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Abstract

One considers the monistic conception of a geometry, where there is only
one fundamental quantity (world function). All other geometrical quantities
a derivative quantities (functions of the world function). The monisitc con-
ception of a geometry is compared with pluralistic conceptions of a geometry,
where there are several independent fundamental geometrical quantities. A
generalization of a pluralistic conception of the proper Euclidean geometry
appears to be inconsistent, if the generalized geometry is inhomogeneous. In
particular, the Riemannian geometry appears to be inconsistent, in general, if
it is obtained as a generalization of the pluralistic conception of the Euclidean
geometry.

1 Introduction

The term ”monism” (monistic) in its application to geometry means, that the con-
ception of a geometry uses only one fundamental quantity (distance) and all other
geometrical quantities and concepts are derivatives of the fundamental quantity.
The pluralistic conception is a conception, containing several fundamental quanti-
ties, which may be independent. In general, a monistic conception can be considered
as a pluralistic conception. It is sufficient to declare, that some derivative quanti-
ties of monistic conception are fundamental quantities of a pluralistic conception.
However, not any pluralistic conception can be considered as a monistic conception.
It is necessary for such a consideration, that there are proper connections between
fundamental quantities of the pluralistic conception.

If one is going to modify or to generalize a conception, it is desirable to present
the conception in the form of a monistic conception. In this case it is sufficient to
modify properties of the only fundamental quantity. Other (derivative) quantities

1



will be modified automatically, because other quantities are functions of the unique
fundamental quantity. If the modified conception is pluralistic, the modification be-
comes to be difficult, because in the pluralistic conception there may be connections
between the fundamental quantities. In this case one may not modify independently
properties of different fundamental quantities, which look as independent.

Usually the monistic conception is a more developed conception, than the forego-
ing pluralistic conception, containing several fundamental quantities. For instance,
the Christianity, which contains only one god, is a more developed conception, than
the heathendom, which contains many gods. Usually a monistic conception (or a
less pluralistic conception) is a result of development of a pluralistic conception,
which is followed by a reduction of fundamental quantities. For instance, theory
of thermal phenomena developed from the axiomatic thermodynamics to the sta-
tistical physics. This development was followed by transformation of fundamental
thermodynamic quantities into derivative quantities of the statistical physics. Ap-
pearance of intermediate derivative concepts of the monistic conception makes the
monistic conception to be a more complicated conception, than the preceding plu-
ralistic conception. This complexity is conditioned by a necessity of deduction of
transformed quantities, which were fundamental quantities in the pluralistic concep-
tion. However, the more complicated monistic conception admits one to describe
and explain such physical phenomena, which cannot be described in the framework
of the pluralistic theory. For instance, the thermal fluctuations are described by the
statistical physics, but they cannot be described in the framework of the axiomatic
thermodynamics.

Geometry is a science on disposition and shape of geometrical objects in the
space or in the event space (space-time). Any geometry is given on a set Ω of points
(events). Any geometric object O is a set Ω′ of points P ∈ Ω′ with (Ω′ ⊂ Ω). The
shape of the geometric object O is described, if the distance ρ (P1, P2) , ∀P1, P2 ∈ Ω′

is given. The shape and mutual dispositions of all geometrical objects are given
completely, if the distance ρ (P1, P2) , ∀P1, P2 ∈ Ω is given. In the usual space
the distance ρ is a real nonnegative quantity. In the event space the distance ρ
is either a real nonnegative quantity, or an imaginary quantity. In this case it is
more convenient to use the quantity σ = 1

2
ρ2, which is always real. The quantity

σ is called the world function. This quantity was introduced by J.L. Synge [1] for
description of the Riemannian geometry.

Thus, the geometry of the event space (space-time geometry) is described com-
pletely by one real function σ.

σ : Ω× Ω→R, σ (P, Q) = σ (Q,P ) , σ (P, P ) = 0, ∀P,Q ∈ ⊗ (1.1)

As far as a motion of physical bodies in the space is described as a geometrical object
in the space-time, a construction of geometrical objects and investigation of their
properties is very important in such applied sciences as physics and mechanics. Any
geometrical objectO is described by enumeration of points of the objectO. However,
such a description by means of a direct enumeration of points, belonging to O,
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contains too much information. One tends to simplify this procedure, constructing
geometric objects from standard blocks. These blocks contain many points of the
space-time, and construction of the geometric object O is reduced to a finite or
countable number of operations with blocks.

