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Abstract

The conventional method of a generalized geometry construction, based
on deduction of all propositions of the geometry from axioms, appears to be
imperfect in the sense, that multivariant geometries cannot be constructed
by means of this method. Multivariant geometry is such a geometry, where
at the point P there are many vectors PP0, PP00,... which are equivalent to
the vector QQ0 at the point Q, but they are not equivalent between them-
selves. In the conventional (Euclidean) method the equivalence relation is
transitive, whereas in a multivariant geometry the equivalence relation is in-
transitive, in general. It is a reason, why the multivariant geometries cannot
be deduced from a system of axioms. The space-time geometry in micro-
cosm is multivariant. Multivariant geometry is a grainy geometry, i.e. the
geometry, which is partly continuous and partly discrete. Multivariance is a
mathematical method of the graininess description. The graininess (and mul-
tivariance) of the space-time geometry generates a multivariant (quantum)
motion of particles in microcosm. Besides, the grainy space-time generates
some discrimination mechanism, responsible for discrete parameters (mass,
charge, spin) of elementary particles. Dynamics of particles appears to be
determined completely by properties of the grainy space-time geometry. The
quantum principles appear to be needless.

1 Introduction

At �rst about the term "crucial" with respect to a property of a physical theory. In
�fteenth an sixteenth centuries, when the transition from the Aristotelian mechanics
to the Newtonian mechanics took place, the crucial concept was "inertia". This
concept was absent in the Aristotelian mechanics, but this concept was the new
concept, appeared in the Newtonian mechanics. Formally the increase of the order
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of dynamic equations of the physical body motion was connected with the concept of
inertia. A chariot moving by a horse is a symbol of the Aristotelian mechanics (there
is no inertia). A pendulum, whose vibration can be explained only by means of the
concept of inertia, is a symbol of the Newtonian mechanics. Introduction of the
crucial concept into mechanics lasted longer, than a century. This introduction was
accompanied by di¢ culties and con�icts between the investigators. For instance,
con�ict between Ptolemaic successors and successors of Copernicus was conditioned
by a use of the concept of inertia. According to Ptolemaic conception the planetary
system is a great mechanism, which was put in motion by God, whereas according to
Copernicus conception the planets move themselves by inertia. Finally, the concept
of inertia was so important, that Sir Isaac Newton devoted the �rst law of mechanics
to formulation of this concept, although in reality the �rst law of mechanics is simply
a special case of the second law of mechanics. Appearance of the concept of inertia
is conditioned by the transition from earthen mechanics, where the friction force
was a dominating reason of dynamics, to the celestial mechanics, where the friction
force may be neglected.
At transition from the macroscopic mechanics to mechanics of microcosm a new

crucial concept appears. This new concept is called multivariance. When one in-
vestigated a passage of electrons through a narrow slit, one discovered, that the
electron motion ceases to deterministic (electron di¤raction). The electron motion
becomes to be multivariant (nondeterministic). Principles of the classical mechan-
ics do not admit a multivariant motion of a free particle. However, the experiment
shows, that the motion of small (elementary) particles may be multivariant. Motion
is determined by two factors: (1) space-time geometry and (2) laws of dynamics.
Thus, there are two possibilities: either the space-time geometry is multivariant,
or dynamics in microcosm is multivariant (it may be also, that both geometry and
dynamics are multivariant). In the thirtieth of the twentieth century, when the
electron di¤raction was discovered, the multivariant geometry was not known. No-
body could imagine, that the space-time geometry may be multivariant. (Note,
that nondeterministic geometries were known. But in reality, there were stochastic
structures, given on a geometry, whereas the geometry in itself was deterministic and
single-variant). As a result the multivariance has been ascribed to dynamics. This
multivariant dynamics is known as the quantum mechanics. Note that appearance
of the multivariant geometry in dynamics is not identical to quantum dynamics.
The quantum dynamics is a special case of multivariant dynamics. The multivari-
ant dynamics contains the quantum dynamics and something else, which cannot be
reduced to the quantum dynamics. This "something else" is of interest.
It appeared that the geometry may be multivariant [1]. Multivariance of geome-

try means as follows. Let P0P1 be a vector at the point P0. Let at the point Q0 there
be many vectors Q0Q1,Q0Q2,... , which are equivalent (equal) to the vector P0P1
at the point P0, but vectors Q0Q1,Q0Q2,... are not equivalent between themselves.
If such a situation takes place in geometry, then such a geometry is multivariant.
If at any point Q0 there is one and only one vector Q0Q1, which is equivalent

to the vector P0P1 at the point P0, such a geometry is called the single-variant
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geometry.
In general, multivariance and single-variance of the geometry are considered with

respect to some pair of points P0; Q0. It is possible such a situation, when the
geometry is multivariant with respect to some pairs of points, and it is single-variant
with respect to another pairs of points. If the geometry is multivariant with respect
to at least one pair of points, such a geometry will be quali�ed as multivariant. In the
multivariant space-time geometry the particle dynamics appears to be multivariant,
even if this dynamics acts in accordance with conventional principles of the classical
dynamics.
Note, that the equivalence relation is supposed to be transitive in all mathemat-

