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Abstract

Properties of the logical reloading in the Euclidean geometry are consid-
ered. The logical reloading is a logical operation which replaces one system of
basic concepts of a conception by another system of basic concepts of the same
conception. The logical reloading does not change propositions of the concep-
tion. However, generalizations of the conception are different for different
systems of basic concepts. It is conditioned by the fact, that some systems of
basic concepts contain not only propositions of the conception, but also some
attributes of this conception description. Properties of the logical reloading
are demonstrated in the example of the proper Euclidean geometry, whose
generalization leads to different results for different system of basic concepts.

1 Introduction

Geometry studies the shape and mutual disposition of physical bodies, abstracting
from other their properties. After such an abstraction the physical body turns in a
geometrical object, i.e. in some subset of points of the space. Geometry is a science
on a shape and on disposition of geometrical objects in a space or in a space-time.
The space is a set of points. A geometrical object is a subset of points of the space.

The property of a geometry to be a science on mutual disposition of geometrical
objects in the space or in the space-time will be called ”geometricity”. This special
term is neccessary, because the contemporary geometry does not possess the prop-
erty of ”geometricity”, in general. In other words, the contemporary geometry is
not always is a science on mutual disposition of geometrical objects. Contemporary
mathematics considers a geometry simply as a logical construction. For instance,
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the symplectic geometry is not a science on mutual dispositions of geometric objects.
It is a logical construction, whose form reminds the form of the Euclidean geometry.
In applications of geometry to physics and to mechanics only the geometricity of
the space-time geometry is important. It is of no importance, whether or not the
geometry is a logical construction. If the real space-time geometry is nonaxiomati-
zable, it means, that it is not a logical construction. However, such a geometry may
not possess the property of geometricity.

Contemporary mathematicians do not recognize nonaxiomatizable geometries,
which have the property of geometicity, but which are not a logical construction.
This situation should be qualified as a crisis in geometry [1], which reminds the crisis,
when mathematicians did not recognize non-Euclidean geometries of Lobachevski -
Bolyai.

Aforetime the geometry studied disposition of geometrical objects in usual space.
The time was considered as an additional characteristic of the physical bodies de-
scription. After creation of the relativity theory the space and the time are con-
sidered as a united event space (or space-time). It is a more general approach to
description of the event space. Any point of the event space is an event, which
occurs at some place and at some time.

The geometry is described completely, if the distance ρ between any pair of
points belonging to the space is given. The set Ω of points with a distance ρ, given
on the set Ω, is known as a metric space M.

A use of the metric space in the physics and mechanics meets some problems.
These problems lie in the definition of geometric objects in the metric space M.
The distance ρ is supposed to satisfy the relations

ρ : Ω× Ω → [0,∞), ρ (Q, P ) = ρ (P, Q) , ∀P, Q ∈ Ω (1.1)

ρ (P, Q) = 0, iff P = Q (1.2)

ρ (P,Q) + ρ (P, R) ≥ ρ (R,Q) , ∀P, Q, R ∈ Ω (1.3)

In the Euclidean geometry the distance has properties (1.1) - (1.3).
In the geometry of Minkowski the distance does not possess these properties.

However, it would be very desirable to introduce a metric geometry (or some analog
of metric geometry) for description of the space-time properties, because the metric
geometry is free of such auxiliary concepts as coordinate system, dimension and
such restriction as continuity. Metric geometry describes the geometric properties
in terms of only distance, which is a true geometric concept.

After removal of the triangle axiom (1.3) the distance geometry arises [2]. Blu-
mental failed to construct a straight line in terms of only distance. He was forced
to introduce a straight as a continuous mapping of interval (0, 1) onto the space
(a point set). Such an introduction of nonmetric concept of mapping in geometry
seems to be undesirable, because an auxiliary concept is introduced and the distance
geometry ceases to be a pure metric geometry.

In general, a construction of geometrical objects is the main problem of the metric
geometry. One can easily construct sphere and ellipsoid, because in the Euclidean
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geometry these geometrical objects are constructed directly in terms of distance.
However, construction of other geometrical objects needs a use of some auxiliary
means. For instance, a definition of a plane contains a reference to concept of linear
independence of vectors. It is not quite clear, how to introduce this concept in terms
of a distance.