Procedure of the geometric objects construction from blocks has been developed
in the proper Euclidean geometry GE. It can be used for description of usual space
(but not for space-time), because the world function σE of the geometry GE is non-
negative. The nonnegativity of σE is used essentially at construction of geometrical
objects in GE. A direct enumeration of points of the geometrical object may be
replaced by some relations, which are fulfilled for points P ∈ O and only for them.
However, such a description needs a use of some numerical functions, given on Ω,
for instance, world function σ.

In reality the proper Euclidean geometry GE is constructed usually from three
kinds of blocks (point, segment of straight, angle) without mention of the fact, that
these blocks may be described in terms of the world function σE and only in terms
of σE (See details in [2]). Properties of the three blocks are postulated in the form of
axioms. Using the rules of construction of a geometric object from these blocks, one
can formulate the proper Euclidean geometry in the form of a logical construction.
Basic statements of the geometry have the form of geometrical axioms, formulated in
terms of basic geometric quantities (point, segment of straight and angle). Usually
the distance ρE (or world function σE) is considered to be some derivative concept,
which may be not mentioned at all.

The fact, that the proper Euclidean geometry GE may be formulated in terms
of the world function (distance) is well known. Nevertheless the distance is not
used usually as a fundamental quantity of the proper Euclidean geometry GE. This
quantity admits one to formulate the geometry GE as a monistic conception, based
on the only fundamental concept (world function σE). Of course, the world function
σE of the geometry GE is to satisfy some conditions, formulated in terms of the world
function. The necessary and sufficient conditions, that the geometry G, described
by the world function σ, is n-dimensional proper Euclidean geometry, have the form
[3]
I.

∃Pn ⊂ Ω, Fn(Pn) 6= 0, Fn+1(Ω
n+2) = 0, (1.2)

where Pn = {P0, P1, ..Pn}, the quantity Fn(Pn) is the Gramm’s determinant

Fn(Pn) = det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n (1.3)

and (P0Pi.P0Pk) is the scalar product of two vectors P0Pi and P0Pk, which is
determined in terms of the world function σ by means of the relation

(P0Pi.P0Pk) = σ (P0, Pk) + σ (P0, Pi)− σ (Pi, Pk) (1.4)

II.

σ(P,Q) =
1

2

n∑

i,k=1

gik(Pn)[xi (P )− xi (Q)][xk (P )− xk (Q)], ∀P, Q ∈ Ω, (1.5)
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where the quantities xi (P ), xi (Q) are defined by the relations

xi (P ) = (P0Pi.P0P) , xi (Q) = (P0Pi.P0Q) , i = 1, 2, ...n (1.6)

The contravariant components gik(Pn), (i, k = 1, 2, . . . n) of metric tensor are defined
by its covariant components gik(Pn), (i, k = 1, 2, . . . n) by means of relations

n∑

k=1

gik(Pn)gkl(Pn) = δl
i, i, l = 1, 2, . . . n (1.7)

where
gik(Pn) = (P0Pi.P0Pk) , i, k = 1, 2, . . . n (1.8)

III. The relations

(P0Pi.P0P) = xi, xi ∈ R, i = 1, 2, . . . n, (1.9)

considered to be equations for determination of P ∈ Ω as a function of xi, i =
1, 2, ...n, have always one and only one solution.

The condition I determines the dimension n of the geometry and n basic vectors
P0Pi, i = 1, 2, ...n on the set Ω. The condition II determines properties of the metric
tensor gik(Pn).

In such a representation the proper Euclidean geometry looks as a monistic
conception, which is described by the only fundamental quantity: world function σ.
All other geometrical quantities (concepts and geometrical objects) are derivative
in the sense, that all they can be expressed in terms of points of the set Ω and in
terms of world functions between them.