ical models. i.e. in all logical constructions, which can be deduced from a system of
axioms by means of the rules of the formal logic. The equivalence relation is tran-
sitive by de�nition, if for any objects (for instance, vectors P0P1,Q0Q1,Q0Q2) it
follows from the relations P0P1eqvQ0Q1 and P0P1eqvQ0Q2, that Q0Q1eqvQ0Q2.
Here designation "eqv" means relation of equivalence. Comparison of de�nition of
multivariance (P0P1eqvQ0Q1 ^ P0P1eqvQ0Q2, butQ0Q1eqvQ0Q2) with the de�n-
ition of transitivity shows that the equivalence relation in the multivariant geometry
cannot be always transitive.
However, does the multivariant geometry (T-geometry) exist? If yes, then how

can one construct a multivariant geometry?
Let us consider the proper Euclidean geometry and de�ne equivalence of two

vectorsP0P1 andQ0Q1 as follows. VectorsP0P1 andQ0Q1 are equivalent (P0P1eqv
Q0Q1), if vectors P0P1 and Q0Q1 are in parallel (P0P1 "" Q0Q1) and their lengths
jP0P1j and jQ0Q1j are equal. Mathematically these two conditions are written in
the form

(P0P1 "" Q0Q1) : (P0P1:Q0Q1) = jP0P1j � jQ0Q1j (1.1)

jP0P1j = jQ0Q1j ; jP0P1j =
p
2� (P0; P1) (1.2)

where (P0P1:Q0Q1) is the scalar product of two vectors, de�ned by the relation

(P0P1:Q0Q1) = � (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) (1.3)

Here � is the world function of the proper Euclidean space, which is de�ned via the
Euclidean distance � (P;Q) between the points P;Q by means of the relation

� (P;Q) =
1

2
�2 (P;Q) (1.4)

The length jPQj of vector PQ is de�ned by the relation

jPQj = � (P;Q) =
p
2� (P;Q) (1.5)

Using relations (1.1) - (1.5), one can write the equivalence condition in the form
P0P1eqvQ0Q1 :

� (P0; Q1) + � (P1; Q0)� � (P0; Q0)� � (P1; Q1) = � (P0; P1) (1.6)

^� (P0; P1) = � (Q0; Q1) (1.7)
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The de�nition of equivalence (1.6), (1.7) is a satisfactory geometrical de�nition,
because it does not contain a reference to the dimension of the space and to the
coordinate system. It contains only points P0; P1; Q0; Q1, determining vectors P0P1
and Q0Q1 and distances (world functions) between these points. The de�nition
of equivalence (1.6), (1.7) coincides with the conventional de�nition of two vectors
equivalence in the proper Euclidean geometry. If one �xes points P0; P1; Q0 in the
relations (1.6), (1.7) and solve them with respect to the point Q1, one �nds that
these equations always have one and only one solution. This statement follows from
the properties of the world function of the proper Euclidean geometry. It means that
the proper Euclidean geometry is single-variant with respect any pairs of its points.
It means also, that the equivalence relation is transitive in the proper Euclidean
geometry.
Any geometry is a set (in general, continual one) of propositions. The proper

Euclidean geometry may be axiomatized, i.e. all propositions of the proper Euclid-
ean geometry may be deduced from a �nite set of propositions (axioms) by means
of the rules of formal logic. The system of axioms is consistent [2]. This fact is in
accordance with the transitivity of the equivalence relation in the proper Euclidean
geometry.
On the other hand, all propositions of the proper Euclidean geometry may be

expressed in terms of the world function [1]. Let us represent all propositions of the
proper Euclidean geometry in terms of the Euclidean world function �E and replace
the Euclidean world function �E by some another world function �, satisfying the
constraints

� : 
� 
! R; � (P;Q) = � (Q;P ) ; � (P; P ) = 0; 8P;Q 2 
 (1.8)

where 
 is the set of all points, where the geometry is given. We obtain the set
of all propositions of the geometry G, described by the world function �. Such a
replacement is a deformation of the proper Euclidean geometry. Thus, it is possible
to construct the "metric" geometry, which contains all propositions of the proper
Euclidean geometry. I shall not use the term "metric geometry" for the deformed
geometry G, because the geometry G is free of the constraint (the triangle axiom),
which is imposed on the metric geometry

� (P;R) + � (R;Q) � � (P;Q) ; 8P;Q;R 2 
 (1.9)

The triangle axiom (1.9) is imposed, in order to conserve one-dimensional char-
acter of shortest (straight) in the metric geometry. Indeed, in the proper Euclidean
geometry the set

ELP1;P2;Q; = fRj� (P1; R) + � (R;P2) = � (P1; Q) + � (Q;P2)g (1.10)

is an ellipsoid with focuses at the points P1; P2 and the point Q on the surface of the
ellipsoid. If the point Q tends to the focus P2, the ellipsoid degenerates in segment