A sphere SpO,P with the center at the point O and the point P on the surface
of the sphere is defined as a set of points R

SpO,P = {R|ρ (O, R) = ρ (O, P )} (1.4)

An ellipsoid ElF1F2P with focuses at the points F1, F2 and a point P on the surface
of the ellipsoid is defined as a set of points R

ElF1F2P = {R|ρ (F1, R) + ρ (F2, R) = ρ (F1, P ) + ρ (F2, P )} (1.5)

If the point P on the surface of ellipsoid coincides with the focus F2, the ellipsoid
ElF1F2P degenerates into segment T[F1F2] of a straight line.

T[F1F2] = ElF1F2F2 = {R|ρ (F1, R) + ρ (F2, R) = ρ (F1, F2)} (1.6)

In the proper Euclidean geometry the segment T[F1F2] has no thickness (it is one-
dimensional). However, if the triangle axiom (1.3) is not satisfied, the set T[F1F2] is
a non-one-dimensional surface.

Criterion of one-dimensionality may be formulated in terms of distance. The
section S (

P, T[F1F2]

)
is defined as a set of points R

S (
P, T[F1F2]

)
= {R|ρ (F1, R) = ρ (F1, P ) ∧ ρ (F2, R) = ρ (F2, P )} , P ∈ T[F1F2]

(1.7)
The point P ∈ S (

P, T[F1F2]

)
in evident way. By definition the segment (1.6) is

one-dimensional (has no thickness), if any section of T[F1F2] consists of one point

S (
P, T[F1F2]

)
= {P} , ∀P ∈ T[F1F2] (1.8)

Let S (
P, T[F1F2]

)
be a section of the segment T[F1F2] at the point P ∈ T[F1F2]. One

can show that the relation (1.8) takes place, if the distance satisfies the triangle
axiom (1.3). In this case the segment T[F1F2] of the straight line can be defined as a
line of the shortest length, and this definition appears to be equivalent to definition
(1.6).

In other words, if the straight has no thickness, one may use both definitions of
the straight segment T[F1F2]: (1) the straight line is a shortest line and (2) definition
(1.6). The two definitions are equivalent. However, the definition (1.6) may be used
in the case, when the triangle axiom does not take place, whereas the first definition
becomes to be incorrect.

We have the following problem: ”Do such geometries exist, where the triangle
axiom is not satisfied?” Of course, this question is interesting only in application
to the real space-time geometry. It is of no interest for mathematicians, which may
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investigate some special class of geometries (satisfying the triangle axiom), remaining
investigation of a more general geometries for later. Application of metric geometry
to the space–time geometry needs also a refuse from the condition (1.2), which
may not be used in geometries with indefinite metric, for instance, in geometry of
Minkowski.

In the Riemannian space-time geometry we have instead of (1.1) - (1.3)

σ : Ω× Ω → R, σ (P, P ) = 0 σ (Q,P ) = σ (P, Q) , ∀P, Q ∈ Ω (1.9)

√
2σ (P, Q) +

√
2σ (P,R) ≤

√
2σ (R,Q), ∀P, Q, R ∈ Ω ∧ σ (R, Q) > 0 (1.10)

where σ (P, Q) is the world function, connected with the distance ρ (P, Q) by means
of relation

σ (P, Q) =
1

2
ρ2 (P,Q) (1.11)

In the space-time geometry the world function is always real, and the distance is
positive for timelike interval (σ (P,Q) > 0), and it is imaginary for spacelike interval
(σ (P,Q) < 0). In the Riemannian space-time geometry the conditions (1.9), (1.10)
are fulfilled. Condition (1.10) for spacelike distances (σ (P,Q) < 0) is not fulfilled.
It is not important, because spacelike world lines are not used in contemporary
physics.