Perspective of constructing such a monistic conception not only for the proper
Euclidean geometry seemed to be attractive. One introduced metric space and
constructed so called metric geometry. However, construction of the metric geometry
is possible only for the real metric (distance) ρ ≥ 0. Such a geometry cannot
be constructed in the space-time. Besides, for construction of straight lines (the
shortest), one needs to impose on the metric ρ an additional condition (the triangle
axiom)

ρ (P, Q) + ρ (P, R) ≥ ρ (R,Q) , ∀P, Q,R ∈ Ω (1.10)

The triangle axiom (1.10) reflects our belief, that there are only such geometries,
where the straight is a one-dimensional point set.

Attempts [4, 5] were made to construct so called distance geometry, which is free
of the condition (1.10). Unfortunately, these attempts failed in the sense, that the
obtained distance geometry was not monistic and completely metric. It contains
also nonmetric procedure, which admits one to construct straight lines by means of
a continuous mapping of segment [0, 1] onto the set Ω.
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2 Pluralistic approach to the Riemannian

geometry as a reason of its inconsistency

Usually one does not use the monistic conception of the proper Euclidean geome-
try GE, where there is the only fundamental geometric quantity (world function).
Instead, one uses pluralistic conception of geometry, where there are several funda-
mental geometric quantities (for instance, dimension, straight, angle,...), which are
considered as independent geometrical quantities. In the proper Euclidean geome-
try one succeeds to agree properties of these different fundamental quantities and
to construct a consistent geometry. However, in the non-Euclidean geometry one
succeeds to agree properties of different fundamental quantities not always. Having
several fundamental concepts and attributing to them some properties, one cannot
be sure, that these properties may be made compatible between themselves. As a
result the obtained geometry appears to be inconsistent. The problem of agreement
between properties of different fundamental quantities in a pluralistic conception of
geometry are formulated usually as a consistency of axioms of the geometry. Any
test of the geometric axioms consistency needs a lot of labour, which can be carried
out not always. As a result a pluralistic geometry appears to be inconsistent. For
instance, the Riemannian geometry, which is constructed usually as a pluralistic
conception, appears to be inconsistent.

Using a monistic conception, when there is only one fundamental quantity, one
constructs a consistent geometry automatically. As an example, let us consider
construction of a straight line in a monistic geometry G, described by the world
function σ, given on the set Ω of points P . We shall use term σ-space for the
quantity V = {σ, Ω}. The Euclidean space is a special case of the σ-space with
σ = σE. In the proper Euclidean geometry (Euclidean σ-space VE = {σE, Ω}), the
segment T[P0P1] of straight line between the points P0 and P1 is defined by the relation

T[P0P1] =
{

R|
√

2σ (P0, R) +
√

2σ (P1, R)−
√

2σ (P0, P1) = 0
}

(2.1)

where the world function σ coincides with the Euclidean world function σE. The
same form of the straight segment T[P0P1] is to have in any other σ-space. In the
n-dimensional σ-space the segment T[P0P1] is a (n− 1)-dimensional surface, in gen-
eral. However, in the proper Euclidean geometry the (n− 1)-dimensional surface
degenerates into one-dimensional set. This fact is a corollary of special properties
(1.2) - (1.9) of the Euclidean world function σE, which generates fulfillment of the
triangle axiom (1.10). In the proper Riemannian geometry the triangle axiom (1.10)
is also valid. It is also connected with the form of the Riemannian world function σR,
although in the conventional (pluralistic) presentation of the Riemannian geometry,
the world function σR is a derivative quantity, defined by the relation

σR (P0, P1) =
1

2

(∫ P1

P0

√
gik (x) dxidxk

)2

(2.2)

where integral in (2.2) is taken along the geodesic, connecting points P0 and P1.
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World function σR, defined by the relation (2.2) satisfies the equation [1]:

∂

∂xi
σR (x, x′) gik (x)

∂

∂xk
σR (x, x′) = 2σR (x, x′) (2.3)

which describes essentially extremal properties of the world function σR, i.e. the
fact, that the world function σR generates fulfilment of condition (1.10).

One believes usually, that the space-time geometry is a Riemannian (pseudo-
Riemannian) geometry, and the world function σR of the real space-time geometry
satisfies the equation (2.3). What are reasons for such a statement?

