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Abstract
Metric approach to geometry admits one to construct a physical geome-

try, i.e. geometry which is described completely in terms and only in terms
of the distance function ρ, or in terms of the world function σ = 0.5ρ2. A
discrete geometry is a special case of physical geometry, when there exist an
elementary length λ0 and all distances in the discrete geometry are larger,
than the elementary length. A discrete geometry is obtained as a generaliza-
tion of the proper Euclidean geometry. To produce such a generalization, a
logical reloading in the description of the Euclidean geometry is to be pro-
duced. It means that the Euclidean geometry begins to be described in terms
of the world function and only in terms of the world function. Such a de-
scription contains general geometric relations, which are valid in all physical
geometries, and special relations, describing properties of the Euclidean world
function. Replacing the Euclidean world function σE by the world function
σd of the discrete geometry in all general geometric relations and ignoring
special relations, one obtains general relations for the discrete geometry. As
far as the form of σd is supposed to be known, the special relations for the
discrete geometry are not needed.

Key words: elementary length; discrete space-time geometry; world function;
logical reloading; geometrization of particle parameters; skeleton conception of par-
ticle dynamics;

1 Introduction

The proper Euclidean geometry as well as the geometry of Minkowski are continuous
geometries. They are described by methods of differential geometry. However, there
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may exist discrete geometries, where the distance between any two points of the
space-time is larger, than some elementary length λ0. If characteristic scale of the
problem is much larger, than the elementary length λ0, one may set λ0 = 0 and
consider the space-time geometry as a continuous geometry. However, in microcosm,
where characteristic scale is of the order of λ0, one should consider a discrete space-
time geometry, because the real space-time geometry may be discrete, and such a
possibility is to be investigated.

At the conventional construction of the Euclidean geometry one uses such con-
cepts as manifold, dimension, coordinate system, linear vector space, which might
be used only in continuous (differential) geometries. A discrete geometry is con-
sidered as a generalization of the proper Euclidean geometry, because it is the only
geometry, whose consistency has been proved. Constructing a discrete geometry as a
generalization of the proper Euclidean geometry, one may not use above-mentioned
concepts. The only concept, which may be used in the continuous geometry and
in the discrete one, is the distance ρ. But the distance ρ is to be introduced as a
fundamental quantity. In the Riemannian geometry the distance ρ is introduced as
an integral along the geodesic from the infinitesimal distance

ds =
√

gikdxidxk

Such a method of introduction of the distance ρ is inadequate in the discrete ge-
ometry, because it uses infinitesimal distance, which does not exist in the discrete
geometry. Besides, in the case, when there are several geodesics, connecting two
points, one obtains many-valued expressions for the distance or for the world func-
tion. Many-valued world function is inadmissible in a geometry.

To construct a discrete geometry, one needs to represent the proper Euclidean
geometry in terms of the distance ρ (or in terms of the world function σ = 1

2
ρ2) and

to use this representation for generalization of the proper Euclidean geometry GE

on the case of a discrete geometry Gd. Such a replacement of basic concepts of the
Euclidean geometry means a logical reloading of the Euclidean geometry conception.
Representation of a geometry in terms of a world function will be referred to as σ-
immanent representation. The σ-immanent representation of the proper Euclidean
geometry GE is always possible.

The distance function ρd of a discrete geometry Gd satisfies the condition

|ρd (P, Q)| /∈ (0, λ0) , ∀P,Q ∈ Ω (1.1)

where Ω is the point set, where the geometry Gd is given. In means that in the
geometry Gd there are no distances, which are shorter, than the elementary length
λ0. The distance ρd (P, Q) = 0 is admissible. This condition takes place, if P = Q.

Note, that the condition (1.1) is a restriction on the values of the distance func-
tion, but not on values of its argument (points of Ω), although one considers usually
a discrete geometry as a geometry on a lattice. It is true, that the geometries on a
lattice are discrete geometries (they satisfy the relation (1.1)), but they form a very
special case of the discrete geometries. Such a geometry is essentially a conventional
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differential geometry, given on a countable set of points, where the distances are the
same as in the differential geometry, given on a continual set of points. Besides, such
a discrete geometry cannot be uniform and isotropic. A general case of a discrete
geometry takes place, when restrictions are imposed on the admissible values of the
world function (distance function).

The simplest case of a discrete space-time geometry Gd is obtained, if Gd =
{σd, ΩM} is given on the manifold ΩM, where the geometry of Minkowski GM =
{σM, ΩM} is given. The world function σd is chosen in the form

σd (P,Q) = σM (P,Q) +
1

2
λ2

0sgn (σM (P, Q)) , ∀P,Q ∈ ΩM (1.2)

where σM is the world function of the geometry of Minkowski. It is easy to verify,
that ρd =

√
2σd, defined by (1.2) satisfies the constraint (1.1). Such a discrete

geometry is uniform and isotropic as well as the geometry of Minkowski.
Besides, in the discrete space-time geometry (1.2) a pointlike particle cannot

be described by a world line, because any world line is a limit of the broken line,
when lengths of its links tend to zero. But in the discrete geometry Gd there are no
infinitesimal lengths, and a pointlike particle is described by a world chain (broken
line) instead of smooth world line. Description of a pointlike particle state by means
of the particle position and its momentum becomes inadequate, because in the con-
tinuous (differential) space-time geometry the particle 4-momentum pk is described
by the relation

pk = gkl
dxl

dτ
= gkl lim

dτ→0

xl (τ + dτ)− xl (τ)

dτ
(1.3)

where xl = xl (τ), l = 0, 1, 2, 3 is an equation of the world line. The limit in the
formula (1.3) does not exist in Gd, and the 4-momentum pk is not defined (at any rate
in such a form). In general, the mathematical formalism of a differential geometry,
based on the infinitesimal calculus (differential dynamic equations), is inadequate
in the discrete space-time geometry, where infinitesimal distances are absent.

2 Metric approach to geometry

There is another circumstance, which prevents from constructing a discrete geome-
try. The proper Euclidean geometry is an axiomatizable geometry. It means, that
all statements of the proper Euclidean geometry can be deduced from a system of
several axioms (basic statements of the geometry). Usually one considers the axiom-
atizability of a geometry as an inherent property of any geometry. One believes that
there are no nonaxiomatizable geometries. The reason of such a belief is rather sim-
ple. During two thousand years we knew the only geometry - the proper Euclidean
geometry, which is axiomatizable. All differential geometries, constructed as a gen-
eralization of the proper Euclidean geometry, are also axiomatizable. One knows
no other method of a geometry construction other, than the Euclidean method of
the geometry deduction from some system of axioms. All differential geometries are
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constructed by means of this method. Mathematicians believe that any geometry
is a logical construction. Such a discipline as the symplectic geometry is used in
dynamics, but not for description of the geometric objects properties. Nevertheless
it is called a geometry, because its structure reminds the structure of the Euclidean
geometry.

