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Abstract

It is shown that formalism of linear vector space is inadequate at the metric
approach to geometry, when geometry is described completely in terms of the
distance function d, or in terms of the world function σ = d2/2. Operations
of the linear vector space appear to be ambiguous, if they are introduced at
the metric approach to geometry.
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There are two approaches to geometry: (1) physical approach and (2) math-
ematical approach. At the physical approach the geometry is called the physical
geometry. It is considered as a science on properties of space or on properties of
space-time. The physical geometry can be formulated in a coordinateless form.
The main objects of the physical geometry are points (events) of the space-time,
space-time distances between the points and geometrical objects constructed of the
space-time points. In particular, in the physical geometry the vector PQ is the
ordered set {P, Q} of two points P, Q ∈ Ω, where Ω is the point set, where the
geometry is given. The vector PQ will be referred to as the geometrical vector
(g-vector).

At the mathematical approach the geometry is considered as an abstract logical
construction where the vector u ∈ Ln is an element of linear vector space Ln. We
shall refer to the mathematical approach to geometry as the mathematical geometry.
There are operations of the linear vector space (summation of vectors and multi-
plication of a vector by a real number). These operations obey the linear vector
space axioms. Generally speaking, vectors u ∈ Ln do not coincide with g-vectors of
space-time, and we shall refer to vectors u ∈ Ln as linear vectors (linvectors). In
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the proper Euclidean geometry and in some other cases the linvectors can be iden-
tified with g-vectors. Then operations of the linear vector field Ln can be applied
to g-vectors of Euclidean geometry and of the Minkowski geometry. In this case the
mathematical geometry coincide with the physical geometry.

In the linear vector space (i.e. in the mathematical geometry) one can always
introduce a coordinate system and decompose any vector along basic vectors of the
coordinate system. In the physical geometry such a decomposition is not always
possible.

Primordial meaning of geometry was physical. Euclid presented his geometry as a
logical construction. He applied geometry for description of the real space properties,
but he did not use a coordinate system, and he did not use linear vector space.
Introduction of the coordinate system to the Euclidean geometry was conditioned
by needs of classical mechanics. This circumstance generated application of the
linear vector space in the physical geometry, i.e. in the science describing properties
of the real space.

Thus, the mathematical geometry (i.e. the logical construction with its linear
vector space) has been used for description of the real space. Thereafter one con-
sidered that the linear vector space is an attribute of the space-time geometry. Now
the accepted viewpoint contains the statement, that the linear vector field can be
introduced (maybe, locally) in any space-time geometry, and the space-time geom-
etry is a mathematical geometry. In particular, the symplectic geometry, which has
nothing to do with the space-time geometry, is considered nevertheless as a geometry
(mathematical), because its formalism coincides with the formalism of the Euclidean
geometry in the coordinate presentation (one can introduce linear vector space in
the symplectic geometry).

In this paper we investigate at which conditions one can introduce linear vector
space in the space-time geometry. Or at which conditions can one use the math-
ematical geometry in description of the space-time?Any generalized geometry G is
some generalization of the proper Euclidean geometry GE. We are interested only in
physical geometries, which enable to describe the space-time geometry. The physical
geometry is described in the framework of the metric approach to geometry, when
the point set Ω of space-time points (events) is described completely by the distance
function d (P, Q), P,Q ∈ Ω, or by the world function σ = 1

2
d2. The distance d can

be imaginary for a spacelike distance between the points P, Q ∈ Ω, whereas the
world function σ is always real.

The Euclidean geometry is a degenerate geometry in the sense that a generalized
geometry G may have such properties, which are absent in the proper Euclidean
geometry GE. For instance, the straight line segment T[PQ] between the points P, Q
may be not one-dimensional in G, although it is always one-dimensional in GE.
Besides, equality of two vectors PQ and RS may be multivariant. It means that at
the point P there are many vectors PQ, PQ′, PQ′′,... which are equivalent to the
vector RS at the point R, but vectors PQ, PQ′, PQ′′,...are not equivalent between
themselves.

The way of generalization of GE depends on the way of representation of GE [1].
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As far as the generalized geometry may be discrete, one should use for generalization
only σ-representation of GE, when the proper Euclidean geometry GE is considered as
a physical geometry, i.e. it is described in terms and only in terms of the Euclidean
world function σE. It is necessary because GE and a discrete geometry Gd have a
unique common concept: the distance.