T[P1;P2;] = fRj� (P1; R) + � (R;P2) = � (P1; P2)g (1.11)
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of the straight line, passing through the points P1 and P2. In the proper Euclid-
ean geometry the ellipsoid degenerates into one-dimensional segment of straight.
However, in the arbitrary metric geometry, given on n-dimensional manifold, the
equation

S : � (R) = 0; � (R) � � (P1; R) + � (R;P2)� � (P1; P2) (1.12)

determines, in general, (n� 1)-dimensional closed surface S. The points R, sat-
isfying the condition � (R) > 0 are external points, which are placed outside the
closed surface S. The points R, satisfying the condition � (R) < 0 are internal
points, which are placed inside S. If the condition (1.9) is satis�ed, it means, that
the closed surface S has no internal points. In this case the segment (1.11) has no
internal points, i.e. it is one-dimensional.
In the deformed geometry G the solution of equations (1.6), (1.7) for the point Q1

at �xed points P0; P1; Q0 does not always exist. If it exists, it is not always unique. In
other words, the deformed geometry G is multivariant, in general. In the same time
any proposition of the proper Euclidean geometry exists in the deformed geometry G,
although it may have another sense, than the sense, which this proposition has in the
proper Euclidean geometry. Nevertheless, this proposition is the same proposition,
formulated in di¤erent geometries.
Some conventional propositions of the proper Euclidean geometry contain ref-

erences to the dimension and to the coordinate system, i.e. to the method of the
geometry description. In the conventional (vector) presentation of the Euclidean
geometry, its dimension is considered to be a property of the geometry in itself, al-
though there are geometries, where the dimension cannot be introduced, because for
introduction of the dimension the world function must satisfy a series of constraints,
which are very restrictive. In reality, the dimension of geometry is the dimension
of the coordinate system (the number of coordinates), which is used for the geome-
try description. The manifold and its dimension is the conventional method of the
geometry description [3], and one cannot separate this method from the geometry
in itself, until one has not alternative method of the geometry construction.
The deformed geometry G is a multivariant geometry, which cannot be axiom-

atized, in general. It means that the geometry G is an example of a theory, which
cannot be considered as a conventional mathematical model, constructed by means
of the formal logic on the basis of some axiomatics. Returning to the multivariance,
discovered in the motion of electrons, one may state, that the problem of multivari-
ance of the electron motion can be solved on account of a multivariant geometry.
The multivariant space-time geometry looks more reasonable, than the multivariant
dynamics in the single-variant space-time geometry. Indeed, to obtain multivariant
dynamics one is forced to replace principles of classical dynamics by quantum prin-
ciples, which looks rather arti�cial. In the same time the multivariance is a natural
property of the physical geometry (i.e. of the geometry, described completely by the
world function). It depends on the form of the world function � in the equivalence
relations (1.6), (1.7), whether or not the geometry G is multivariant. Changing
the world function of the space-time, one can change a character of the multivari-
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ance. One can choose such a world function of the space-time, that the conventional
classical description of a particle motion coincide with the description of quantum
mechanics [4].
Let the space-time geometry be described by the world function

�d = �M + dsgn (�M) ; d � �20 =
~
2bc

= const (1.13)

sgn (x) =

8<:
1 if x > 0
0 if x = 0
�1 if x < 0

where �M is the world function of the Minkowski space-time, ~ is the quantum
constant, c is the speed of the light and b is some universal constant. Then the
world chain, consisting of points :::P0; P1; :::Pk; :::satisfying the relations

PkPk+1eqvPk+1Pk+2; k = :::0; 1; :: (1.14)

describes the motion of a free particle. It appears, that the motion is multivariant
(stochastic) in the space-time with the world function (1.13). Statistical description
of these multivariant chains coincides with the quantum description in terms of the
Schrödinger equation [4].
Besides, the space-time (1.13) appears to be discrete, because in this space-time

there are no vectors PQ of the length jPQj4 2
�
0; �40

�
. Discreteness of the space-

time seems to be very surprising, because the space-time is given on the manifold of
Minkowski. Conventionally the discrete space is associated with a grid. The discrete
space-time on the continuous manifold seems to be impossible. This example shows,
that a physical geometry and a continuous manifold, where the geometry is given,
are quite di¤erent things. Manifold and its dimension are only attributes of the
vector representation of the Euclidean geometry (i.e. of the description method) [3],
whereas the discreteness of a geometry is an attribute of the geometry in itself.
In any mathematical model the equivalence relation is transitive. This property

of the mathematical model provides de�niteness (single-variance) for all conclusions,
made on the basis of such a mathematical model. If the equivalence relation is in-
transitive, the conclusions, made on the basis of such a model cease to be de�nite.
They becomes multivariant. The logical construction with the intransitive equiva-
lence relation and, hence, with multivariant conclusions is not considered to be a
mathematical model, because it is useless, and one cannot make a de�nite prediction
on the basis of such a model. Besides, such a model cannot be axiomatized, because
the axiomatization supposes a single-variance of conclusions.
I shall refer to models with multivariant (inde�nite) predictions as intransitive