As soon as the mathematical technique of working with the world function has
been developed [3, 4, 5], the question arises: ”If the condition (1.10) is not fulfilled,
is the space-time geometry non-Riemannian, or is there no geometry at all?” It was
a very important question. On one hand, the metric geometry was insensitive to
continuity, or discreteness. It was insensitive also to dimension of the space-time
and to a choice of a coordinate system. On the other hand, if such non-Riemannian
geometries exist, the habitual axiom of Euclidean (and Riemannian) geometry (the
straight has no thickness) is violated.

We shall not use the term metric geometry with respect to geometry (1.9), be-
cause the term ”metric geometry” is associated with the triangle axiom imposed on
the metric (distance). We shall use the term ”physical geometry” with respect to
geometry, which is completely described by the world function σ, satisfying the con-
dition (1.9). Another (more earlier) name of this geometry is ”tubular geometry”
(T-geometry), which arose because in T-geometry some straights are substituted
by tubes. There exist such space-time isotropic T-geometries, where timelike tubes
degenerate into one-dimensional straights. For instance, in the space-time geometry
of Minkowski with world function

σM (x, x′) =
1

2
gik

(
xi − x′i

) (
xk − x′k

)
, gik = diag

{
c2,−1,−1,−1

}
(1.12)

the timelike straights are one-dimensional (have no thickness), and motion of free
particles is deterministic.

However, a small deformation (change of σM) of the space-time of Minkowski
transforms timelike straight lines into tubes, and motion of free particles becomes
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stochastic. If the space-time deformation depends on the quantum constant in
a proper way, the statistical description of stochastically moving free particles is
equivalent to the quantum description in terms of the Schrödinger equation [6].
I have obtained this result only twenty five years ago after the question on non-
Riemannian geometry had appeared.

This fact is connected with the logical reloading, which is a logical operation.
This logical operation realizes a transition from one system of basic statements of
a conception to another system of basic statements of the same conception. As a
logical operation the logical reloading is essential only at a generalization of the
existing conception. Such a generalizations are rather rear. As far as the logical
reloading is used rather rear, and researchers possess this logical operation rather
slightly.

Euclid has created his geometry as a logical construction. The Euclidean geom-
etry has been taught in such a form for two thousands years. As a result almost all
researchers believe, that a geometry is a logical construction. But what is connec-
tion between space properties and logic? Is a geometry a logical construction with
necessity? Is the formal logic a necessary attribute of geometry? Why do mathe-
maticians not recognize nonaxiomatizable geometries, which do not use the formal
logic [1]? This paper is written to answer these questions.

2 Construction of geometrical objects in Euclidean

geometry

Euclid investigates properties of the space, constructing geometrical objects. Inves-
tigation of the geometrical objects properties meant an investigation of properties
of the space, because one may study geometry, only via properties of geometrical
objects, placed in this space. In other words, investigation of a set of points is an
investigation of properties of subsets of this point set. Geometry as a logical con-
struction is a formalization of the process of the geometrical objects construction.

Euclid constructed geometrical objects from blocks. He used three sorts of blocks:
(1) point, (2) segment of straight, (3) angle. Combining these blocks, Euclid con-
structed geometrical objects and investigated their properties. Constructing geo-
metrical objects, Euclid used some rules. Some part of rules described properties of
blocks, another part described process of combining blocks at construction of geo-
metrical objects. The number of rules is finite, because the number of block sorts
is finite. The Euclidean space, which had been investigated by Euclid, is uniform
and isotropic. Blocks are not deformed at displacements, and the number of rules,
describing displacement of blocks, is also finite. The rules of working with blocks
admit one to construct geometrical objects from blocks mentally. Besides, these
rules generate the rules of the complicate geometric object construction from other
simpler geometrical objects. The simple geometric objects, constructed from blocks,
are described by the rules known as axioms. More complicated rules (theorems) of
the geometric objects construction from other geometrical objects are deduced from
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axioms by rules of formal logic. As a whole such a construction of geometric objects
is perceived as a logical construction, where rules of the formal logic reflects rules of
construction of geometric objects.