The Riemannian space-time geometry is obtained usually as a generalization of
the proper Euclidean geometry on the case of a curved space-time geometry. At
such a generalization the original geometry is considered as a pluralistic conception
of geometry, where there are several fundamental quantities: point, straight line,
linear vector space, etc. The world function is considered as a derivative quantity,
defined by the relation (2.2). At a generalization the properties of fundamental
quantities are changed. The change of the fundamental quantities means a change
of axioms, describing properties of these quantities. The change of different funda-
mental quantities is to be made by a consistent way. (New axioms of the generalized
geometry are to be compatible).

Let us compare the monistic approach and the pluralistic one in the simple
example. In the Euclidean geometry two vectors P0P1 and Q0Q1 are collinear
(P0P1 ‖ Q0Q1), if and only if the Gramm’s determinant vanishes

P0P1 ‖ Q0Q1 :

∣∣∣∣
(P0P1.P0P1) (P0P1.Q0Q1)
(Q0Q1.P0P1) (Q0Q1.Q0Q1)

∣∣∣∣ = 0 (2.4)

or in the developed form

P0P1 ‖ Q0Q1 : (P0P1.Q0Q1)
2 = |P0P1|2 · |Q0Q1|2 (2.5)

where the scalar product (P0P1.Q0Q1) and the module |P0P1| are expressed via
world function by formulas

(P0P1.Q0Q1) = σ (P0, Q1) + σ (P1, Q0)− σ (P0, Q0)− σ (P1, Q1) (2.6)

|P0P1| =
√

(P0P1.P0P1) =
√

2σ (P0, P1) (2.7)

The straight line TP0P1,Q0 , passing through the point Q0 collinear to the vector P0P1,
is defined by the relation

TP0P1,Q0 = {R|Q0R ‖ P0P1} =
{
R| (P0P1.Q0R)2 − |P0P1|2 · |Q0R|2 = 0

}
(2.8)

If the point Q0 coincides with the point P0, the expression in (2.8) can be pre-
sented in the form

(P0P1.P0R)2 − |P0P1|2 · |P0R|2 = A (P0, P1, R) A (P0, R, P1) B (P0, P1, R) (2.9)
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where
A (P0, P1, R) =

√
σ (P0, R) +

√
σ (P1, R)−

√
σ (P1, P0) (2.10)

A (P0, R, P1) =
√

σ (P1, P0) +
√

σ (P1, R)−
√

σ (P0, R) (2.11)

B (P0, P1, R) = σ (P1, R)− σ (P0, R)− σ (P1, P0)− 4
√

σ (P0, P1) σ (P0, R) (2.12)

The factor A (P0, P1, R) is responsible for that part of the straight line, which is
placed between the points P0 and P1, whereas the factor A (P0, R, P1) is responsible
for that part of the straight, which is placed outside the points P0 and P1. One can
see from (2.1), that only factor A (P0, P1, R) is used in the definition of the segment
T[P0P1].

Let us compare the monistic approach and the pluralistic one in the simple
example. In the Euclidean geometry two vectors P0P1 and Q0Q1 are the equivalent
(P0P1eqvQ0Q1), if the two vectors are in parallel

P0P1 ↑↑ Q0Q1 : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| (2.13)

and their modules are equal, i.e. the following conditions are fulfilled

(P0P1eqvQ0Q1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| ∧ |P0P1| = |Q0Q1| (2.14)

where the scalar product (P0P1.Q0Q1) and the module |P0P1| are expressed via
world function by formulas (2.6) and (2.7)

It is a well-wrought definition of two vectors equality, because it is formulated in
terms of fundamental quantity (world function), and it does not contain a reference
to means of description (coordinate system). It is reasonable to use the definition
(2.14) in other geometries, and in particular, in the Riemannian geometry. In the
Riemannian geometry one uses the definition (2.14) only for the case, when the
points P0 and Q0 coincide (P0 = Q0). In this case the definition (2.14) coincides
with (1.4). In the case, when the points P0 and Q0 do not coincide, the concept of
the vectors P0P1 and Q0Q1 equivalence is not defined. But, why?