The physical geometry G = {σ, Ω} is defined on arbitrary point set Ω, where σ
is a single-valued function, defined as

σ : Ω× Ω → R, σ (P, Q) = σ (Q,P ) , σ (P, P ) = 0, ∀P,Q ∈ Ω (1)

The discrete geometry Gd is restricted by the relation

|d (P,Q)| ≡
∣∣∣
√

2σd (P, Q)
∣∣∣ /∈ (0, λ0) , ∀P,Q ∈ Ω (2)

where λ0 > 0 is the elementary length, which is a parameter of Gd. The restriction
(2) is condition on world function σd (not on the set Ω, which is an arbitrary set
of points). In particular, the discrete geometry Gd = {σd, ΩM} can be given on
the point set ΩM, where the geometry of Minkowski GM = {σM, ΩM} is given. The
geometry Gd is obtained from GE by a replacement of the Euclidean world function
σE by the world function σd in all definitions of the geometry GE written in terms
of the σE.

The condition (2) is satisfied, if σd is taken, for instance, in the form

σd = σM +
λ2

0

2
sgn (σM) (3)

where σM is the world function of the Minkowski geometry GM and

sgn (x) =





1 if x > 1
0 if x = 0
−1 if x < 1

(4)

The point set Ωd is the same as in GM.
In GE one uses the formalism of the linear vector space Ln. A vector u ∈ Ln

is some abstract quantity, which is defined by its properties. In Ln operations of
summation of vectors and multiplication of a vector by a real number are defined

(u + v) ∈ Ln, if u ∈ Ln, v ∈ Ln

au ∈ Ln, if u ∈ Ln, a ∈ R
In Ln any vector exists in one copy. There is no equivalent vectors in Ln. In
the proper Euclidean geometry GE = {σE, ΩE} there are many equivalent vectors,
because in GE vector PQ = {P,Q} is the ordered set of two points P and Q. As
far as vectors in Ln and in GE have different properties, we shall use different names
for them. Vector u ∈ Ln will be referred to as linear vector (linvector), and vector
PQ ∈ Ω×Ω will be referred to as a geometrical vector (g-vector).
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Two g-vectors PQ and RS are equivalent (PQeqvRS), if their lengths are equal
and they are in parallel (PQ · RS)

(PQ · RS) : (PQ.RS) = |PQ| · |RS| (5)

Here (PQ.RS) is the scalar product of two g-vectors PQ and RS, defined in terms
of the world function in the form

(PQ.RS) = σ (P, S) + σ (Q,R)− σ (P, R)− σ (Q,S) (6)

The length |PQ| of the vector PQ is defined by the relation

|PQ| =
√

2σ (P, Q) (7)

Thus, the g-vectors PQ and RS are equivalent, if

(PQeqvRS) : (PQ.RS) = |PQ| · |RS| ∧ |PQ| = |RS| (8)

Let ΩAB ⊂ Ω × Ω be the set of all g-vectors CD ∈ ΩAB ⊂ Ω × Ω, which
are equivalent (equal) to g-vector AB. In GE all g-vectors belonging to ΩAB are
equivalent between themselves, and the set ΩAB is an equivalence class [AB] of the
g-vector AB. Linvectors of Ln can be mapped onto equivalence classes of g-vectors
of Ω×Ω. Operations of Ln can be used for construction of the geometrical formalism
in GE. The equivalence relation is transitive in GE, and it is a reason, why the set
ΩAB of g-vectors, which are eqivalent to g-vector AB, forms the equivalence class
[AB].

In the discrete geometry (3) the equivalence relation is intransitive, and the set
ΩAB contains g-vectors, which are not equivalent between themselves. In this case
the equivalence of two vectors is multivariant, and the set ΩAB of g-vectors, which
are equivalent to g-vector AB, does not form the equivalence class [AB].

Formally one can define the operation of summation of g-vectors in Gd, but it
will be ambiguous. Indeed, the sum AC of two g-vectors AB and BC, when the
end of one g-vector is the origin of other one, is defined as follows

AB + BC = AC (9)

The sum AD1 of two arbitrary g-vectors AB and CD at the point A is defined as
follows

AB + CD = AB + BD1 = AD1, (CDeqvBD1) (10)

The g-vector AD1 is defined by relation (10) ambiguously, because the g-vector
BD1 is determined ambiguously by the equivalence relation (CDeqvBD1).

