t;x) is the �uid density, v = v (t;x) is the �uid velocity, p = p (�) =
�2@E (�) =@� is the pressure and E (�) is the �uid internal energy per unit mass.
Stream lines are described by a system of ordinary di¤erential equations. One

supposes that �uid particles move along the stream lines x = x (t), which are de�ned
by the equation

dx

dt
= v (t;x) (1.3)

where v = v (t;x) is a solution of the Euler equations (1.1), (1.2).
The Euler system (1.1), (1.2) is a closed system of di¤erential equations, which

may be solved independently of equations (1.3). The Euler system is a system of
nonlinear partial di¤erential equations. It is di¢ cult for solution. The system of
ordinary di¤erential equations (1.3) is simpler, than the Euler system. Besides, it
can be solved only after solution of the Euler system (1.1), (1.2). It is a reason,
why researchers investigate mainly the Euler system. The system of equations (1.3)
for the stream lines remains usually outside the region of consideration as some
triviality.
However, the Euler system (1.1), (1.2) and equations (1.3) are dynamic equations

of one dynamic system, and they should be considered together. This dynamic
system will be referred as the complete hydrodynamic system. The Euler equations
(1.1), (1.2) are not dynamic equations of a wholesome dynamic system, because the
cannot be deduced from a variational principle, whereas dynamic equations (1.1),
(1.2), (1.3) can. It seems, that dynamic equations do not in�uence on the solution
of dynamic equations (1.1), (1.2). In reality, it is true only for irrotational �ows. In
vortical �ows a situation changes. In the vortical �ows an interfusion appears. The
interfusion is not so large as in �gure with colliding gas beams. This interfusion is
in�nitesimal. It is conditioned by di¤erent velocities of adjacent �uid volumes. This
in�nitesimal interfusion in�uences on the shape of stream lines and on the labeling
of the �uid particles, although it does not in�uence on quantities �;v, which are
solution of the Euler system (1.1), (1.2).
In the case of the Euler representation of hydrodynamic equations, the �uid par-

ticle labeling is not necessary. The four hydrodynamic Euler equations are obtained
as a result of the conservation laws of the energy and momentum. However, in
this case the conservation law of the angular momentum is not used, and one can-
not be sure, that the system of four Euler equations for barotropic �uid describes
completely rotational degrees of freedom of molecules and those of �uid particles.
The rotational degrees of freedom may be essential in turbulent �ows, where close
consideration of rotational degrees of freedom may appear to be essential.
In this paper we try to take into account interfusion, which appears in the rota-

tional �ows of the barotropic �uid. In�uence of interfusion manifests itself in labeling
of the �uid particles by means of the Lagrangian coordinates � = f�1; �2; �3g. This
change of labeling is not important for solution of Euler equations (1.1), (1.2), which
form a closed system of di¤erential equations. However, this change of labeling may
appear to be important for such physical phenomena, where the shape of stream
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lines is essential (such as turbulence).
We consider connection between the labeling and the interfusion on the for-

mal mathematical level. We shall consider the Euler dynamic equation for inviscid
barotropic �uid
We are interesting in the question, whether the labeling, generated by the equa-

tion (1.3) is an unique possible way of labeling. To solve this problem, we shall
consider the Lagrangian coordinates � to be dependent dynamic variables. The
Eulerian coordinates t;x are considered to be independent dynamic variables.
Thus, we consider dynamic system, described by seven dependent dynamic vari-

ables �;v; �, which are functions of four independent variables t;x. Note that system
of dynamic equations (1.1), (1.2) is a closed system of dynamic equations. However,
the dynamic system, described, by four dependent variables �;v is not a wholesome
dynamic system in the sense, that dynamic equations (1.1), (1.2) cannot be obtained
from some a variational principle.
To obtain dynamic equations (1.1), (1.2) from the variational principle [5], one

needs to add so-called Lin constraints [3]. This conditions have the form

@0�+(vr) � = 0 (1.4)