The answer is as follows. If in inhomogeneous geometry (in the Riemannian
geometry) the two vectors equivalence is defined by the relations (2.14), the vector
equivalence appears to be multivariant, in general. It means, that in the point Q0

there are many vectors Q0Q1,Q0Q
′
1,Q0Q

′′
1, ..., which are equivalent to the vector

P0P1 and are not equivalent between themselves. Multivariance is a corollary of the
fact, that to determinate the vector Q0Q1, one needs to solve two equations (2.14)
with respect to the point Q1 at given points P0, P1, Q0. In the case of the Euclidean
world function σE the solution is always unique due to properties of the Euclidean
world function σE. However, in the case of arbitrary world function σ there may
be many solutions, or may be no solutions at all. Multivariance of the vectors
equality leads to intransitivity of the equality relation. It means, that a multivariant
geometry is nonaxiomatizable, because in any axiomatizable geometry the equality
relation is transitive. In general, multivariance of the equality relation leads to
the fact that the straight lines appear to be not a one-dimensional sets. It follows
from the fact that the condition of parallelism (2.13) is one of conditions of the
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vectors equivalence (2.14). The parallelism condition (2.13) is a special case of the
collinearity condition (2.5). Thus, there is a connection between the multivariance
and many-dimensionality of straight lines in multivariant geometry.

Multivariant nonaxiomatizable geometry seems to be inadmissible for mathe-
maticians, who are used to consider only axiomatizable geometries. The mathe-
maticians consider any geometry as a logical construction, and they do not know,
how to work with a geometry, which is not a logical construction.

In the Riemannian geometry the multivariance of the equality of two vectors
P0P1 and Q0Q1 takes place, in general, only if P0 6= Q0. The vectors P0P1

and P0Q1 equality is single-variant in the Riemannian geometry. As a result seg-
ments (2.1) of geodesics (straights) in the Riemannian geometry appear to be one-
dimensional. Only straights of the form (2.8) appear to be many-dimensional in
the Riemannian geometry. However, such straight lines appear practically neither
in physics, nor in mathematics, and mathematicians relate with disbelief to the
statement on multivariance of a geometry.

Using the pluralistic approach in the transition from the proper Euclidean ge-
ometry to the Riemannian geometry, one thinks, that the one-dimensional character
of straights in the Euclidean geometry is a property of any geometry. However, this
property is a special property of the proper Euclidean geometry, which is conditioned
by the relations (1.2) - (1.9). In the Riemannian geometry not all properties (1.2) -
(1.9) are fulfilled, and some of straights (geodesics) appear to many-dimensional.

To avoid multivariance, mathematicians decided not to consider equivalence of
vectors in different points of the space. As a result in the Riemannian geometry one
considers only equivalence of vectors, having common origin. Equivalence of vectors
at different points is defined by means of special procedure, known as a parallel
transport of a vector. Procedure of the parallel transport provides the customary
single-variant equivalence of vectors at different points, although the result depends
on the path of the parallel transport. (As a result essentially the equivalence of two
vectors at different points appears to be multivariant). Such a solution of the vector
equivalence problem corresponds to the pluralistic approach to geometry, when in
the Riemannian geometry one may change properties of vectors in arbitrary way.
As a result the Riemannian geometry appears to be inconsistent, although this
inconsistency is well masked.

At the pluralistic approach to the Riemannian geometry the world function σR,
defined by the relation (2.1), appears to be derivative quantity, which depends on
the shape of geodesics. Besides, in the Riemannian geometry there may be several
different geodesics, connecting points P0 and P1. In this case the world function
σR (P0, P1), defined by the relation (2.2) appears to be many-valued. It is inadmissi-
ble in a monistic conception of a geometry, where the world function is a fundamental
quantity of a geometry.

If nevertheless we want to introduce world function σR, obtained by means of
the relation (2.2), and to consider the obtained world function σR as a fundamental
quantity, we need to consider only single-valued branch of σR, removing all other
branches. After such a procedure one obtains the world function as a fundamental
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quantity, which does not depend on choice of geodesics. Different ”Riemannian” ge-
ometries correspond to different choices of geodesics, generating the world function.

Let a Riemannian geometry be given on the point set Ω. Let us cut a hole Ω1

in the set Ω. At the pluralistic approach the geometry on the set Ω\Ω1 changes,
in general, because the hole changes shape of several geodesics. As a result the
nonconvex point set Ω\Ω1, cannot be embedded isometrically in the point set Ω,
because the set of geodesics, determining the world function σR by means of (2.2),
changes. It is also an inconsistency of the Riemannian geometry in the framework
of the pluralistic approach.