Usually one abstracts from the fact, that the logical construction of a geome-
try is a formalization of real construction of geometrical objects from blocks. The
Euclidean geometry is presented directly as a logical construction. The connection
between the geometry and the logical construction is considered to be so strong, that
sometimes a logical construction, which is not connected with the space properties,
is considered as some kind of a geometry. For instance, the symplectic geometry is
treated as a kind of a geometry, although it is not describe space properties. It has
only the form of Euclidean geometry with antisymmetric matrix of metric tensor.

The proper Euclidean geometry is uniform and isotropic. The blocks can be
easily displaced without their deformation, and they are used for construction of
geometrical objects. In the uniform geometry one can use a finite number of the
block sorts. The corresponding logical construction contains finite number of axioms.
All propositions of a uniform geometry can be deduced from the finite number of
axioms, and this geometry may be qualified as an axiomatizable geometry.

If a geometry G is not uniform, one cannot use a finite number of the block
sorts, because the blocks are deformed at a displacement. As a result two similar
geometrical objects, constructed in the same way in different places of the space,
will have different properties. We are forced to use infinite number of block sorts.
The number of axioms will be infinite. Such a geometry should be qualified as
nonaxiomatizable geometry.

One should use another way of construction of inhomogeneous geometries. The
inhomogeneous geometry G is considered as a result of a deformation of some stan-
dard geometry Gst. The geometry Gst is axiomatizable, and geometrical objects in
Gst are constructed from blocks. The standard geometry Gst is supposed to be de-
scribed completely by the world function σst. In means that all propositions of Gst

can be expressed in terms of σst. In particular, all geometrical objects in Gst can be
described in terms of σst.

The inhomogeneous geometry G and all geometrical objects in G are constructed
as result of a deformation of the standard geometry Gst. It means that in all descrip-
tions of geometrical objects in Gst the world function σst is substituted by the world
function σ of the geometry G. As a result one obtains descriptions of all geometrical
objects in G and, hence, one obtains a description of the geometry G in terms of the
world function σ.

The method of the geometry G construction by means of a deformation of the
standard geometry Gst is called the deformation principle [7]. The proper Euclidean
geometry GE may be used as a standard geometry, because GE is a axiomatizable
physical geometry. The term ”physical geometry” means by definition, that the
geometry may be described completely in terms of the world function σE.

Constructing generalized geometries, one adopts conventionally from Euclid his
method of the geometry construction. However, this method can be used only
for construction of axiomatizable geometries. It does not work at construction of
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physical geometries, which are nonaxiomatizable, in general. We shall use the proper
Euclidean geometry GE as the standard geometry Gst, and it means, that we adopt
from Euclid his geometry, but not his method of the geometry construction.

At construction of generalized geometries it is important to compare geometri-
cal objects in different geometries. In particular, one should be able to recognize
similar objects in different geometries. The geometrical objects in different physical
geometries are considered to be similar, if they are defined similar, i.e. if they have
the same form in terms of the world functions. For instance, the segment T[P0P1] is
defined by the relation (1.6) in terms of distance. In terms of the world function it
has the form

T[P0P1] =
{

R|
√

2σ (P0, R) +
√

2σ (R,P1) =
√

2σ (P0, P1)
}

(2.1)

The same form of definition of the segment T[P0P1] has in all physical geometries.
However, it does not mean, that properties of the segment T[P0P1] are the same
in all physical geometries, because properties of the world function are different
in different physical geometries. For instance, in the geometry of Minkowski the
timelike segment T[P0P1] (σM (P0, P1) > 0) is one-dimensional, i.e. any its section,
defined by the relation (1.7) consists of one point

S (
P, T[P1P2]

)
= {P} , ∀P ∈ T[P1P2] (2.2)

In the deformed geometry of Minkowski σd, described by the world function

σd = σM + d · sgn (σM) , d =
~

2bc
= const (2.3)

the same timelike segment T[P1P2] is a three-dimensional surface (tube). In the
relation (2.3) σM is the world function of the Minkowski space-time, ~ is the quantum
constant, c is the speed of the light, and b is some universal constant. At proper
choice of b, the world function (2.3) describes the properties of the space-time in
microcosm more effective, than the world function σM. In the space-time geometry
Gd, described by the world function σd, world lines of free microparticles appear to
be stochastic. Statistical description of these stochastic world lines is equivalent to
quantum description in terms of the Schrödinger equation [6]. In other words, a use
of the space-time geometry (2.3) instead of the geometry of Minkowski admits one
to remove quantum principles.