The g-vector AC =aAB, which is a result of multiplication of g-vector AB by
a real number a is defined by the relations

aAB = AC, |AC| = a |AB| , (AB.AC) = a |AB|2 (11)

4



Result of multiplication is ambiguous, because, generally speaking, the system of
two last equations (11) has no unique solution in Gd. In the Euclidean geometry GE

operations (10) and (11) are defined uniquely.
Thus, formalism of the linear vector space Ln is inadequate in the discrete geome-

try Gd. This formalism is inadequate in any physical geometry, where the equivalence
relation of two g-vectors is intransitive. For instance, in the Riemannian geometry
presented in the form of a physical geometry the equivalence of two g-vectors AB
and CD is multivariant, generally speaking. But the equivalence relation is single-
variant, if the origin points A and C coincide (A = C). This property is well known
as an absence of fern-parallelism in the Riemannian geometry. Usually one tries
to suppress the multivariance by additional restriction, generated by the parallel
transport. But multivariance of the equivalence relation is a natural property of
the Riemannian geometry, and it is hardly reasonable to suppress this multivariance
artificially.

Now about terminology. Some mathematicians states that the equivalence rela-
tion is transitive by definition, and one may not use the term ”equivalence relation”
for the relation defined by formulas (8). They say: ”One should use another term,
the term equivalence is busy.” Let we follow this advice and use the term ”intr-
equivalence” for the relation between g-vectors, defined by (8). Then in GE, which
is a special case of physical geometry, the intr-equivalence turns to transitive equiv-
alence. It means that the transitive equivalence is a special case of intr-equivalence.
As far as ”intr-equivalence” appears to be a more general concept, than transitive
equivalence, one should replace the terms. One should use the shorter term ”equiva-
lence” in general case, when the equivalence relation is intransitive, generally speak-
ing, and the longer term ”transitive equivalence” should be used in that special
case, when the equivalence is transitive. The demand, that the equivalence relation
is transitive by definition is conditioned by the fact, that mathematicians dealed
before only with the transitive equivalence relation. They believed that equivalence
cannot be intransitive.

However, the definition of the g-vector equivalence in the form of (8) is valid
in any physical geometry and, in particular, in the discrete space-time geometry
Gd = {σd, ΩM}, where the world function (3) is given on the manifold of Minkowski
ΩM. The discrete space-time geometry Gd describes the real space-time geometry in
microcosm better, than the Riemannian geometry does. But the discrete geometry
cannot be constructed on the basis of the linear vector space formalism. The dis-
crete geometry Gd (and other physical geometries) is constructed by means of the
deformation principle [3]. The discrete geometry is obtained as a deformation of the
Euclidean geometry GE = {σE, Ω}. It means that the world function σE is replaced
in all definitions of GE written in terms of Euclidean world function σE by the world
function of Gd. These definitions are definitions of geometrical objects and general
geometric concepts.

For instance, in GE the definition of the straight segment T[P0P1] between the

5



points P0 and P1 has the form

T[P0P1] =
{

R|
√

2σ (P0, R) +
√

2σ (R,P1)−
√

2σ (P0, P1) = 0
}

(12)

where σ = σE. In Gd the straight segment T[P0P1] is described by the same relation
(12), but now σ = σd. The deformation principle admits one to recognize the same
geometrical object in different geometries (at different world functions). It is very
important in the space-time geometry, where different regions have different geome-
tries which are described by different world functions. Without the deformation
principle such a recognition is impossible. For instance, using the metrical approach
and constructing the distance geometry, Blumenthal [4] had not the deformation
principle. He can construct a curve only as a continuous mapping [0, 1] → Ω. Such
a construction of a curve cannot be used in a discrete geometry. Besides, he used
the concept of mapping which is not defined at the consequent metric approach,
when the geometry is described in terms of distance and only in terms of distance.