In reality any geometry investigates a shape and a mutual disposition of geo-
metrical objects in the space, or in the space-time. This property is an original
property of a geometry. However, one used the only Euclidean method of the geom-
etry construction during two thousand years, and as a result the axiomatizability of
a geometry is considered now as an inherent property of any geometry, whereas a
description of geometrical objects is considered as a secondary property of discipline,
called geometry.

In general, there is a metrical approach to geometry, when a geometry is con-
sidered as a science, investigating a shape and a mutual disposition of geometrical
objects. Such a geometry is known as a metric geometry (metric space), if it uses
the triangle axiom. If the triangle axiom is not used, the geometry is called the
distant geometry [1, 2]. It is supposed, that the distant geometry Gds = {σ, Ω} is
described completely by the world function σ = 1

2
ρ2

σ : Ω× Ω → R, σ (P,Q) = σ (Q,P ) , ∀P, Q ∈ Ω (2.1)

ρ (P, Q) ≥ 0, ∀P, Q ∈ Ω, ρ (P,Q) =
√

2σ (P,Q) (2.2)

where Ω is the point set, where the geometry is given. The world function σ is
used instead of the distance function ρ, because in the geometry of Minkowski the
distance ρ may be either positive, or pure imaginary, whereas σ = 1

2
ρ2 is always

real.
At the metric approach to geometry, a geometry can be constructed on any

point set (but not necessarily on a manifold) without a use coordinates. In the
metric space the distance function ρ satisfies an additional constraint

ρ (P, Q) + ρ (P, R) ≥ ρ (Q,R) , ∀P, Q,R ∈ Ω (2.3)

The condition (2.3) is known as the triangle axiom. This axiom admits one to
introduce a straight line in the metric space as a shortest line between two points.
In the distant geometry, where the constraint (2.3) is absent, one failed to introduce
the straight line in terms of the distance function ρ. Blumental [2] introduced a curve
as a continuous mapping (0, 1) → Ω. The continuous mapping is an operation, which
cannot be expressed only in terms of the distance function. As a result a purely
metric approach to geometry, when geometry is described completely in terms of
the distance function ρ, failed. The reason of this failure lies in the fact, that
Blumental believed that the straight line has no thickness, whereas in reality in the
distant geometry the straight line is a hollow tube. In reality the distant geometry is
nonaxiomatizable geometry, which cannot be constructed by the Euclidean method.

What is on the bottom of the Euclidean method of the geometry construction?
Let us get outside of this method. One cannot perceive the distance directly. One
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can perceive physical bodies. Geometrical object is an abstraction of space-time
properties of a physical body. A physical body, evolving in the space-time, may
pass from one space-time region with the space-time geometry {σ1, Ω1} to another
space-time region with the space-time geometry {σ2, Ω2}. We must have a possibility
to recognize and to identify the same geometrical object in different space-time
geometries. In order, that it should be possible, any geometrical object is to be
described in terms of the distance function ρ and only in terms of ρ. Any geometrical
object is described by its skeleton and its envelope. We consider a simple examples
of geometrical objects. (The general definition of a geometrical object will be given
later).

The simplest geometrical object is a sphere SPP0P1 , determined by two points
P0, P1 (skeleton). The point P0 is a center of the sphere, P1 is some point on the
surface of the sphere. The points {P0, P1} form the sphere skeleton. The surface of
the sphere (its envelope) is a set of points

SPP0P1 = {R|ρ (P0, R) = ρ (P0, P1)} , ρ =
√

2σ (2.4)

The sphere is a hollow geometrical object in the sense, that there are internal points
of the sphere, which do not belong to the sphere surface (envelope).

Another simple geometrical object is an ellipsoid ELF1F2P , determined by three
points F1, F2, P . The points F1, F2 are focuses of the ellipsoid, and the point P is
some point on the surface of the ellipsoid

ELF1F2P = {R|ρ (F1, R) + ρ (F2, R) = ρ (F1, P ) + ρ (F2, P )} , ρ =
√

2σ (2.5)

If F1 6= P ∧ F2 6= P , the ellipsoid ELF1F2P is a hollow geometrical object.
If F1 = P ∨F2 = P , the ellipsoid degenerates into a straight line segment T[P0P1]

T[P0P1] ≡ ELP0P1P1 = ELP0P1P0 = {R|ρ (P0, R) + ρ (P1, R) = ρ (P0, P1)} (2.6)

The degenerate ellipsoid ELP0P1P1 is a straight line segment T[P0P1] by definition.
This name is used, because in the proper Euclidean geometry a degenerate ellipsoid
is a straight line segment. In other geometries the geometric object (2.6) may be
a hollow geometrical object. It means, that it is not one-dimensional point set, as
in the proper Euclidean geometry, but nevertheless we shall refer to it as a straight
line segment.

The segment T[P0P1] is determined by two points. All points of T[P0P1] are points
of the envelope, which consists of boundary points only. In the proper Euclidean
geometry it is not a hollow geometrical object, because it has not internal points.

Is the straight line segment T[P0P1] a hollow geometrical object in other distant
geometries? It depends on the constraints (2.2),(2.3). If they are satisfied, the
segment T[P0P1] is entire (not hollow). If the distance function ρ does not satisfy the
triangle axiom (2.3) the segment T[P0P1] may be hollow. In other words, the segment
T[P0P1] may be a hollow tube.