Thus, the proper choice of the space-time geometry admits one to explain quan-
tum effects as geometrical effects. In this explanation one uses only principles of
classical dynamics. Quantum principles are not introduced, or they are obtained
as corollaries of the physical geometry of the space-time. At such an approach the
number of physical principles reduces. When the number of basic principles reduces,
the physical theory becomes more perfect.

At axiomatic approach to geometry the properties of geometrical objects are
obtained in the form of theorems, deduced from axiomatics. In physical geometries
the properties of geometrical objects are obtained only after taking into account
properties of the world function.
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3 Logical reloading in the proper Euclidean

geometry

There are three different equivalent representations of the proper Euclidean ge-
ometry [8]: (1) Euclidean representation (E-representation), (2) vector represen-
tation (V-representation) and (3) representation in terms of world function (σ-
representation). Transformation from one representation to another one is a log-
ical reloading, when basic concepts of the representation are changed. The E-
reprsentation uses three blocks (point, segment, angle) for construction of geometric
objects.

The V -representation uses two blocks (point and directed segment, or vector).
Instead of angle one uses additional structure (linear vector space), which accom-
plishes function of the angle, describing direction of vectors. The angle is constructed
from to segments, having a common point. If one formulates the rules of construct-
ing an angle from two segments, one may reduce the number of sorts of blocks,
remaining only point and segment. The block ”angle” is replaced by the rule of
its construction. As a result one obtains two blocks (point and segment) and some
additional structure, which admits one to construct the angles from two segments.
This additional structure is known as the linear vector space. Reduction of basic
elements (blocks) is a logical reloading, which can be introduced in the proper Eu-
clidean geometry. This logical reloading from E-representation to V -representation
was conditioned by application of Euclidean geometry to physics and mechanics,
where conception of a vector and coordinate system were used. Concept of the an-
gle was not so essential, because it directivity of a vector may be described by scalar
products of a vector with basic vectors of the coordinate system. A vector (directed
segment) and coordinate system are attributes of the linear vector space, which is
an auxiliary structure in V -representation.

Vector representation is based on the concept of linear vector space, which con-
tains such concepts as, continuity, dimension, coordinate system, linear indepen-
dence. These concepts are necessary for application in physics and mechanics, where
they are used for description of the particle motion and evolution of the force fields.
These concepts are used in V -representation as basic concepts or as properties of
the linear vector space. Conventionally the linear vector space is considered as an
attribute of the Euclidean geometry (but not as an attribute of Euclidean geometry
description).

The σ-representation contains only one block (point). As far as a segment can
be constructed of points, it is possible to reduce the number of block sorts remain-
ing only one sort (point). Elimination of a segment (vector) is accompanied by the
rules of the segment construction from the points. This reduction of the block sorts
leads to the logical reloading (transition from V -representation to σ-representation).
This transition to σ-representation is accompanied by introduction of a new struc-
ture (world function σ), which contains the rules of the segment construction from
points (2.1). The world function describes a connection of two points of the space. It
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admits one to construct all attributes of the linear vector space in terms of the world
function. World function admits one to obtain all concepts of the V -representation
(dimension, coordinate system, metric tensor, linear vector space). Of course, con-
struction of all attributes of the V -representation is possible, provided the world
function is the world function of the Euclidean space. This world function satisfies
some conditions, which appear to be rather strong.

Definition 1 Vector P0P1 =
−−→
P0P1 is an ordered set of two points P0, P1. The point

P0 is the origin of the vector and the point P1 is its end. The length of vector P0P1

is
|P0P1| =

√
2σ (P0, P1) (3.1)

The crucial point of the σ-representation is the definition of scalar product in
terms of the world function.

Definition 2 The scalar product (P0P1.Q0Q1) of two vectors P0P1 and Q0Q1 has
the form.