models, or multivariant models. Multivariant models appear automatically, as soon
as they use a multivariant space-time geometry. As far as models of physical phe-
nomena may not ignore space-time geometry, and the space-time geometry may be
multivariant, one cannot avoid a use of multivariant models of physical phenomena.
Fortunately, a multivariant model can be reduced to a single-variant model, pro-

vided one unites the set of many conclusions, which follows from one statement into
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one conclusion. In other words, one considers the set of di¤erent objects as a statisti-
cal ensemble. One may work with the statistical ensemble, considering it as a single
object. Then the multivariant model may cease to be multivariant. It turns into a
single-variant (transitive) model provided, that its objects be statistical ensembles
of original objects. Such a procedure is known as the statistical description, which
deals with statistically averaged objects. Prediction of the model about statistically
averaged objects (statistical ensembles), which now are objects of the model, may
appear to be single-variant, if the statistical description is produced properly. In
other words, a statistical description, produced properly, transforms a multivariant
model into a single-variant mathematical model.
Procedure of the statistical description is well known. It is used in di¤erent

branches of theoretical physics. However, sometimes one obtains the single-variant
mathematical model, dealing with statistically averaged objects, without knowing
that the model deals with statistically averaged objects. For instance, the gas dy-
namics model deals with gas particles. Motion of gas particle describes the mean
motion of gas molecules. However, the gas dynamics equations (as dynamic equa-
tions of the continuous medium) were deduced, before it became known, that the
gas consists of molecules. Besides, there is more detailed statistical description of
the gas molecule motion, based on the gas kinetic theory (Boltzman equation).
The quantum mechanics is a statistical description of the multivariant parti-

cle motion, which is conditioned directly by the multivariant space-time geometry
(1.13). However, the quantum mechanics is not considered conventionally as a sta-
tistical description of a multivariant particle motion. One considers the quantum
mechanics as a corollary of special quantum principles of dynamics, which are intro-
duced axiomatically. In this form the quantum mechanics describes very successfully
physical phenomena of atomic physics. Formal technique of quantum mechanics is
rather simple and comfortable. Many investigators like the formalism of quantum
mechanics, and they argue against the quantum mechanics as a statistical descrip-
tion of multivariantly moving particles.
Something like this, one had more, than hundred years ago with the thermal

phenomena. The heat was explained as a special heat liquid (thermogen), whose
properties are described by the laws of thermodynamics. The axiomatic thermo-
dynamics explained very well all thermal phenomena. Attempts of interpretation
of the heat as a chaotic molecular motion met objections of many investigators,
who did not believe in existence of molecules. The heat as a chaotic molecular
motion had been accepted, when it became clear that the thermal �uctuations can-
not be explained by the axiomatic thermodynamics. The thermal �uctuation can be
explained only by the supposition that the heat is a chaotic molecular motion. How-
ever, the axiomatic thermodynamics is much simpler, than the statistical theory of
the heat. It is used now in the theory of continuous medium and other applications.
Situation with the quantum mechanics looks as follows. In general, the quantum

mechanics may be deduced as a result of statistical description of the multivariant
motion of particles, conditioned by the multivariant space-time geometry of the form
(1.13). However, the quantum mechanics had been formulated in the beginning of
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the twentieth century as an axiomatic conception. The multivariant space-time
geometry was not known then. Now most of investigators do not see a necessity
of introducing the concept of multivariant geometry. The fact, that introduction of
quantum principles is a corollary of our imperfect knowledge of geometry, does not
disturb them. They believe that the relativistic quantum theory and the theory of
elementary particles can be constructed on the basis of uni�cation of the quantum
principles and principles of relativity.
Strategy of further investigations of the microcosm depends essentially on the

approach to the multivariant space-time geometry. If we believe, that the multivari-
ant space-time geometry is impossible, and quantum principles re�ect the nature
of the microcosm, we are forced to use the investigation strategy, which has been
used at the construction of the nonrelativistic quantum mechanics. The quantum
mechanics has been constructed by the cut-and-try method. The same method is
used for further investigation of the microcosm. Besides, the quantum principles
supposes, that all physical objects and all physical �elds are to be quantized. In
particular, one should quantized the gravitational and electromagnetic �elds.
On the contrary, if one takes, that the quantum e¤ects are a corollary of the mul-

tivariant geometry, one should not quantized the electromagnetic and gravitational
�elds, because these �elds describe the space-time geometry. Besides, the dynamic
equations of the electromagnetic �eld and those of the gravitational �eld do not con-
tain the quantum constant. This fact manifests a distinction of dynamic equations
of these �elds from the Schrödinger and Dirac equations. From the logical view-
point the approach, based on a use of the multivariant space-time geometry, is more
consistent also. Indeed, why would one use only single-variant space-time geome-
tries, which form only a small part of all possible space-time geometries? When it
appears, that the single-variant space-time cannot explain the multivariant motion
of free particles, one is forced to introduce enigmatic quantum principles to explain
quantum e¤ects, which are a manifestation of multivariance. In general, why is one
to ignore the property of multivariance, which is observed in experiments on the
electron di¤raction?
Note that according to the de�nition of equivalence (1.6), (1.7), there exists the