Why is the segment entire, if the triangle axiom (2.3) is fulfilled? Let us consider
a closed surface S defined by the relation

S : SP0P1 (R) = 0, SP0P1 (R) = ρ (P0, R) + ρ (P1, R)− ρ (P0, P1) (2.7)
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Internal points R′ (points inside the closed surface S) satisfy the relation SP0P1 (R′) <
0. External points R′′ satisfy the relation SP0P1 (R′′) > 0. If the triangle axiom is
fulfilled, it may be written in the form

ρ (P0, R) + ρ (P1, R) ≥ ρ (P0, P1) , ∀P1, P2, R ∈ Ω (2.8a)

It follows from (2.7) and (2.8a), that SP0P1(R
′) ≥ 0, ∀R′ ∈ Ω. It means that the

surface S, which coincides with the segment T[P0P1], cannot contain internal points.
Why it is important, whether or not the segment T[P0P1] is hollow? Geometry

is reduced to construction of geometrical objects and to investigation of their prop-
erties. In the proper Euclidean geometry all geometrical objects are constructed of
blocks (point, straight segment). Blocks are to be simple entire (not hollow) geomet-
rical objects. The segment T[P0P1] is determined by two points, and it is entire in the
proper Euclidean geometry. It may be used as a constructive block for construction
of geometrical objects. For instance, in the proper Euclidean geometry a cube can
be filled by straight segments placed in parallel with the cube edge in such a way,
that any point of a cube belongs to one and only one segment. Such a situation
is impossible, if the blocks are hollow geometrical objects. If the blocks are hollow
tubes, one cannot fill the cube by these tubes in such a way, that any point of a cube
belongs to one and only one tube. It means, that a cube cannot be constructed of
hollow blocks. The same relates to any geometrical object.

The Euclidean method of the geometric object construction is based on the
possibility of construction of any geometrical object from blocks. There is a finite
number of rules, describing the blocks properties, and there is a finite number of
rules for description of the blocks combinations at a construction of a geometrical
object. Euclid formulated these rules in the form of axioms of a logical construction.
Thus, the axiomatics of the proper Euclidean geometry describes the procedure of
a construction of geometrical objects from blocks. If the segment T[P0P1] is entire,
the distant geometry is an axiomatizable geometry, because it can be realized as a
geometry, where any geometric object can be constructed of blocks, i.e. by means
of the Euclidean method.

If blocks are hollow, they cannot be used for construction of geometrical objects.
In this case the distant geometry is nonaxiomatizable, because in this case one
cannot use the Euclidean method for construction of geometric objects. Formally the
segment T[P0P1] is hollow, if the equivalence relation is intransitive. If the equivalence
relation is transitive, the segment T[P0P1] may be entire.

The constructive block T[P0P1] is a directed object, whose direction is described

by the vector P0P1 =
−−→
P0P1 = {P0, P1}, which is an ordered set of two points. The

point P0 is the origin of the vector, the point P1 is the end of the vector. Any vector
P0P1 is described by its module

|P0P1| = ρ (P0, P1) =
√

2σ (P0, P1) (2.9)

Vectors are directed quantities, and interrelation of two vectors P0P1 and Q0Q1 is
described by an angle ϕ between them. In the proper Euclidean geometry there is
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a lot of vectors Q0Q1, which form the angle ϕ 6= 0 with the vector P0P1. However,
in the proper Euclidean geometry there is only one vector Q0Q1 at the point Q0

with fixed length |Q0Q1|, which forms with the vector P0P1 the angle ϕ = 0. By
definition such a vector Q0Q1 is called the vector, which is parallel (Q0Q1·P0P1)
to the vector P0P1 .

Instead of the angle ϕ the interrelation of two vectors P0P1 and Q0Q1 may
be described by the scalar product (Q0Q1.P0P1) of these vectors, defined by the
relation

(P0P1.Q0Q1) = |P0P1| · |Q0Q1| cos ϕ (2.10)

In the proper Euclidean geometry the definition of the scalar product may be ex-
pressed in terms of the world function

(P0P1.Q0Q1) = σ (P0, Q1) + σ (P1, Q0)− σ (P1, Q1)− σ (P0, Q0) (2.11)

As far as the definition of the scalar product is produced in terms of the world
function, this definition may be used for any distant geometry.

Then condition of the vectors parallelism is obtained from (2.10) at ϕ = 0. It is
written in the form

(Q0Q1 · P0P1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| (2.12)

In the proper Euclidean geometry all vectors P0P1,P0P
′
1, P0P

′′
1, which are parallel

to vector Q0Q1, are parallel between themselves. Such a situation is rather special.
It is connected with a degenerate character of the proper Euclidean geometry. In the
distant geometry vectors P0P1,P0P

′
1, P0P

′′
1, which are parallel to vector Q0Q1, are

not parallel between themselves, in general. This circumstance generates hollowness
of straight segments T[P0P1]. It depends on properties of the world function σ, which
describes a distant geometry completely.

In the proper Euclidean geometry two vectors P0P1 and Q0Q1 are equivalent by
definition, if they are parallel (P0P1 · Q0Q1) and their lengths are equal |P0P1| =
|Q0Q1|

(P0P1eqvQ0Q1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| ∧ |P0P1| = |Q0Q1| (2.13)

This definition of two vectors equivalency (equality) together with the definitions
(2.9), (2.11) formulates the equivalence of two vectors in terms of the world function
and only in these terms. It does not refer to a dimension, to a coordinate system
and other means of description. This definition of two vectors equivalence should
be used in any distant geometry.

There are such distant geometries, where the straight segments T[P0P1] are hollow
tubes, and the definition (2.13), (2.11) appears to be intransitive and the distant
geometry appears to be nonaxiomatizable. Some mathematicians object, that the
definition (2.13), (2.11) cannot be used as an equivalence relation, because the equiv-
alence relation is transitive by definition. They insist, that one should use another
term for the definition (2.13), (2.11), (for instance, general equivalency). The reason
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of such an objection lies in the fact, that the mathematicians dealt only with ax-
iomatizable geometries, which are logical constructions. Indeed, if one uses a logical
construction, one can deduce conclusions, only if the equivalence relation is transi-
tive, and from a v b and b v c it follows, that a v c. If the the equivalence relation
has not this property, one cannot deduce corollaries of theorems. Thus, if one in-
sists on the transitivity of the equivalence relation, one insists on impossibility of
nonaxiomatizable geometries, in particular, on impossibility of discrete space-time
geometries, where the straight segments T[P0P1] are hollow tubes. As a result the
discrete geometries appear to be nonaxiomatizable.

The transitivity of the equivalence relation has been obtained from our experi-
ence of work with axiomatizable geometries (Euclidean geometry and its modifica-
tions). We have no authority to generalize this property to all space-time geometries.
Whether or not the real space-time geometry is discrete, is a question of experimen-
tal data, but not a question of mathematical scholasticism. Another problem lies
in the fact, that we could construct only axiomatizable geometries, and we could
not construct discrete geometries. As a result we constructed only geometries on
a lattice, which are not rigorous discrete geometries. How to construct discrete
(nonaxiomatizable) geometries, we consider a few later.