(P0P1.Q0Q1) = σ (P0, Q1) + σ (P1, Q0)− σ (P0, Q0)− σ (P1, Q1) (3.2)

If origin of P0P1 and Q0Q1 is the same Q0 = P0, the relation (3.2) takes the
form

(P0P1.P0Q1) = σ (P0, Q1) + σ (P1, P0)− σ (P1, Q1) (3.3)

Together with the relation (3.1) the relation (3.3) realizes a formulation of the cosine
theorem. In relations (3.1) - (3.3) the world function σ is the world function of the
Euclidean geometry.

The necessary and sufficient condition of linear dependence of n vectors ,P0P1,
P0P2,...P0Pn, defined by n+1 points Pn ≡ {P0, P1, ..., Pn} in the proper Euclidean
space, is a vanishing of the Gram’s determinant

Fn (Pn) ≡ det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n (3.4)

Expressing the scalar products (P0Pi.P0Pk) in (3.4) via world function σE by
means of relation (3.3), we obtain definition of linear dependence of n vectors P0P1,
P0P2,...P0Pn in the proper Euclidean space in the form

Fn (Pn) = 0 (3.5)

Fn (Pn) ≡ det ||σ (P0, Pi) + σ (P0, Pk)− σ (Pi, Pk)|| , i, k = 1, 2, ...n (3.6)

The necessary and sufficient conditions of the fact, that a physical geometry,
described by the world function σ, is n-dimensional proper Euclidean geometry,
have the form of four conditions.

I. Definition of the dimension of the geometry:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (3.7)
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where Fn (Pn) is the Gram’s determinant (3.6). Vectors P0Pi, i = 1, 2, ...n are
basic vectors of the rectilinear coordinate system Kn with the origin at the point
P0. The metric tensors gik (Pn), gik (Pn), i, k = 1, 2, ...n in Kn are defined by the
relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (3.8)

Fn (Pn) = det ||gik (Pn)|| 6= 0, i, k = 1, 2, ...n (3.9)

II. Linear structure of the Euclidean space:

σ (P, Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(3.10)
where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the vectors P0P, P0Q respectively, defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (3.11)

III: The metric tensor matrix glk (Pn) has only positive eigenvalues

gk > 0, k = 1, 2, ..., n (3.12)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (3.13)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution. Conditions I –
IV contain a reference to the dimension n of the Euclidean space.

Generalization of the Euclidean geometry in V -representation admits one to con-
sider geometries with indefinite metric tensor (geometry of Minkowski), or geometry
with metric tensor, which is different at different points of the space. However, in the
V -representation one can consider only geometries, which have some dimension, and
this dimension is the same at all points of the space. Besides, in V -representation
one cannot distinguish dimension as the number of coordinates, describing manifold
from the dimension as the number of linear independent vectors, although these
concepts are different, in general.

In the σ-representation one can consider geometries, having no dimension, or
having dimensions, which are different at different points of the space. This differ-
ence between representations arises, because in V -representation the dimension of
space is considered as a primary property of a geometry, whereas in σ-representation
the dimension is only a secondary property of a geometry (something like an at-
tribute of the geometry description in V -representation). It is a secondary concept,
determined by the form of the world function.
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Logical reloading, transforming V -representation of the Euclidean geometry into
the σ-representation, is very important from the point of view of possible general-
ization of the Euclidean geometry. At a generalization of Euclidean geometry in the
V -representation the most restrictive properties (3.7) and (3.10) of the Euclidean
geometry are to be conserved, because they are properties of the linear vector space,
which is the main structure of the V -representation.

At a generalization of Euclidean geometry in σ-representation the linear vector
space is not used, in general. The equivalence relation becomes intransitive. Sum-
mation of vectors, as well as multiplication of a vector by a real number become mul-
tivariant. In general, a vector cannot be presented as a sum of its components along
the coordinate axes, although projection (P0P1.Q0Q1) / |Q0Q1| of a vector P0P1

onto any non-zero vector Q0Q1 is determined uniquely. Although many properties
of vectors in the σ-representations appear to be multivariant and unaccustomed,
these properties are real properties of space-time geometry.