It is easy to see, that characteristics of the linear di¤erential equation (1.4)

dt

1
=
dx1

v1
=
dx2

v2
=
dx3

v3
(1.5)

coincide with the equation (1.3). Vice versa, any integral of the equation system (1.3)
is a solution of the equation (1.4). The Lin constraints (1.4) are interesting in the
relation, that independent dynamic variables in (1.4) are the same, as in the dynamic
equations (1.1), (1.2). Hence, dynamic equations (1.1), (1.2) and dynamic equations
(1.4) may be considered as dynamic equations of one dynamic system. It is rather
di¢ cult to consider system of equations (1.1), (1.2), (1.3) as a dynamic equations
of a dynamic system, because independent variables are di¤erent in equations (1.1),
(1.2) and (1.3).

2 Generalized stream function

Let us note that the quantities � may be considered to be the generalized stream
function (GSF), because � have two main properties of the stream function.
1. GSF � labels stream lines of a �uid.
2. Some combinations of the �rst derivatives of any � satisfy the continuity

equation identically.

@kj
k � 0; jk =

@J�=x
@�0;k

; @k �
@

@xk
; k = 0; 1; 2; 3 (2.1)

where jk = fj0; j1; j2; j3g = f�; �vg is the 4-vector of �ux. Here and in what follows,
a summation over two repeated indices is produced (0-3) for Latin indices and (1-3)
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for Greek ones. The Jacobian determinant J = J�=x

J�=x = J
�
�l;k
�
=

@ (�0;�1; �2; �3)

@ (x0; x1; x2; x3)
= det

�����l;k���� ; �l;k �
@�l
@xk

l; k = 0; 1; 2; 3

(2.2)
is considered to be a four-linear function of �l;k. The quantity �0 is the temporal
Lagrangian coordinate, which appears to be �ctitious in expressions for the �ux
4-vector jk

� = j0 =
@ (�1; �2; �3)

@ (x1; x2; x3)
; �v1 = j1 = �@ (�1; �2; �3)

@ (t; x2; x3)
;

�v2 = j2 =
@ (�1; �2; �3)

@ (t; x1; x3)
; �v3 = j3 = �@ (�1; �2; �3)

@ (t; x1; x2)
(2.3)

A use of Jacobians in the description of the ideal �uid goes up to Clebsch [1,
2, Clebsch, 1857,1859], who used Jacobians in the expanded form. It was rather
bulky. We use a more rational designations, when the 4-�ux and other essential
dynamic quantities are presented in the form of derivatives of the principal Jacobian
J . Dealing with the generalized stream function � = f�0; �1; �2; �3g, the following
identities are useful

@J

@�i;l
�k;l � J�ik; @k

@J

@�0;k
� 0; @l

@2J

@�0;k@�i;l
� 0 (2.4)

@2J

@�0;k@�l;s
� J�1

�
@J

@�0;k

@J

@�l;s
� @J

@�0;s

@J

@�l;k

�
(2.5)

See details of working with Jacobians and the generalized stream functions in [4,
Rylov,2004].
Example. Application of the stream function for integration of equations, describ-

ing the 2D stationary �ow of incompressible �uid.
Dynamic equations have the form

ux + vy = 0; @y (uux + vuy) = @x (uvx + vvy) (2.6)

where u and v are velocity components along x-axis and y-axis respectively.
Introducing the stream function  by means of relations

u = � y; v =  x (2.7)

we satisfy the �rst equation (2.6) identically, and we obtain for the second equation
(2.6) the relations

 y xyy �  x yyy = � y xxx +  x xxy

 y
�
 xyy +  xxx

�
=  x

�
 xxy +  yyy

�
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which can be rewritten in the form

@ (!;  )

@ (x; y)
= 0; ! �  xx +  yy (2.8)

where ! is the vorticity of the �uid �ow. The general solution of equation (2.8) has
the form