Using the pluralistic approach at transition from the Euclidean geometry to the
Riemannian geometry, one changes independently different fundamental quantities.
It is very difficult to change them concerted and to obtain consistent conception of
a Riemannian geometry. At the monistic approach there is the only fundamental
quantity σ. Any change of the world function σ generates a generalized geometry.
There is no problems with consistency of this generalized geometry, because this
geometry is not a logical construction, in general. In the obtained generalized ge-
ometry there are no theorems and axioms, because it is a constructive geometry. All
definitions and geometrical objects of the generalized geometry are obtained from
corresponding definitions and geometrical objects of the proper Euclidean geometry
by means of a deformation. Let a statement of the Euclidean geometry be written in
terms of the Euclidean world function σE, under condition that the special relations
(1.2) - (1.9) of the proper Euclidean geometry are not used in this record. Replacing
σE by the world function σ of the generalized geometry in this record, one obtains
the corresponding statement of the generalized geometry. At such a deformation of
the proper Euclidean geometry one does not use the formal logic, and the problem
of inconsistency of the obtained geometry cannot be stated at all.

Important remark. In applications to the relativity theory one uses practically
only the relation (2.6) for scalar product of two vectors, which does not use the
special relations (1.2) - (1.9).

It is of no importance, that the obtained generalized geometry is not a logical
construction. The generalized geometry is a science on shape and disposition of
geometrical objects. This circumstance is important in applications of the geometry
to physics and mechanics. It is very important, that monistic conception of the
generalized geometry does not need proofs of numerous theorems, what is important
at pluralistic approach to geometry.

Inconsistency of the Riemannian geometry, obtained in the framework of the
pluralistic approach, is a very serious balk for application of the Riemannian ge-
ometry in the relativistic theory of gravitation. Using monistic approach to the
space-time geometry, one can generalize the general relativity theory on the case of
non-Riemannian geometry [6, 7].

9



3 Problems of transition from the pluralistic

conception of geometry to the monistic one

Although the monistic conception of geometry is more perfect, than the preceding
pluralistic conception, the scientific community dislikes the new monistic concep-
tions as a rule. The scientific community does not acknowledge the new monistic
(or less pluralistic) conception for a long time. Objections of the scientific commu-
nity against a new monistic (or a less pluralistic) conception have rather a social
character, than a scientific one. Indeed, reducing the number of fundamental quan-
tities in a new monistic conception, one is forced to transform some fundamental
quantities of the pluralistic conception into derivative quantities of the monistic (or
less pluralistic) conception. The derivative quantities of the monistic conception
look more complicated, than the aforegoing quantities of the pluralistic conception,
and members of the scientific community ask themselves: ”Why should we consider
the new complicated quantities, if they do not give anything new?”

We had such a situation in the case of transition from the axiomatic thermody-
namics to the statistical physics. Indeed, the relations of the statistical physics and
those of the kinetic theory are more complicated, than the simple rules of work with
the thermodynamic quantities. Really they do not give anything new in those re-
gions of physics, where the thermodynamics works well and where most researchers
work. The statistical physics gives new results only at consideration of thermal
fluctuations. However, this circumstance was unclear for most physicists. The sci-
entific community as a whole was against papers by Boltzman and Gibbs, which
introduced a monistic theory of thermal phenomena, reducing thermal phenomena
to mechanical ones,.

A like situation takes place in quantum mechanics. A use of nonaxiomatizable
space-time geometry in the microcosm admits one to reduce the quantum effects to
geometrical effects. Let in microcosm the space-time geometry be described by the
world function

σd = σM + d · signσM, d =
~

2bc
= const (3.1)

where σM is the world function of the Minkowski geometry. Here ~ is the quantum
constant, c is the speed of the light, and b is some universal constant. World chains
(lines), describing particle motion, are stochastic in this space-time geometry. Sta-
tistical description of stochastic timelike world chains (lines) is equivalent to the
quantum description in terms of the Schrödinger equation [8]. In such a conception
the quantum principles are corollaries of the space-time geometry parameters. The
number of the fundamental quantities reduces, and the conception becomes to be
less pluralistic. However, it does not obtain any new effects in the region, where
the conventional quantum mechanics works. New effects may be obtained in the
region of the elementary particles theory [9]. One needs to make new investigations
in the theory of elementary particles, using the new less pluralistic conception. Cal-
culations, connected with these new investigations, are rather complicated, the used
formalism is new, and nobody is interested in this less pluralistic approach until
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one will obtain new numerical results, which could show, that the less pluralistic
approach is valid.