zero-variance, when the equations (1.6), (1.7) have no solutions. If the multivariance
may be reduced to single-variance of statistically averaged objects by means of statis-
tical description, the zero-variance of the space-time geometry cannot be described
by a single-variant mathematical model. The zero-variance means discrimination,
when some variants of the particle motion are discriminated. For instance, the
space-time geometry (1.13) discriminates the particles of small masses, because in
the multivariant space-time geometry the masses of particles are geometrized, and
the particle mass m is connected with the lengths jPkPk+1j of the vectors of the
world chain by the relation

m = b jPkPk+1j (1.15)

where b is the universal constant, which enters in the expression (1.13) for the
elementary length �0.
The fact, that masses of elementary particles, their electric charges and their
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internal angular moments (spin) are discrete quantities (but not all possible ones) is
a result of some discrimination mechanism connected with the possible zero-variance
of the space-time geometry. The values of electric charge and those of spin are mul-
tiple to quantities e and ~ respectively. This fact is postulated in the framework of
quantum mechanics. Discreteness of the elementary particles masses is postulated
also. However, the values of masses are taken from experiment, and theorists dream
to deduce the receipt of determination of the mass values, considering this receipt as
a great achievement of the elementary particle theory. However, the quantum prin-
ciples do not admit to determine discrete values of the elementary particles masses.
These discrete values of masses (as well as the values of the electric charge and spin)
should be determined by some discrimination mechanism, which is conditioned by
the multivariant (zero-variant) space-time geometry. Such a possibility must be
investigated, because, being a corollary of a statistical description, the quantum
principles do not admit one to determine such a discrimination mechanism.
Investigation of the space-time geometry admits one to set the question, what

elementary particles may exist at given space-time geometry. To determine the
proper space-time geometry, one may variate the values of the world function (1.13)
in the interval, where � 2

�
��20; �20

�
. Variation of the form of the world function �

for the values of argument �M in the interval, where � 2
�
��20; �20

�
does not in�uence

on the Schrödinger equation, generated by the multivariant geometry (1.13). In the
conventional approach, when only single-variant space-time geometry is considered,
the question on geometrical justi�cation of the elementary particles existence cannot
be put at all. This question is set only on the level of dynamics, where one has
no discrimination mechanism. In the multivariant space-time geometry one can
consider the question of the limited divisibility of geometrical objects [5]. In the
single-variant geometry such a question cannot be put, because in such a geometry
the unlimited divisibility takes place.

2 Why do the most scientists ignore concept of
multivariant space-time geometry and concept
of multivariance?

This question is not a scienti�c question. This is a social near-scienti�c question. I
do not know the answer for this question. But this question is very important for
further development of the microcosm physics, because it admits one to choose an
e¤ective investigation strategy. I try to consider di¤erent versions of the answer. In
reality, one separates this global question into a series of more special questions and
tries to answer some of them.
It is impossible to �nd a defect in construction of T-geometry in itself. It is too

simple, in order one could �nd a mistake or a defect in its construction. There are
three points in the method of construction of T-geometry:
(1) T-geometry is a physical (metric) geometry, which is described completely
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by the world function and only by the world function.
(2) Method of construction of geometrical objects and of the T-geometry propo-

sitions is the same for all T-geometries, i.e. the formula of description in terms of
the world function is the same in all T-geometries.
(3) The proper Euclidean geometry is a mathematical (axiomatized) geometry

and a physical geometry simultaneously. There is a theorem of the Euclidean geom-
etry, which states, that the proper Euclidean geometry may be described in terms
of the world function and only in terms of the world function [1].
The point (2) follows from the point (1). Indeed, let the geometrical object be

described by the formula a1 in a physical geometry G1, and the same object be
described by the formula a2 in other physical geometry G2. If formulas a1 and a2
are di¤erent, it means that the geometries G1 and G2 distinguish not only by their
world functions. There is some quantity, which is di¤erent for G1 and G2, and this
circumstance disagrees with the point (1).
It follows from the point (3), that all propositions of the proper Euclidean geom-

etry can be deduced from Euclidean axioms and presented in terms of the proper
Euclidean world function �E. Replacing �E in all propositions of the proper Euclid-
ean geometry by the world function � of the physical geometry G, one obtains all
propositions of the geometry G and, hence, the physical geometry G in itself. The
point (3) admits one to construct any physical geometry, basing on our knowledge
of the proper Euclidean geometry.
The non-Euclidean method of the physical geometry construction (the defor-

mation principle ) [6] is simpler, than the conventional Euclidean method of the
geometry construction, because it does not need a proof of theorems and a test of
the axioms consistency. One may say, that the conventional method takes from
Euclid the intermediate product (method of the geometry construction), whereas
the non-Euclidean method takes from Euclid his �nal product (the Euclidean geom-
etry in itself). The intermediate product needs a further work (proof of theorems),
whereas the �nal product does not need further work, because all necessary the-
orems are supposed to be proved at the stage of the proper Euclidean geometry
construction.
Thus, the deformation principle has not di¢ culties of the Euclidean method.