3 Description of geometric objects

If the distant geometry includes indefinite geometries (like the geometry of Minkowski),
the condition (2.2) is to be omitted, and description of the geometry is produced
in terms of the world function. The geometry described completely by the world
function (2.1) will be referred to as a physical geometry.

A geometrical object is a geometrical image of a physical body. Any geometrical
object is some subset of points in the space-time. However, geometrical object is
not an arbitrary set of points. Geometrical object is to be defined in the physical
geometry in such a way, that similar geometrical objects (which are images of similar
physical bodies) could be recognized in different space-time geometries.

Definition 3.1: A geometrical object gPn,σ of the geometry G = {σ, Ω} is a subset
gPn,σ ⊂ Ω of the point set Ω. This geometrical object gPn,σ is a set of roots R ∈ Ω
of the function FPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , FPn,σ : Ω → R (3.1)

where FPn,σ depends on the point R via world functions of arguments {Pn, R} =
{P0, P1, ...Pn, R}

FPn,σ : FPn,σ (R) = GPn,σ (u1, u2, ...us) , s =
1

2
(n + 1) (n + 2) (3.2)

ul = σ (wi, wk) , i, k = 0, 1, ...n + 1, l = 1, 2, ...
1

2
(n + 1) (n + 2)(3.3)

wk = Pk ∈ Ω, k = 0, 1, ...n, wn+1 = R ∈ Ω (3.4)
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Here Pn = {P0, P1, ..., Pn} ⊂ Ω are n + 1 points which are parameters, determining
the geometrical object gPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , R ∈ Ω, Pn ∈ Ωn+1 (3.5)

FPn,σ (R) = GPn,σ (u1, u2, ...us) is an arbitrary function of 1
2
(n + 1) (n + 2) argu-

ments uk and of n + 1 parameters Pn. The set Pn = {P0, P1, ...Pn} ∈ Ωn of the
geometric object parameters will be referred to as the skeleton of the geometrical
object. The subset gPn,σ ⊂ Ω will be referred to as the envelope of the skeleton.
The skeleton is an analog of a frame of reference, attached rigidly to a physical
body. Tracing the skeleton motion, one can trace the motion of the physical body.
When a particle is considered as a geometrical object, its motion in the space-time
is described by the skeleton Pn motion. At such an approach (the rigid body ap-
proximation) the shape of the envelope is of no importance.

Remark: An arbitrary subset Ω′ of the point set Ω is not a geometrical object,
in general. It is supposed, that physical bodies may have only a shape of a geo-
metrical object, because only in this case one can identify identical physical bodies
(geometrical objects) in different space-time geometries.

Existence of the same geometrical objects in different space-time regions, having
different geometries, brings up the question on equivalence of geometrical objects in
different space-time geometries. Such a question did not arise before, because one
does not consider such a situation, when a physical body moves from one space-
time region to another space-time region, having another space-time geometry. In
general, mathematical technique of the conventional space-time geometry (differen-
tial geometry) is not applicable for simultaneous consideration of several different
geometries of different space-time regions.

We can perceive the space-time geometry only via motion of physical bodies in
the space-time, or via construction of geometrical objects corresponding to these
physical bodies. As it follows from the definition 3.1 of the geometrical object, the
function GPn,σ as a function of its arguments uk, k = 1, 2, ...n (n + 1) /2 (of world
functions of different points) is the same in all physical geometries. It means, that
a geometrical object O1 in the geometry G1 = {σ1, Ω1} is obtained from the same
geometrical object O2 in the geometry G2 = {σ2, Ω2} by means of the replacement
σ2 → σ1 in the definition of this geometrical object.

Definition 3.2: Geometrical object gP ′n,σ′ ( P ′n = {P ′
0, P

′
1, ..P

′
n}) in the geometry

G ′ = {σ′, Ω′} and the geometrical object gPn,σ ( Pn = {P0, P1, ..Pn}) in the geometry
G = {σ, Ω} are similar geometrical objects, if

σ′ (P ′
i , P

′
k) = σ (Pi, Pk) , i, k = 0, 1, ..n (3.6)

and the functions G′
P′n,σ′ for gP ′n,σ′ and GPn,σ for gPn,σ in the formula (3.2) are the

same functions of arguments u1, u2, ...us

G′
P′n,σ′ (u1, u2, ...us) = GPn,σ (u1, u2, ...us) (3.7)
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In this case

ul ≡ σ (Pi, Pk) = u′l ≡ σ′ (P ′
i , P

′
k) , i, k = 0, 1, ...n, l = 1, 2, ..n (n + 1) /2

(3.8)
The functions F ′

P ′n,σ′ for gP ′n,σ′ and FPn,σ for gPn,σ in the formula (3.2) have the same
roots, if the relation (3.7) is fulfilled. As a result one-to-one connection between the
geometrical objects gP ′n,σ′ and gPn,σ arises.

As far as the physical geometry is determined by its geometrical objects construc-
tion, a physical geometry G = {σ, Ω} can be obtained from some known standard
geometry Gst = {σst, Ω} by means of a deformation of the standard geometry Gst.
Deformation of the standard geometry Gst is realized by the replacement σst → σ
in all definitions of the geometrical objects in the standard geometry. The proper
Euclidean geometry is an axiomatizable geometry. It has been constructed by means
of the Euclidean method as a logical construction. Simultaneously the proper Eu-
clidean geometry is a physical geometry. It may be used as a standard geometry
Gst. Construction of a physical geometry as a deformation of the proper Euclidean
geometry will be referred to as the deformation principle [3]. The most physical ge-
ometries are nonaxiomatizable geometries. They can be constructed only by means
of the deformation principle.

4 General geometric relations

Describing a physical geometry in terms of the world function, one should distinguish
between general geometric relations and specific geometric relations. The general
geometric relations are the linear vector space relations, which are written in terms
of the world function. The general geometric relations are valid for any physical
geometry.

The first general geometric definition is the definition of the scalar product of
two vectors (2.11). Definition of the two vector equivalence (2.13) is also a general
geometric relation.