One should know these real properties of the space-time geometry, because in the
general relativity the space-time geometry is determined by the matter distribution.
One cannot know the space-time geometry previously, and one should consider all
possible geometries. In the general relativity one supposes, that the space-time
geometry can be only a Riemannian geometry. Thus, the supposition, that the space-
time geometry is a Riemannian geometry, is a mistake from the physical viewpoint.
Generalization of the general relativity on the case of arbitrary physical space-time
geometry shows, that the space-time geometry appears to be non-Riemannian even
in the case of slight gravitational field of a heavy sphere [9].

Mathematics does not consider problems of the geometry application to physics
and to mechanics. Mathematicians may investigate only a part of possible geome-
tries (for instance, only axiomatizable geometries), and this consideration of a part
of all possible geometries is not a mistake from the mathematical viewpoint. How-
ever, if mathematician believes, that nonaxiomatizable geometries are impossible
and tries to deduce a nonaxiomatizable geometry from some new axiomatics, it be-
comes to be a mistake. The obtained geometry appears to be inconsistent. By the
way, already the Riemannian geometry appears to be inconsistent [1].

4 Corollaries of the logical reloading

In application to the Euclidean geometry the logical reloading means a transition
from the conventional V -representation to σ-representation. As a result the main
structure of the V -representation (linear vector space) is replaced by the structure of
the σ-representation (world function). The geometry and all geometrical quantities
are defined via the world function σ, and only via σ. In particular, vector, which
is defined in V -representation as an element of the linear vector space, is defined in
σ-representation by relations (3.1) - (3.6). Of course, if conditions of Euclideaness
take place, all results, obtained in V -representation, coincide with results, obtained
in σ-representation. If conditions (3.7) - (3.10) are not fulfilled, the geometry ceases
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to be Euclidean, and a linear vector space cannot be introduced, in general. How-
ever, results, obtained in σ-representation have a sense, and they contain many
unexpected properties.

The most important property of the physical geometry, generated by a violation
of conditions (3.9) and (3.10), is multivariance [10]. Multivariance of a geometry
with respect to vector P0P1 and the point Q0 means by definition, that at the point
Q0 there are many vectors Q0Q1, Q0Q

′
1,..., which are equivalent to vector P0P1.

Equivalency (P0P1eqvQ0Q1) of vectors P0P1 and Q0Q1 is defined as follows

(P0P1eqvQ0Q1) , if (P0P1.Q0Q1) = |P0P1| · |Q0Q1| ∧ |P0P1| = |Q0Q1| (4.1)

If vector P0P1 is given, and one looks for vector Q0Q1 at the point Q0, which is
equivalent to vector P0P1, one needs to solve two equations (4.1) with respect to
position of the point Q1. In the proper Euclidean geometry two equations (4.1)
have always a unique solution independently of dimension of the Euclidean space.
It means that at the point Q0 there is one and only one vector Q0Q1, which is
equivalent to vector P0P1. The proper Euclidean geometry is single-variant. In an
arbitrary physical geometry G two equations (4.1) may have many solutions. Then
at the point Q0 there are many vectors Q0Q1, which are equivalent to vector P0P1.
It means that the geometry G is multivariant. In this case the equivalence relation
is intransitive, and geometry G is nonaxiomatizable. Thus, nonaxiomatizability of
a physical geometry is a corollary of its multivariance.

The multivariance is a natural property of a physical (nonaxiomatizable) ge-
ometry. Multivariance is absent, when conditions (3.9) and (3.10) are fulfilled. In
axiomatizable geometries the property of multivariance is absent. The axiomatiz-
able geometries have been well studied and considered usually as ”true geometries”.
However, the axiomatizability is not a feature of a ”true geometry”. The axiomatiz-
ability is a property of the most studied geometries. In general, a physical geometry
is multivariant, and the multivariance is a natural property of the space-time geom-
etry.

As we have seen in introduction, the timelike straight segments in the real space-
time geometry (2.3) are not one-dimensional, and this property is a corollary of the
geometry multivariance with respect to timelike vectors.