Besides, it admits one to construct multivariant geometries. However, the most
mathematicians do not accept the deformation principle. For instance, the author
of this paper submitted a report on the construction of T-geometry to a geometro-
topological seminar in the Moscow Lomonosov University. The secretary of seminar
looked through the presented paper and said something like that: "How strange
geometry! There are no theorems! Only de�nitions! I think, that such a geometry
is not interesting for participants of our seminar." The secretary was quite right.
The main activity of geometro-topologists is a formulation of theorems and a proof
of them. Such an activity cannot be applied in the geometry, constructed by means
of the deformation principle.
The secretary of another geometro-topological seminar investigated papers, sub-

mitted for reading of my report. The report was devoted to construction of T-
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geometry. Submitted documents contained, in particular, the paper [7]. Investiga-
tion of submitted papers lasted almost a year. It was �nished with the decision:
"Participants of the seminar are not ready to hear the report." Such a decision
means, that the participants of the seminar are not able to argue anything against
the T-geometry, but nevertheless, they cannot accept it. Another examples of neg-
ative relation to the T-geometry construction one can �nd in [7].
I must note, that there are mathematicians, whose relation to the T-geometry

construction was well-minded. They were participants of the seminar on "geometry
as a whole" in the Moscow Lomonosov University. Reports on the T-geometry
construction were read at this seminar several times. However, participants of this
seminar were not geometro-topologists.
The geometro-topologists construct generalized geometries on the basis of a topo-

logical space and corresponding axiomatics, and the negative relation to T-geometry
may be interpreted in the sense, that accepting T-geometry, one depreciates papers,
based on the conventional (topological) approach to the construction of generalized
geometries. However, I should not like to interpret the negative reaction of topol-
ogists in such a way. I should prefer to understand objective reasons of negative
relation to the T-geometry.
Expression of Euclidean propositions in terms of the world function supposes

another set Ad of primary axioms, than the set Ac of primary axioms, which are
used usually. For instance, the set Ac contains the axiom: "The straight has no
width." The system of primary axioms Ad does not contain this statement. The
statement "the straight has no width." is valid (for the proper Euclidean geometry)
in the system of axioms Ad, but it is a secondary statement in Ad. It is a result of
the axiomatics Ad and of de�nition of the straight. The de�nition of the straight
TP0P1, passing through the points P0; P1 has the from

TP0;P0P1 = TP0P1 = fRjP0R k P0P1g (2.1)

where the relation of collinearity P0P1 k P0R is de�ned by the relation

P0R k P0P1: (P0R:P0P1)
2 = jP0P1j2 jP0Rj2 (2.2)

Here the scalar product (P0P1:P0R) is de�ned by the relation (1.3). In general, one
equation (2.2) de�nes a (n� 1)-dimensional surface on the n-dimensional manifold
(but not a one-dimensional straight). The statement, that the point set (2.1), (2.2)
is a one-dimensional straight, which has no width, follows from the properties of
the Euclidean world function. This property may not take place for other world
function.
Note that the point set

TP0;Q0Q1 = fRjP0R k Q0Q1g (2.3)

P0R k Q0Q1: (P0R:Q0Q1)
2 = jP0P1j2 jP0Rj2 (2.4)

is also a (n � 1)-dimensional surface on the n-dimensional manifold. In the proper
Euclidean geometry the set TP0;Q0Q1 degenerates into the straight line, passing
through the point P0 in parallel with the vector Q0Q1 at the point Q0.
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In the n-dimensional Riemannian geometry the (n� 1)-dimensional point set
(2.1), (2.2) also degenerates into one-dimensional geodesic, passing to the point P0
in parallel with the vector P0P1. This degeneration is conditioned by the fact,
that the Riemannian space may be considered as a metric space with the metric,
satisfying the triangle axiom. However, the point set (2.3), (2.4) does not degenerate,
in general, into one-dimensional curve (geodesic). In the n-dimensional Riemannian
geometry the point set (2.3), (2.4) remains to be a (n� 1)-dimensional surface, as
well as in any T-geometry (except for the proper Euclidean geometry).
This fact means, that the Riemannian geometry is a multivariant physical geome-

try, although some sort of straights (TP0;P0P1 = TP0P1) is single-variant (one-dimensi-
onal). On the other hand, the Riemannian geometry is constructed usually as a
single-variant geometry, and existence of geometrical objects (2.3), (2.4) is incom-
patible with the axiom "geodesic has no width". Geodesic is de�ned as a curve of
minimal (extremal) length. In turn the curve is de�ned as a continuous mapping

[0; 1]! 