Linear dependence of n vectors P0P1,P0P2, ...P0Pn is defined by the relation,

Fn (Pn) = 0, Fn (Pn) ≡ det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n (4.1)

where Pn = {P0, P1, ...Pn} and Fn (Pn) is the Gram’s determinant. Vanishing of
the Gram’s determinant is the necessary and sufficient condition of the linear de-
pendence of n vectors. Condition of linear dependence relates to the properties of
the linear vector space. It seems rather meaningless to use it, if the linear vector
space cannot be introduced. Nevertheless, the relation (4.1) written as a general
geometric relation describes some general geometric properties of vectors, which in
the proper Euclidean geometry transforms to the property of linear dependence.
In particular, the space dimension of the proper Euclidean geometry is defined in
terms of the world function by means of the relations of the type (4.1) as a maximal
number of linear independent vectors, which is possible in the Euclidean space. This
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circumstance seems to be rather unexpected, because in conventional presentation
of the Euclidean geometry the geometry dimension is postulated in the beginning
of the presentation.

The general geometric relations describe either properties of the linear vector
space concepts, or definition of geometrical objects. As we have seen, a definition of
geometrical objects in the form of general geometric relations (i.e. in terms of the
world function) is necessary to recognize the same physical body (and corresponding
geometrical object) in different space-time geometries.

The general geometric relations are parametrized by the form of the world func-
tion. Changing the form of the world function, one obtains the general geometric
relations at a new value of the parameter (new form of the world function).

5 Specific properties of the n-dimensional Euclidean

space

Along of general geometric properties, describing mainly definitions of the linear vec-
tor space, there are special geometric relations, describing properties of the world
function. For instance, there are relations, which are necessary and sufficient con-
ditions of the fact, that the world function σ is the world function of n-dimensional
Euclidean space. They have the form [4]:

I. Definition of the dimension:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (5.1)

where Fn (Pn) is the n-th order Gram’s determinant (4.1) Vectors P0Pi, i = 1, 2, ...n
are basic vectors of the rectilinear coordinate system Kn with the origin at the point
P0. The metric tensors gik (Pn), gik (Pn), i, k = 1, 2, ...n in Kn are defined by the
relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (5.2)

Fn (Pn) = det ||gik (Pn)|| 6= 0, i, k = 1, 2, ...n (5.3)

II. Linear structure of the Euclidean space:

σ (P, Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(5.4)
where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the vectors P0P, P0Q respectively in the coordinate system K. The
covariant coordinates are defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (5.5)
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III: The metric tensor matrix glk (Pn) has only positive eigenvalues gk

gk > 0, k = 1, 2, ..., n (5.6)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (5.7)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution. Conditions I –
IV contain a reference to the dimension n of the Euclidean space, which is defined
by the relations (5.1).

All relations I – IV are written in terms of the world function. They are con-
straints on the form of the world function of the proper Euclidean geometry. Con-
straints (5.1), determining the dimension via the form of the world function, look
rather unexpected. They contain a lot of constraints imposed on the world function
of the proper Euclidean geometry, and they are necessary. At the conventional ap-
proach to geometry one uses a very simple supposition: ”Let the dimension of the
Euclidean space be n.” instead of numerous constraints (5.1).

In the vector representation of the proper Euclidean geometry, which is based
on a use of the linear vector space, the dimension is considered as a primordial
property of the linear vector space and as a primordial property of the Euclidean
geometry. Situation, when the geometry dimension is different at different points of
the space Ω, or when it is indefinite, is not considered. In the vector representation
of the Euclidean geometry one does not distinguish between the general geometric
relations and the specific relations of the geometry.

Instead of constraints (5.1) – (5.7) one may use an explicit form of the world
function

σE (x, x′) =
k=n∑

k=1

(
xk − x′k

)2
(5.8)

where xk, x′k ∈ R, k = 1, 2, ...n are Cartesian coordinates of points P and P ′ respec-
tively. The relation (5.8) satisfies all constraints (5.1) – (5.7). It uses concepts of
dimension and of coordinates as primordial concepts of geometry. Using the world
function only in such an explicit form, one cannot imagine a generalized geome-
try without such concepts as a dimension and a coordinate system, although these
concepts are only means of a geometry description.

In general, after the logical reloading to σ-representation (description in terms of
the world function) the proper Euclidean geometry looks rather unexpected. Some
concepts look very simple in the vector representation. The same concepts look com-
plicated in the σ-representation and vice versa. As a result the proper Euclidean
geometry in the σ-representation is perceived hardly. In the vector representation
one has several fundamental quantities: dimension, coordinate system, linear de-
pendence, whereas in the σ-representation there is only one fundamental quantity:
world function. The dimension, the coordinate system and the linear dependence
are derivative quantities. Agreement between these quantities is achieved in any
geometry, because they are defined as some attributes of the world function.
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6 Equivalence of physical geometries

Generalization of general geometric expressions (2.9) – (2.13) on the case of the
discrete geometry Gd is obtained by means of the replacement σE → σd, where σd is
the world function of the discrete geometry Gd. We are to be ready, that properties
of concepts and relations (2.6), (2.11) – (2.13), (4.1)) in Gd differ strongly from their
properties in GE. However, we have no alternative to these relations for definition
of these geometrical quantities in a discrete geometry Gd.

Definition 6.1 : The physical geometry G = {σ, Ω} is a point set Ω with the
single-valued function σ on it

σ : Ω×Ω → R, σ (P, P ) = 0, σ (P, Q) = σ (Q,P ) , P, Q ∈ Ω (6.1)

Definition 6.2: Two physical geometries G1 = {σ1, Ω1} and G2 = {σ2, Ω2} are
equivalent (G1eqvG2), if the point set Ω1 ⊆ Ω2∧σ1 (P, Q) = σ2 (P, Q) , ∀P,Q ∈ Ω1,
or Ω2 ⊆ Ω1 ∧ σ2 (P, Q) = σ1 (P,Q) , ∀P, Q ∈ Ω2

Remark: Coincidence of point sets Ω1 and Ω2 is not necessary for equivalence
of geometries G1 and G2. If one demands coincidence of Ω1 and Ω2 in the case of
equivalence of G1 and G2, then an elimination of one point P from the point set Ω1

turns the geometry G1 = {σ1, Ω1} into geometry G2 = {σ1, Ω1\P}, which appears
to be not equivalent to the geometry G1. Such a situation seems to be inadmissible,
because a geometry on a part ω ⊂ Ω1 of the point set Ω1 appears to be not equivalent
to the geometry on the whole point set Ω1.