! =  xx +  yy = 
( ) (2.9)

where 
 is an arbitrary function of  .
For the irrotational �ow the vorticity 
 ( ) = 0, and we obtain instead (2.9)

 xx +  yy = 0 (2.10)

One obtains the unique solution of (2.10) inside of a closed region of 2D space
provided, that the value  j� of the stream function  is given on the boundary � of
this region. The di¤erential structure of equations (2.9) and (2.10) is similar. One
should expect, that giving the value  j� of the stream function  on the boundary �,
one obtains the unique solution of the equation (2.10). But it is not so, because the
inde�nite function
 ( ) is not given, and it cannot be determined from the boundary
condition, because the nature of the function 
 ( ) is another, than the nature of
the boundary conditions. First, if the �ow contains closed stream lines, which do
not cross the boundary, one cannot determine the values of 
 on these stream
lines from the boundary conditions. But for determination of the unique solution
the values of 
 on the closed stream lines must be given. Second, the boundary
conditions are given arbitrarily. The function 
 cannot be given arbitrarily. For
those stream lines, which cross the boundary more than once, the values of 
 on
the di¤erent segments of the boundary are to be agreed. Thus, the nonuniqueness
of the solution, connected with the inde�nite function 
 has another nature, than
the nonuniqueness, connected with the insu¢ ciency of the boundary conditions.

3 Derivation of hydrodynamic equations from the
variational principle

We use the variational principle for the derivation of the hydrodynamic equations
(1.1), (1.2), (1.4). The action functional has the form

A [�; j; p] =
Z
Vx

�
j2

2�
� �E (�)� pk

�
jk � �0 (�)

@J

@�0;k

��
d4x; (3.1)

where pk, k = 0; 1; 2; 3 are the Lagrange multipliers, which introduce the designations
for the 4-�ux

jk = �0 (�)
@J

@�0;k
; k = 0; 1; 2; 3 (3.2)
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Note, the expression for the 4-�ux (3.2) satis�es the �rst equation (2.1) identically,
because the expression (3.2) may be reduced to the form of the second relation (2.1)
by means of a change of variables �

~�0 = �0;
~�1 =

Z
�0 (�) d�1;

~�2 = �2;
~�3 = �3

Then

�0 (�)
@ (�0;�1; �2; �3)

@ (x0; x1; x2; x3)
=
@
�
~�0;~�1;

~�2;
~�3

�
@ (x0; x1; x2; x3)

; ~�1 =

Z
�0 (�) d�1

Besides according to the �rst identity (2.4) the relation (3.2) satis�es the Lin
constraint (1.4).
Variation of the action (3.1) with respect to pk = fp0;pg gives relations (3.2).

Another dynamic equations have the form

�� : p0 = �
j2

2�2
� @

@�
(�E (�)) = �v

2

2
� @

@�
(�E) (3.3)

�j : p =
j

�
= v (3.4)

��l : �@s
�
�0 (�) pk

@2J

@�0;k@�l;s

�
+ pk

@�0
@�l

(�)
@J

@�0;k
= 0; l = 0; 1; 2; 3 (3.5)

Using the third relation (2.4), we obtain

� @2J

@�0;k@�l;s

�
@�0 (�)

@��
��;s + �0 (�) @spk

�
+ pk

@�0
@�l

(�)
@J

@�0;k
= 0 (3.6)

Now using (2.5), we obtain

�J�1
�
@J

@�0;k

@J

@�l;s
� @J

@�0;s

@J

@�l;k

��
@�0 (�)

@��
��;s + �0 (�) @spk

�
+ pk

@�0
@�l

(�)
@J

@�0;k
= 0

(3.7)
Using the �rst relation (2.4), we obtain

J�1
�
@J

@�0;k

@J

@�l;s
� @J

@�0;s

@J

@�l;k

�
�0 (�) @spk = 0; l = 0; 1; 2; 3 (3.8)