In the Euclidean geometry GE there are general geometrical concepts, which can
be formulated in terms of σE. Besides, there are relations describing special Eu-
clidean properties of the Euclidean world function σE. Such concepts as equivalence
of vectors, scalar product of vectors, linear dependence of vectors are general ge-
ometric concepts, which can be formulated in terms of σE. These concepts can
formulated in the same form in the discrete geometry after replacement of σE by
σd. However, such concepts as a dimension of the geometry and coordinate system
contains special properties of the Euclidean world function σE. The cannot be used
in the discrete geometry and other physical geometry. For instance, in the discrete
geometry (3) the dimension as a maximal number of linear independent vectors
cannot be introduced.

Geometry without of a definite dimension looks rather unexpected, because di-
mension and a coordinate system are considered as axiomatic quantities. Construc-
tion of the Riemannian geometry begins with introduction of a manifold and a
coordinate system of definite dimension on it. One does not discuss the question,
whether or not an introduction of a coordinate system of definite dimension is pos-
sible. The metric approach and the deformation principle admit an introduction of
coordinateless formulation of the geometry. It is a worth of the metric approach,
which is not used usually in investigation of the space-time geometry. As a result
the investigation of the discrete space-time geometry was not developed. The case,
when condition of discreteness (2) is considered as a restriction on the properties of
the point set Ω leads to a geometry on a lattice, which can hardly be considered as a
valuable discrete geometry, especially in its application to the space-time geometry.

Let us formulate general geometric properties of the Euclidean geometry GE.
The scalar product of two g-vectors is defined by (6). Equivalence of two g-vectors
is defined by (8).

n g-vectors P0P1,P0P2, ...P0Pn are linear dependent, if and only if the Gram
determinant

Fn (Pn) = det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n, Pn ≡ {P0, P2, ...Pn} (13)
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vanishes
Fn (Pn) = 0 (14)

The special relations of the n-dimensional proper Euclidean geometry have the
form [2]:

I. Definition of the metric dimension:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (15)

where Fn (Pn) is the n-th order Gram’s determinant (13). g-vectors P0Pi, i =
1, 2, ...n are basic g-vectors of the rectilinear coordinate system Kn with the origin
at the point P0. The covariant coordinates of the point P in the coordinate system
Kn are defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (16)

The metric tensors gik (Pn) and gik (Pn), i, k = 1, 2, ...n in Kn are defined by the
relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (17)

II. Linear structure of the Euclidean space:

σE (P,Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(18)
where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the g-vectors P0P, P0Q respectively in the coordinate system K.

III: The metric tensor matrix glk (Pn) has only positive eigenvalues gk

gk > 0, k = 1, 2, ..., n (19)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (20)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution. Conditions I –
IV contain a reference to the dimension n of the Euclidean space, which is defined
by the relations (15).

Special relations of the proper Euclidean geometry GE may be not valid for other
physical geometries. In some cases these relations may used partly. For instance,
the metric dimension may be defined locally. Instead of constraint (15) one uses the
condition

∀P0 ∈ δΩ, ∃Pn ≡ {P0, P1, ...Pn} ⊂ δΩ, Fn (Pn) 6= 0, Fk (Pk) = 0, k > n
(21)
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where δΩ is a infinitesimal region δΩ ⊂ Ω, and all skeletons Pn contain only infinitely
close points. The conditions (21) determine the metric dimension for locally flat
(Riemannian) geometry.

Applications of the discrete geometry to a description of the space-time geometry
has been developed since beginning of ninetieth of the twentieth century [5]-[16]. As
a result one succeeded to create a unite formalism for description of the continuous
space-time geometry and of the discrete one.

Consideration of the physical geometry [2] is important for its application to
the space-time geometry, which appears to be a discrete geometry in microcosm.
Elementary length λ0, which is a parameter of the space-time geometry, is connected
with the quantum constant ~. This fact admits one to explain motion of quantum
particles as a motion of classical particles in the discrete space-time geometry [16].
This motion appears to be stochastic. It is especially unexpected in application
to tachyons. It appears that tachyons may exist, however the tachyon world line
wobbles with infinite amplitude. As a result of this wobbling a single tachyon cannot
be detected, but the tachyon gas can be detected by its gravitational field. Existence
of the tachyon gas may explain the cosmological problem of dark matter [17]. A use
of non-Riemannian geometry for description of cosmos admits one to expand the
general relativity to a wider class of space-time geometries.
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