According to definition the geometries G1= {σ, ω1} and G2= {σ, ω2} on parts of
Ω, ω1 ⊂ Ω and ω2 ⊂ Ω are equivalent (G1eqvG) , (G2eqvG) to the geometry G,
whereas the geometries G1= {σ, ω1} and G2= {σ, ω2} are not equivalent, in general,
if ω1 " ω2 and ω2 " ω1. Thus, the relation of equivalence is intransitive, in general.
The space-time geometry may vary in different regions of the space-time. It means,
that a physical body, described as a geometrical object, may evolve in such a way,
that it appears in regions with different space-time geometry.

The space-time geometry of Minkowski as well as the Euclidean geometry are
continuous geometries. It is true for usual scales of distances. However, one cannot
be sure, that the space-time geometry is continuous in microcosm. The space-time
geometry may appear to be discrete in microcosm. We consider a discrete space-time
geometry and discuss the corollaries of the suggested discreteness.

7 Discreteness and its manifestations

The simplest discrete space-time geometry Gd is described by the world function
(1.2). Density of points in Gd with respect to point density in GM is described by
the relation

dσM

dσd

=

{
0 if |σd| < 1

2
λ2

0

1 if |σd| > 1
2
λ2

0

(7.1)
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If the world function has the form

σg = σM +
λ2

0

2

{
sgn (σM) if |σM| > σ0

σM

σ0
if |σM| ≤ σ0

(7.2)

where σ0 = const, σ0 ≥ 0, the relative density of points has the form

dσM

dσg

=

{ 2σ0

2σ0+λ2
0

if |σg| < σ0 + 1
2
λ2

0

1 if |σg| > σ0 + 1
2
λ2

0

(7.3)

If the parameter σ0 → 0, the world function σg → σd and the point density (7.3)
tends to the point density (7.1). The space-time geometry Gg, described by the
world function σg is a geometry, which is a partly discrete geometry, because it is
intermediate between the discrete geometry Gd and the continuous geometry GM.
We shall refer to the geometry Gg as a granular geometry.

Deflection of the discrete space-time geometry from the continuous geometry
of Minkowski generates special properties of the geometry, which are corollaries of
impossibility of the linear vector space introduction.

Let P0P1 be a timelike vector in Gd (σd(P0, P1) > 0). We try to determine a
vector P1P2 at the point P1, which is equivalent to vector P0P1. Vectors P0P1 and
P1P2 may be considered as two adjacent links of a broken world line, describing a
pointlike particle

Let for simplicity coordinates have the form

P0 = {0, 0, 0, 0} , P1 = {µ, 0, 0, 0} , P2 =
{
x0,x

}
=

{
x0, x1, x2, x3

}
(7.4)

In this coordinate system the world function of geometry Minkowski has the form

σM (x, x′) =
1

2

((
x0 − x0′)2 − (x− x′)2

)
(7.5)

and σd is determined by the relation (1.2). We are to determine coordinates x of
the point P1 from two equations (2.13), which can be written in the form

σd (P0, P1) = σd (P1, P2) , σd (P0, P2) = 4σd (P0, P1) (7.6)

After substitution of world function (1.2) one obtains

1

2

((
x0 − µ

)2 − x2 + λ2
0

)
=

1

2

(
µ2 + λ2

0

)
(7.7)

1

2

((
x0

)2 − x2 + λ2
0

)
= 2

((
x0 − µ

)2 − x2 + λ2
0

)
(7.8)

Solution of these equations has the form

x0 = 2µ +
3

2

λ2
0

µ
, x2 = 3λ2

0

(
1 +

3λ2
0

4µ2

)
(7.9)
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As a result the point P2 has coordinates

P2 =

{
2µ +

3

2

λ2
0

µ
, r sin θ cos ϕ, r sin θ sin ϕ, r cos θ

}
, r = λ0

√
3 +

9

4

λ2
0

µ2
(7.10)

where θ and ϕ are arbitrary quantities. Thus, spatial coordinates of the point P2

are determined to within
√

3λ0. In the limit λ0 → 0 the point P2 is determined
uniquely. Two solutions

P ′
2 =

{
2µ +

3

2

λ2
0

µ
, 0, 0, r

}
, P ′′

2 =

{
2µ +

3

2

λ2
0

µ
, 0, 0,−r

}

are divided by spatial distance i |P′
2P

′′
2| = 2r ≈ 2

√
3λ0 (λ0 ¿ µ). It is a maximal

distance between two solutions P′
2 and P′′

2.
If λ0 = 0, then the discrete geometry turns to the geometry of Minkowski, and

P2 = {2µ, 0, 0, 0}
x0 = 2µ, x1 = 0, x2 = 0, x3 = 0 (7.11)

follow from one equation x2 = 0. It means, that the geometry of Minkowski is a
degenerate geometry, because different solutions of the discrete geometry merge into
one solution of the geometry of Minkowski.

Let us consider the same problem for spacelike vectors P0P1, P1P2, when

P0 = {0, 0, 0, 0} , P1 = {0, l, 0, 0} , P2 = {ct, x, y, z} (7.12)

We have the same equations (7.6), but now we have another solution

x = 2l +
3λ2

0

2l
, c2t2 − y2 − z2 = r2 = 3λ2

0 +
9

4

λ4
0

l2
(7.13)

The point P2 has coordinates

P2 =

{√
a2

2 + a2
3 + r2, 2l +

3λ2
0

2l
, a2, a3

}
, r2 = 3λ2

0

(
1 +

3λ2
0

4l2

)
(7.14)

where a2 and a3 are arbitrary quantities. The difference between two solutions P ′
2

and P ′′
2

P ′
2 =

{√
a2

2 + a2
3 + r2, 2l +

3λ2
0

2l
, a2, a3

}
, P ′′

2 =

{√
b2
2 + b2

3 + r2, 2l +
3λ2

0

2l
, b2, b3

}

may be infinitely large

|P′
2P

′′
2| =

√
2a2b2 + 2a3b3 − 2

√
r2 + a2

2 + a2
3

√
r2 + b2

2 + b2
3 + 2r2

This difference remains very large, even if λ0 → 0.
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Thus, both the discrete geometry and the geometry of Minkowski are multivari-
ant with respect to spacelike vectors. However, this circumstance remains to be
unnoticed in the conventional relativistic particle dynamics, because the spacelike
vectors do not used there.