There are two ways of dealing with this equation:
1. Elimination of GSF �, which leads to the Euler equations.
2. Integration, which leads to appearance of arbitrary functions.
The �rst way: elimination of GSF
Convoluting (3.8) with �l;i and using dynamic equations (3.2), we obtain

jk@ipk � jk@kpi = 0; i = 0; 1; 2; 3 (3.9)
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Substituting pk and jk from relations (3.3) and (3.4), we obtain the Euler dy-
namic equations (1.1)

@0v
� + (vr) v� = �@�

@

@�
(�E) = �1

�
@�p; � = 1; 2; 3; p = �2

@E

@�
(3.10)

The continuity equation (1.2) is a corollary of equations (3.2) and identity (2.1).
Finally the Lin constraints (1.4) are corollaries of the �rst identity (2.4) and dynamic
equations (3.2).
The second way: integration of the equation for pk
Let us consider the equations (3.8) as linear di¤erential equations for pk. The

general solution of (3.8) has the form

pk = (@k'+ g� (�) @k��) ; k = 0; 1; 2; 3 (3.11)

where g� (�) ; � = 1; 2; 3 are arbitrary functions of �, ' = g0 (�0) is a new vari-
able instead of �ctitious variable �0. Let us di¤erentiate (3.11) and substitute the
obtained expressions

@spk = (@s@k'+ g� (�) @s@k��) +
@g� (�)

@��
@k��@s�� (3.12)

in (3.8). Using the �rst identity (2.4), we see, that the relations (3.12) satisfy the
equations (3.8) identically.
We may substitute (3.11) in the action (3.1), or introduce (3.11) by means of the

Lagrange multipliers. (the result is the same). We obtain the new action functional

A [�; j] =
Z
Vx

�
j2

2�
� �E (�)� jk (@k'+ g� (�) @k��)

�
d4x; (3.13)

which contains arbitrary integration functions g (�). Here

j0 = �; j = �v =
�
j1; j2; j3

	
(3.14)

The integration functions g (�) are considered as a �xed functions of �. The term

pk
@J

@�0;k
= (@k'+ g� (�) @k��)

@J

@�0;k
=

@ (';�1; �2; �3)

@ (x0; x1; x2; x3)
(3.15)

is omitted, because it does not contribute to dynamic equations.
Variation of (3.13) with respect to ', � and j� gives respectively

�' : @kj
k = 0 (3.16)

�� : @0'+ g� (�) @0�� +
j2

2�2
+

@

@�
(�E (�)) = 0 (3.17)
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�j� : v� � j�

�
= @�'+ g� (�) @��� (3.18)

Variation of (3.13) with respect to �� gives

��� : �
a� (�) (@0�� + (vr) ��) = 0; (3.19)

where


a� (�) =

�
@g� (�)

@��
� @g� (�)

@��

�
(3.20)

and v is determined by the relation (3.18)
If det

����
������ 6= 0, then the Lin constraints
(@0�� + (vr) ��) = 0 (3.21)

follows from (3.19)
However, the matrix 
�� is antisymmetric and

det
����
������ =

������
0 
12 
13

�
12 0 
23

�
13 �
23 0

������ � 0 (3.22)

Then it follows from (3.19)

@0�� + (vr) �� = �
!

�0 (�)
"��


� (�) � = 1; 2; 3 (3.23)

where ! = ! (t; �) is an arbitrary quantity, and �0 (�) is the weight function from
(3.2).
The obtained equation (3.23) contains the initial dynamic equation (1.4) as a

special case. For irrotational �ow, when 
� (�) = 0, the equation (3.23) turns
to (1.4). In the action functional (3.1) the initial relation (1.4) is used as a side
constraint. It is a reason, why the equation (3.23) is not obtained from the action
functional (3.1).
Note, that eliminating the variables ' and � from dynamic equations (3.17) -

(3.19), we obtain the Euler dynamic equations (1.1).
The vorticity !0 � r� v and v � !0 are obtained from (3.18) in the form