which cannot be formulated in terms of the world function only, because it contains
a reference to a manifold. To remove the disagreement between the multivariance of
de�nition (2.3), (2.4) and axiom "geodesic has no width", one declared, that there
is no fernparallelism in the Riemannian geometry, i.e. parallelism of remote vectors
is not determined. At such a constraint the geometrical objects (2.3), (2.4) are not
de�ned, and hence, they do not exist.
However, the removal of the fernparallelism does not eliminate inconsistency of

the Riemannian geometry, it eliminates only one of corollaries of this inconsistency.
There may be another (unknown) corollaries of this inconsistency. One can eliminate
these corollaries only removing their reason (axiom, that the geodesic has no width).
It means that one should accept the de�nition of the straight (geodesic) in the form
(2.3), (2.4), i.e. the idea of multivariance should be accepted.
Inconsistency of a conception manifests itself only, if one solves a problem by

di¤erent correct methods and obtains di¤erent results. However, rare scientists
investigate a complicate problem by several di¤erent methods and compare the
obtained results.
The outstanding topologist G.Perelman had proved the Poincarè conjecture

[8, 9, 10]. In 2006 he was awarded with the Fields medal. However, he declined
to accept the award. He is the only person ever to refuse the award. Besides, he
declined to publish his papers in a peer review journal, that was necessary for ac-
cepting a prize of a million dollars. His behavior looked strange and unexpected for
mathematical society. Alexander Abramov [11], who knew Perelman personally very
well, describes his style of work as follows. Perelman considered several versions of
solution of the problem and chose the best one. Such a rare style of investigation
is the best one for discovery of inconsistencies in the Riemannian geometry. Ap-
parently, after publication of his papers in Archives Perelman has discovered, that
the conventional (topological) approach to the Riemannian geometry is inconsistent
(maybe, the paper [7], appeared in March 2005, gave a motive for his investigation).
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But G.Perelman is a topologist and his papers on the Poincarè conjecture are based
on the Riemannian geometry. If the Riemannian geometry is inconsistent, his own
papers become questionable, even if all his considerations are valid.
His further behavior is conditioned by his scienti�c scrupulosity. He could not

withdraw his papers from Archives, where they were published (it is prohibited by
the rules of Archives). But he could decline publication of his papers in the peer
review mathematical journals. He could not accept the Fields medal, because some
time later his papers may be declared to be questionable. He should publish the
fact, that he discovered inconsistency of the Riemannian geometry. But such a paper
would be a dissident paper. Anybody, who have written a dissident paper, knows
very well, how di¢ cult to publish a dissident paper. Discussing with colleagues a
possible inconsistency of the Riemannian geometry, G.Perelman did not meet mutual
understanding by colleagues. As a result of such discussions he left the Institute,
where he worked. The charge of his colleagues in scienti�c dishonesty is also a result
of these discussions.
I did not know G. Perelman personally, and my description of his digni�ed be-

havior is only a hypothesis. But it is a very reasonable hypothesis, which explains
freely all facts by the scienti�c scrupulosity of G. Perelman and by his capacity of
investigation work. My estimation of the Perelman�s activity distinguishes from po-
sition of other scientists, because I know de�nitely, that the Riemannian geometry
is inconsistent, especially in that its part, which concerns topology, whereas other
scientists cannot admit an inconsistency of the Riemannian geometry. Topology in
the Riemannian geometry, as well as in other physical geometries, is determined
completely by the world function. The topology may not be given independently,
because in this case one risks to obtain inconsistency.
Construction of multivariant geometry is connected with a replacement of the

formal logic by the "Euclidean logic" [12], when rules of the formal logic are substi-
tuted be the rules of construction of the Euclidean geometry propositions in terms
of the world function. The transition from the formal logic to the "Euclidean logic"
is a transition from one system of axioms to another equivalent (for Euclidean geom-
etry) system of axioms. Such a transition is used very uncommon in the practice
of mathematical investigations. Although possibility of such transition is accepted,
but in practice the transformation of the system of axioms, connected with such a
transition, is used insu¢ ciently. In application of any axiomatics there are logical
stereotypes, when a chain of logical conclusions is replaced by one statement. Such
stereotypes depend on the used axiomatics, and they are changed at a change of
axiomatics. At a replacement of the axiomatics the logical stereotypes are to be
analyzed and replaced by new logical stereotypes. Unfortunately, the practice of
work with logical stereotypes is insu¢ cient. As a result the old logical stereotypes
disturb the perception of new axiomatics.
Let me adduce a simple example. In the conventional approach to geometry,

based on the vector representation, the discrete geometry cannot be given on a
continual set of points (on manifold). It can be given only on a discrete set of point
of the type of a grid. On the other hand, by de�nition, the discrete geometry is
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such a geometry, where there are no close points. In the approach, based on the
principle of deformation, the distance between points is determined by the world
function and only by the world function. It is of no importance, where the world
function is given (on a grid, or on a continuous manifold). If the world function is
given on a manifold in such a form, that there are no values of the world function
� in the intervals (�a; 0) and (0; a) ; a > 0, then in the geometry there are no close
points, and the geometry is discrete, even it is given on a continuous manifold.
The statement (st): "the discrete geometry cannot be given on a manifold"