The monistic conception of geometry is essential also in the megacosm. The
contemporary general relativity theory supposes, that the space-time geometry can-
not be a nonaxiomatizable geometry (a non-Riemannian geometry). Such opinion
is based on results of the contemporary geometry, where any geometry is considered
as a logical construction (but not as a science on the dispositions of geometrical ob-
jects). For instance, the symplectic geometry has nothing to do with properties of
the space-time or of the space. But it uses a mathematical technique, which is close
to the mathematical technique of the Euclidean geometry. Mathematicians use the
term ”geometry” for the symplectic geometry, because it is a logical construction.
In other words, for mathematicians a geometry is rather a logical construction, than
a science on disposition of geometrical objects in the space, or in the space-time.

Apparently, such a relation to geometry is a reason of abruption of constructive
(nonaxiomatizable) geometries, which are very important in application of a geom-
etry to physics. Mathematicians are ready to accept and to develop inconsistent
Riemannian geometry [10], but they are not ready to learn monistic conception of
a geometry, where everything is copacetic with consistency. For instance, when I
submitted my report entitled ”Nonaxiomatizable geometries and their application
to physics” to one of seminars of the Steklov mathematical institute, my report
was rejected. I was told only, that in the Mathematical institute there are no re-
searchers, who are interested in such problems. Of course, it is true. However, the
Steklov mathematical institute is a leading mathematical institute of Russia, and
its researches prefer to develop and to use the customary inconsistent conception of
a geometry, ignoring the consistent one!

Nevertheless such an approach to monistic conception of geometry is rather rea-
sonable in the light of the general approach to transition from a pluralistic conception
to a monistic one, although in the given case the monistic conception of geometry
is much simpler, than, for instance, the less general Riemannian geometry.

However, there are no rules without exceptions. Such an outstanding geometer as
Grisha Perelman has evaluated the situation with monistic conception of geometry
correctly. I have not the pleasure of knowing him, and I estimate his viewpoint,
considering his behavior. After several months (end of 2005) after publishing the
paper [10], Perelman left the Mathematical institute, where he worked, and said to
director of the institute, that he ceases his mathematical research. Such a decision
of the prosperous geometer can be explained only by a strong disappointment in his
activity. During all his life Perelman developed topological direction in geometry,
where topological quantities are the fundamental quantities of geometry. When he
has understood, that the topological quantities are derivative quantities, which are
determined by the world function, and the Riemannian geometry, which has been
used in his investigations, is inconsistent, he was shocked. Apparently, this shock
determines his decision on termination of his mathematical investigations.

As concerns to his refuse from the Fields medal and from award of the Clay
Mathematics Institute, it is important only from the viewpoint of mercantile grass-
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roots, who seek material values instead of human. From viewpoint of Perelman any
money are nothingness with respect to problems of mathematics. Besides, the prob-
lem, solved by Perelman, is a Millennium Prize Problems only now. After several
years this problem will transform to usual problem of topology. Perelman under-
stood this very well. He refused from the award, referring to incompetence of people,
adjudging a prize to him. Indeed, one can understand behavior of Perelman, only
if one does know about the Riemannian geometry inconsistency. But nobody pay
attention onto this inconsistency, even if one knows about signs of this inconsistency.

I have not discussed with Perelman his relation to the Riemannian geometry.
My interpretation of the Perelman’s behaviour is only a hypothesis. However, it is a
very verisimilar hypothesis. I do not now other reasonable hypothesis, which could
explain the Perelman’s behaviour. I have presented this hypothesis, to convince
those researchers, who believe rather in authorities, than in logical arguments. The
Riemannian geometry in its conventional presentation is inconsistent, even if my
interpretation of the Perelman’s behaviour is wrong.

Thus, the relation of researchers to the monistic conception of geometry develops
in its natural way. I think, that those researchers, who have understood advantages
of the monistic conception of geometry and will use it in their investigations, will
succeed in progress of physics.
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