!0 =r� v = 1

2

��r�� �r�� (3.24)

v � !0 = 
��r��(vr)�� (3.25)

Let us form a di¤erence between the time derivative of (3.18) and the gradient of
(3.17). Eliminating 
a� (�) @0�� from the obtained equation by means of equations
(3.19), one obtains

@0v +r
v2

2
+
@2(�E)

@�2
r�� 
��r��(vr)�� = 0 (3.26)
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Using (3.25) and (3.24), the expression (3.26) reduces to

@0v +r
v2

2
+
1

�
r(�2@E

@�
)� v � (r� v) = 0 (3.27)

In virtue of the identity

v � (r� v) �rv
2

2
� (vr)v (3.28)

the equation (3.27) is equivalent to (1.1).
Note, that the Euler equations (1.1) are obtained at any form of the arbitrary

function ! (t; �) in the equations (3.23), because the equations (3.23) are used in the
form (3.19), where the form of ! (t; �) is unessential. Solution of the Euler system
(1.1), (1.2) in the form � = � (t;x), v = v (t;x) does not depend on the form of the
inde�nite function ! (t; �).
If ! (t; �) 6= 0, the dynamic equations (3.23) describe a violation of the Lin

constraints (1.4). One obtains another labeling of the stream lines, than that one,
which is described by the Lin constraints (1.4). If the �ow is irrotational, and
 = 0,
the labeling does not depend on ! (t; �).
Let us consider two di¤erent labeling � and �� of the the same �uid �ow described

by the variables � = � (t;x), v = v (t;x). The initial conditions are supposed to
have the form

' (0;x) = 'in (x) = 0; � (0;x) = �in (x) ; (3.29)
��� (0;x) =

�
���
�
in
(x) = x�; � = 1; 2; 3 (3.30)

Then according to (3.18), (3.20)

g�
�
��in (x)

�
= g� (x) = v�in (x) ; � = 1; 2; 3 (3.31)

According to (3.23) the dynamic equations for labeling � and �� have the form

@0�� + (vr) �� = 0 � = 1; 2; 3 (3.32)

@0��� + (vr) ��� = �
!

�0
�
��
�"��
� ���� � = 1; 2; 3 (3.33)

where the velocity v = v (t;x) is the same in both equations and the function 
� (x)
is de�ned by the relation


a� (x) = 
a�
�
��in (x)

�
=

 
@g�

�
��in
�

@
�
��in
�
�

�
@g�

�
��in
�

@
�
��in
�
�

!
=

�
@v�in (x)

@x�
� @v�in (x)

@x�

�
(3.34)

If the velocity v is de�ned by relations (3.18), it satis�es the Euler equations and
associates with the generalized stream function � (t;x), whose evolution is described
by the equations (3.23)
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In general, the evolution of the quantities �� and � is di¤erent, although the
coincide at t = 0. Let

� = �� � � (3.35)

It follows from (3.32) and (3.33) that mismatch � between �� and � is determined
by the relation

@0�� + v (t;x)r�� +
!
�
t;�� (t;x)

�
�0
�
�� (t;x)

� "��
� ��� (t;x)� = 0; �� (0;x) = 0;(3.36)

� = 1; 2; 3

The system of ordinary di¤erential equations, associated with the equation (3.36),
has the form

dt

1
=

dx1

v1 (t;x)
=

dx2

v2 (t;x)
=

dx3

v3 (t;x)
=

�0
�
�� (t;x)

�
d��

!
�
t;�� (t;x)

�
"��
�

�
�� (t;x)

� ;(3.37)
� = 1; 2; 3

Solution of the system of ordinary equations at the initial conditions � (0;x) = 0
has the form

�� (t;x) =

tZ
0

!
�
t;�� (t;x)

�
"��

�0
�
�� (t;x)

� 
�
�
�� (t;x)

�
dt; � = 1; 2; 3 (3.38)