Multivariance of the discrete geometry leads to intransitivity of the equivalence
relation of two vectors. Indeed, if (Q0Q1eqvP0P1) and (Q0Q1eqvP0P

′
1), but vec-

tor (P0P1eqvP0P
′
1). It means intransitivity of the equivalence relation. Besides,

it means that the discrete geometry is nonaxiomatizable, because in any logical
construction the equivalence relation is transitive.

Transitivity of the equivalence relation in the case of the proper Euclidean geom-
etry is a corollary of the special conditions (5.1) – (5.7). In the case of the arbitrary
physical geometry they are not satisfied in general.

Transport of a vector P0P1 to some point Q0 leads to some indeterminacy of
the result of this transport, because at the point Q0 there are many vectors Q0Q1,
Q0Q

′
1,..., which are equivalent to the vector P0P1.

Sum Q0S of two vectors Q0Q1 and Q1S, when the end of one vector is an origin
of the other, is defined by points Q0 and S

Q0S = Q0Q1 + Q1S (7.15)

Sum Q0S of two vectors Q0Q1 and P0P1 at the point Q0 is defined by the
relations

Q0S = Q0Q1 + Q1S, (Q1SeqvP0P1) (7.16)

In the discrete geometry the sum of two vectors is not unique, in general, because
of multivariance of the equivalence relation.

Result of multiplication of a vector P0P1 by a real number a is not unique also.
The result P0S of such a multiplication by a number a is defined by relations

P0P1 · P0S∧ |P0S| = a |P0P1| (7.17)

or in terms of algebraic relations

((P0P1.P0S) = a |P0P1| · |P0P1|)∧ |P0S| = a |P0P1| (7.18)

Thus, results of vectors summation and of a multiplication of a vector by a real
number are not unique, in general, in the discrete geometry. It means, that one
cannot introduce a linear vector space in the discrete geometry.

Let the discrete geometry is described by n coordinates. Let the skeleton Pn =
{P0, P1, ...Pn} determine n vectors P0Pk, k = 1, 2, ...n, which are linear independent
in the sense

Fn (Pn) = det ‖(P0Pi.P0Pk)‖ 6= 0 i, k = 1, 2, ...n (7.19)

One can determine uniquely projections of a vector Q0Q1 onto vectors P0Pk, k =
1, 2, ...n by means of relations

Pr (Q0Q1)P0Pk
=

(Q0Q1.P0Pk)

|P0Pk| (7.20)
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However, one cannot reestablish the vector Q0Q1, using its projections onto vectors
P0Pk, k = 1, 2, ...n, because a summation of vector components is multivariant.
Thus, all operations of the linear vector space are not unique in the discrete geometry.

Mathematical technique of continuous geometry is not adequate for application
in a discrete geometry, because it is too special and adapted for a continuous (dif-
ferential) geometry. This circumstance is especially important in a description of
the elementary particle dynamics. The state of a particle cannot be described by
its position and its momentum, because the limit (1.3) does not exist in a discrete
geometry. Besides, dynamic equations cannot be differential equations.

8 Skeleton conception of particle dynamics

An elementary particle is a physical body. In the discrete space-time geometry
a position of a physical body is described by its skeleton Pn = {P0, P1, ..Pn}. Of
course, such a description of a physical body position may be used in any space-time
geometry. The skeleton is an analog of the frame of reference attached rigidly to the
particle (physical body). Tracing the skeleton motion, one traces the physical body
motion. Direction of the skeleton displacement is described by the leading vector
P0P1.

The skeleton motion is described by a world chain C of connected skeletons

C =
s=+∞⋃
s=−∞

P(s)
n (8.1)

Skeletons P(s)
n of the world chain are connected in the sense, that the point P1 of a

skeleton is a point P0 of the adjacent skeleton. It means

P
(s)
1 = P

(s+1)
0 , s = ...0, 1, ... (8.2)

The vector P
(s)
0 P

(s)
1 = P

(s)
0 P

(s+1)
0 is the leading vector, which determines the direc-

tion of the world chain.
If the particle motion is free, the adjacent skeletons are equivalent

P(s)
n eqvP(s+1)

n : P
(s)
i P

(s)
k eqvP

(s+1)
i P

(s+1)
k , i, k = 0, 1, ...n, s = ..0, 1, ..

(8.3)

If the particle is described by the skeleton P(s)
n , the world chain (8.1) has n(n+1)/2

invariants

µik =
∣∣∣P(s)

i P
(s)
k

∣∣∣
2

= 2σ
(
P

(s)
i , P s

k

)
, i, k = 0, 1, ...n, s = ...0, 1, ... (8.4)

which are constant along the whole world chain.
Equations (8.3) form a system of n (n + 1) difference equations for determination

of nD coordinates of n skeleton points {P1, P2, ..Pn}, where D is the dimension
of the space-time. The number of dynamical variables, liable for determination
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distinguishes, in general, from the number of dynamic equations. It is the main
difference between the skeleton conception of particle dynamics and the conventional
conception of particle dynamics, where the number of dynamic variables coincides
with the number of dynamic equations.

In the case of pointlike particle, when n = 1, D = 4, the number of equations
ne = 2, whereas the number of variables nv = 4. The number of equations is less,
than the number of dynamic variables. In the discrete space-time geometry (1.2)
the position of the adjacent skeleton is not uniquely determined. As a result the
world chain wobbles. In the nonrelativistic approximation a statistical description of
the stochastic world chains leads to the Schrödinger equations [5], if the elementary
length λ0 has the form

λ2
0 =

~
bc

(8.5)

where ~ is the quantum constant, c is the speed of the light and b is a universal
constant, connecting the particle mass m with the length µ of the world chain link

m = bµ

Dynamic equations (8.3) are difference equations. At the large scale, when one
may go to the limit λ0 = 0, the dynamic equations (8.3) turn to the differential
dynamic equations. In the case of pointlike particle (n = 1) and of the Kaluza-
Klein five-dimensional space-time geometry these equation describe the motion of
a charged particle in the given electromagnetic field. One can see in this example,
that the space-time geometry ”assimilates” the electromagnetic field. It means that
one may consider only a free particle motion, keeping in mind, that the space-time
geometry can ”assimilate” all force fields.

Dynamic equations (8.3) realize the skeleton conception of particle dynamics
in the microcosm. The skeleton conception of dynamics distinguishes from the
conventional conception of particle dynamics in the relation, that the number of
dynamic equations may differ from the number of dynamic variables, which are to
be determined. In the conventional conception of particle dynamics the number
of dynamic equations (first order) coincides always with the number of dynamic
variables, which are to be determined. As a result the motion of a particle (or of
an averaged particle) appears to be deterministic. In the case of quantum particles,
whose motion is stochastic (indeterministic), the dynamic equations are written for
a statistical ensemble of indeterministic particles (or for the statistically averaged
particle).