The multivariance leads to a splitting of geometrical objects. We consider this
effect in the example of a circular cylinder. In the proper Euclidean geometry it is
defined by its axis and a point P on its surface. Let F1, F2 be two points on the
axis of the circular cylinder. The cylinder ClPF1F2 is defined as a set of points R

ClPF1F2 = {R|SF1F2R = SF1F2P} (4.2)

where SF1F2R is the area of the triangle with vertices at the points F1, F2, R, which is
calculated by means of the Heron’s formula via side lengths of the triangle. Let the
areas SF1F2R and SF1F2P are expressed via world functions of corresponding points.
Let T[F1F2] be the straight segment between points F1, F2 and the point F3 ∈ T[F1F2].
Let F3 6= F1, then in the proper Euclidean geometry the shape of the circular
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cylinder depends only on the axis, but not on a choice of points on this axis, and

ClPF1F2 = ClPF1F3 , F3 ∈ T[F1F2] (4.3)

However, in the multivariant geometry, in general, ClPF1F2 6= ClPF1F3 and in the mul-
tivariant geometry there are many cylinders, corresponding to one circular cylinder
in the proper Euclidean geometry. From viewpoint of V -representation it is inter-
preted as a splitting of the Euclidean cylinder in a multivariant geometry. From
viewpoint of σ-representation the fact, that shape of cylinders ClPF1F2 and ClPF1F3

are different, in general, is natural. From this viewpoint the equation (4.3) means
a degeneration of cylinders in the Euclidean geometry. Interpretation of (4.3) as a
degeneration is a more correct geometrical interpretation, because it does not use
such an auxiliary structure as the linear vector space.

5 Concluding remarks

Conventional approach to the space-time geometry, when a geometry is considered
to be a logical construction is poor. To obtain a true description of the space-
time geometry, one needs to realize a logical reloading and transit to perception of
a geometry as a science on shape and mutual disposition of geometrical objects.
Using this approach and considering the proper Euclidean geometry, one obtains
three different representations of the Euclidean geometry. These representations
differ in the number of block sorts, using for construction of geometrical objects.
Reduction of block sorts is compensated by introduction of an additional structure,
which describes the rules of the eliminated block construction. In the Euclidean
geometry a transition from one representation to another one may be obtained by
means of the formal logic. This circumstance admits one to interpret the logical
reloading as a logical operation.

In the inhomogeneous geometries, where blocks are deformed, a transformation
from one representation to another one becomes to be impossible, in general. In this
case one uses the deformation principle, which works only in σ-representation. After
deformation of the standard (Euclidean) geometry the obtained geometry appears
to be nonaxiomatizable, in general.

Logical reloading in the proper Euclidean geometry does not change this geom-
etry. However, capacities of generalization of the proper Euclidean geometry are
different in different representations of this geometry. Maximal capacity of general-
ization appears in the σ-representation, where the geometry is described completely
in terms of world function σ, which is a function of two points of the space. Gen-
eralization of the proper Euclidean geometry in the σ-representation admits one
to construct multivariant geometries, which are nonaxiomatizable. Appearance of
multivariant (nonaxiomatizable) geometries shows, that the conventional approach,
when a geometry is a logical construction may be used only in some special cases.
Logical reloading to σ-representation restores the old conception of geometry, as a
science on a shape and mutual disposition of geometrical objects. In other words,
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the logical reloading to the σ-representation is not a new idea. It is a return to old
idea of metric geometry, which was not work without a use of the deformation prin-
ciple. Being equipped by the deformation principle, the metric geometry turns into
the physical geometry, which is an excellent tool for description of the space-time.

A use of the physical geometry admits one to describe space-time geometry of
microcosm, where the geometry is multivariant and cannot be described in terms of
conventional Riemannian geometry. The physical space-time geometry is effective
in cosmology, where the space-time geometry is non-Riemannian and cannot be
described correctly, if one supposes, that the space-time geometry is Riemannian.

It is interesting, that dynamics of particles is described by finite difference equa-
tions (but not differential). Even dynamic equations for gravitational field have the
form of finite equations (but not differential). It is connected with the fact, that
the physical space-time geometry may be discrete. Differential equations cannot be
used effectively in the space-time geometry, which may be discrete in some regions.
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