Then

�� (t;x) =
��� (t;x)�

tZ
0

!
�
t;�� (t;x)

�
"��

�0
�
�� (t;x)

� 
�
�
�� (t;x)

�
dt; � = 1; 2; 3 (3.39)

Thus, although solution �;v of the Cauchy problem for the Euler system of
hydrodynamic equation (1.1), (1.2) is unique, the solution �;v; � for the Cauchy
problem of the complete system of hydrodynamic equations (1.1), (1.2), (3.23) is
not unique. The reason of this nonuniqueness is consideration of interfusion. This
consideration is formal. One cannot understand mechanism of the interfusion in�u-
ence from this consideration. Nevertheless this in�uence takes place, and it should
be investigated more closely.

4 Two-dimensional vortical �ow of ideal barotropic
�uid in the three-dimensional space.

It seems, that in the two-dimensional �ow instead of determinant (3.22) we have the
determinant �������� 0 
12

�
12 0

�������� = �
12�2 (4.1)
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which does not vanish, in general. Then the problem of nonuniqueness of thelabeling
is removed and the solution of the Cauchy problem for the complete hydrodynamic
system becomes to be unique.
In reality, we may control the solution only via initial conditions. We may give

the two-dimensional initial conditions, i.e.

@3vin (x) = 0; @3�in (x) = 0; v3in (x) = 0 (4.2)

In this case


12in (�1; �2) =
@v1in (�1; �2)

@�2
� @v2in (�1; �2)

@�1
; 
23in (�) = 0; 
31in (�) = 0 (4.3)

The determinant

det
����
������ =

������
0 
12 0

�
12 0 0
0 0 0

������ � 0 (4.4)

and the relations (3.23) take the form

@0�1 + v (t;x)r�1 = 0; @0�2 + v (t;x)r�2 = 0 (4.5)

@0�3 + v (t;x)r�3 = � ! (t; �)

�0 (�1; �2)

1;2 (�1; �2) (4.6)

One cannot control inde�nite quantity ! (t; �), which may depend on x3. The equa-
tion (4.6) generates nonunique solution of the Cauchy problem of vortical �ow for
the complete hydrodynamic system. The �ow with the two-dimensional initial con-
ditions turns into three-dimensional vortical �ow.

5 Concluding remarks

Solution of the Cauchy problem for the vortical �ow of inviscid barotropic �uid is not
unique, if we solve seven dynamic equations of the complete hydrodynamic system,
which includes description of the shape of stream lines and has seven dependent
variables �, v, �. Nonuniqueness is connected with the fact, the initial conditions
for variables �, v, � do not control the intermixing e¤ect.
Solution of the Cauchy problem for the vortical �ow of inviscid barotropic �uid

is unique, if we solve only four dynamic equations of the Euler system and ignore
shape of stream lines. In this case dynamic equations are written for four dependent
variables �, v.
Solution of the Cauchy problem for the irrotational �ow of inviscid barotropic

�uid is unique for both seven equations of the complete hydrodynamic system and
for four equations of the Euler system.
The intermixing e¤ect, generating nonunique solutions, associates with the tur-

bulence phenomenon at the following points: (1) both e¤ects are not controlled by
the initial data for variables �, v, � of the hydrodynamic equations in the Euler

12



representation, (2) both e¤ects take place at the vortical �ows, and they are absent
at the irrotational �ows, (3) both e¤ects are strong at vanishing viscosity. We admit,
that the interfusion may be connected with the turbulence phenomena, although we
do not yet insist on this statement.
If, indeed, the turbulent phenomena are connected with the interfusion and with

the shape of stream lines, it becomes clear, why numerous investigations of hydrody-
namic equations, describing only density and velocity, but not the shape of stream
lines, had not led to a progress. The researchers looked for turbulence in that region,
where it is not placed.
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CAPTIONS
Figure 1. Dashed lines show real trajectories of particles. The solid lines show

trajectories of the mean particle motion.
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