In the conventional conception of dynamics one can obtain dynamic equation
for the statistically averaged particle (i.e. statistical ensemble normalized to one
particle), but there are no dynamic equations for a single stochastic particle. In
the skeleton conception of the particle dynamics there are dynamic equations for a
single particle. These equations are many-valued (multivariant), but they do exist.
In the conventional conception of the particle dynamics one can derive dynamic
equations for the statistically averaged particle, which are a kind of equations for a
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fluid (continuous medium). But one cannot obtain dynamic equations for a single
indeterministic particle [6].

The skeleton conception of the particle dynamics realizes a more detailed de-
scription of elementary particle. One may hope to obtain some information on the
elementary particle structure.

We have now only two examples of the skeleton conception application. Consid-
ering compactification in the 5-dimensional discrete space-time geometry of Kaluza-
Klein, and imposing condition of uniqueness of the world function, one obtains that
the value of the electric charge of a stable elementary particle is restricted by the el-
ementary charge [7]. This result has been known from experiments, but it could not
be explained theoretically, because in the continuous space-time geometry nobody
considers the world function as a fundamental quantity, and one does not demand
its uniqueness.

Another example concerns structure of Dirac particles (fermions). Consideration
in framework of skeleton conception [8] shows, that a world chain of a fermion is a
(spacelike or timelike) helix with timelike axis. The averaged world chain of a free
fermion is a timelike straight line. The helical motion of a skeleton generates an
angular moment (spin) and magnetic moment. Such a result looks rather reason-
able. In the conventional conception of the particle dynamics the spin and magnetic
moment of a fermion are postulated without a reference to its structure.

9 Concluding remarks

Thus, the supposition on the space-time geometry discreteness seems to be more
natural and reasonable, than the supposition on quantum nature of physical phe-
nomena in microcosm. Discreteness is simply a property of the space-time, whereas
quantum principles assume introduction of new essences.

Formalism of the discrete geometry is very simple. It does not contain theo-
rems with complicated proofs. Nevertheless the discrete geometry and its formalism
is perceived hardly. The discrete geometry was not developed in the twentieth
century, although the discrete space-time was necessary for description of physical
phenomena in microcosm. It was rather probably, that the space-time is discrete in
microcosm. What is a reason of the discrete geometry disregard? We try to answer
this important question.

The discrete geometry was not developed, because it could be obtained only as a
generalization of the proper Euclidean geometry. But almost all concepts and quan-
tities of the proper Euclidean geometry use essentially concepts of the continuous
geometry. They could not be used for construction of a discrete geometry. Only
world function (or distance) does not use a reference to the geometry continuity.
Only coordinateless expressions (2.9) –(2.13) of basic quantities of the Euclidean
geometry in terms of world function admit one to construct a discrete geometry and
other physical geometries.

Assurance, that any geometry is to be axiomatizable, was the second obstacle on
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the way of the discrete geometry construction. The fact, that the proper Euclidean
geometry is a degenerate geometry, was the third obstacle. In particular, being a
physical geometry, the proper Euclidean geometry is an axiomatizable geometry,
and this circumstance is an evidence of its degeneracy. It is very difficult to obtain
a general conception as a generalization of a degenerate conception, because some
different quantities of the general conception coincide in the degenerate conception.
It is rather difficult to disjoint them. For instance, a physical geometry is multivari-
ant, in general. Single-variant physical geometry is a degenerate geometry. In the
physical geometry the straight segment (2.6) is a surface (tube), in general. In the
degenerate physical geometry (the proper Euclidean geometry) the straight segment
is a one-dimensional set. How can one guess, that a straight segment is a surface,
in general? Besides, multivariance of the equivalence relation leads to nonaxioma-
tizability of geometry. But we learn only axiomatizable geometries in the last two
thousand years. How can we guess, that nonaxiomatizable geometries exist? The
straight way from the Euclidean geometry to physical geometries was very difficult,
and the physical geometry has been obtained on an oblique way.

J.L.Synge [9, 10] has introduced the world function for description of the Rieman-
nian geometry. I was a student. I did not know the papers of Synge, and I introduced
the world function for description of the Riemannian space-time in general relativ-
ity. My approach differed slightly from the approach of Synge. In particular, I had
obtained an equation for the world function of Riemannian geometry [11], which
contains only the world function and their derivatives,

∂σ (x, x′)
∂xi

Gik′ (x, x′)
∂σ (x, x′)

∂x′k
= 2σ (x, x′) , Gik′ (x, x′) Glk′ (x, x′) = δi

l, (9.1)

where

Glk′ (x, x′) ≡ ∂2σ (x, x′)
∂xl∂x′k

, l, k = 0, 1, 2, 3

This equation was obtained as a corollary of definition of the world function of the
Riemannian geometry as an integral along the geodesic, connecting points x and
x′. This equation contains only world function and its derivatives, but it does not
contain a metric tensor.

This equation put the question. Let a world function do not satisfy the equation.
Does this world function describe a non-Riemannian geometry or it does describe no
geometry? It was very difficult to answer this question. On one hand, the formalism,
based on the world function, is a more developed formalism, than formalism based on
a use of metric tensor, because a geodesic is described in terms of the world function
by algebraic equation (2.6), whereas the same geodesic is described by differential
equations in terms the metric tensor.

On the other hand, the geodesic, described by (2.6) is one-dimensional only in
the Riemannian geometry. In general, one equation (2.6) in n-dimensional space
describes a (n− 1)-dimensional surface. I did not know, whether the surface is a
generalization of a geodesic in any geometry. I was not sure, because in the Euclidean
geometry a straight segment is one-dimensional be definition. I left this question
unsolved and returned to it almost thirty years later, in the beginning of ninetieth.
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When the string theory of elementary particles appeared, it becomes clear for
me, that the particle may be described by means of a world surface (tube) but
not only by a world line. As the particle world line associates with a geodesic, I
decided, that a world tube may describe a particle. It meant that there exist space-
time geometries, where straights (geodesics) are described by world tubes. The
question on possibility of the physical space-time geometry has been solved for me
finally, when the quantum description appeared to be a corollary of the space-time
multivariance [5].
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