is a logical stereotype of the approach, based on the vector representation of the
geometry. This stereotype consists of two statements: (1) de�nition: the discrete
geometry does not contain close points, (2) axiom: the continuous geometry is given
on a manifold. Although the statement (st) does not follow strictly from statements
(1) and (2) does not follow strictly, because it is not known, where the discrete
geometry is given. Nevertheless, because of insu¢ cient development of the discrete
geometry one concludes, that the discrete geometry cannot be given on a manifold,
as far as on a manifold the continuous geometry is given.
I could not overcome the stereotype (st) during almost �fteen years, when I de-

veloped T-geometry. I could not overcome this stereotype, although during �fteen
years I delt with the discrete geometry, which was described by the world function
(4.1), given on a continuous manifold. I could not overcome the stereotype, although
I developed the world function formalism without any problems. I could not over-
come the stereotype, although its essence lies on the surface of the phenomenon.
This stereotype is not a unique one. I met another stereotypes at other scientists. I
think, that such stereotypes do not admit one to accept idea of deformation princi-
ple. In turn the di¢ culties with overcoming of such stereotypes are connected with
the circumstance, that the transition from one axiomatics to another equivalent
axiomatics is used very rare in practice. The training of mathematicians for such
transitions is too small.

3 Multivariance and dimension

Returning to the T-geometry, I should like to manifest, that the concept of dimen-
sion may have di¤erent meaning at the conventional approach to geometry and at
the approach based on the deformation principle. I shall show, that the dimension
of geometry and the dimension of the manifold, where the geometry is given, are dif-
ferent things. The dimension of the manifold nM and dimension nG of the geometry
are di¤erent concepts, which coincide for the proper Euclidean geometry. However,
in other physical geometries the two quantities do not coincide, in general.
Let us consider very simple example of the two-dimensional proper Euclidean

geometry GE, given on the two-dimensional manifold. The world function has the
form

�E (P1; P2) = �E (x;y) =
1

2

��
x1 � y1

�2
+
�
x2 � y2

�2�
; �E � 0 (3.1)
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where the points P0; P1, P2 are three points, whose coordinates in the Cartesian
coordinate system are

P0 = f0; 0g P1 =
�
x1; x2

	
; P2 =

�
y1; y2

	
(3.2)

Vectors P0P1 and P0P2 have the Cartesian coordinates

P0P1 = x =
�
x1; x2

	
; P0P2 = y =

�
y1; y2

	
(3.3)

Besides, one considers a deformed physical geometry Gd, described by the world
function

�d (P1; P2) = �E (P1; P2) + d (�E (P1; P2)) (3.4)

where

d (�E) =

�
��20 if �E > �0
��20 �E�0 if 0 � �E � �0

; �20 � �0 � 0; �0; �0 = const (3.5)

Here �0 is some elementary length, which is characteristic for the distorted geometry
Gd.
By de�nition the dimension n of a geometry is the maximal number of linear

independent vectors. In the given case dimension of GE is equal to 2, as well as the
dimension of the manifold, where the geometry is given. Dimension of the manifold
is de�ned as the number of coordinates of the coordinate system.
Dimension of the manifold in the physical geometry Gd is also 2, as well as in GE.

In the physical geometry (T-geometry) m vectors P0P1;P0P2; :::P0Pm are linear
independent if and only if the Gram�s determinant

Fm (Pm) 6= 0; Fm (Pm) � det jj(P0Pi;P0Pk)jj ; i; k = 1; 2; :::m (3.6)

Here Pm = fP0; P1; :::Pmg, and the scalar product (P0Pi;Q0Qk) of two vectors
P0P1, Q0Q1 is de�ned by the relation (1.3).
The conventional de�nition of linear independence is di¤erent. s vectors P0P1,

P0P2; :::P0Ps are linear independent, if the linear combination of vectors satis�es
the relation

k=sX
k=1

�kP0Pk = 0 (3.7)

only at �k = 0; k = 1; 2; :::s. For the proper Euclidean geometry both de�nitions
(3.6) and (3.7) are equivalent. For the distorted geometry Gd they are not equivalent,
in general.
The conventional de�nition (3.7) supposes existence of the linear vector space

with a scalar product, given on it, and, in particular, it supposes the procedures of
de�nition : summation of vectors and multiplication of a vector by a real number.
De�nition (3.6) contains references only to the world function and points of the
space. Existence of the linear vector space and linear operations over vectors is not
supposed. It is evident, that the de�nition (3.6) is a more general de�nition, than
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(3.7), which can be applied, only if the linear vector space can be introduced. It
seems rather unexpected, that one can de�ne linear dependence, without introduc-
tion of the linear space, because the name "linear dependence" implicates conven-
tionally existence of the linear space. However, the de�nition (3.6) can be used in
the case, when one cannot introduce the linear space. In this case the determinant,
constructed of scalar products of vectors, describes interrelations of m vectors, in
particular, their mutual orientation.
Let us consider four vectors

P0P1 = fa; 0g ; P0P2 = f0; bg ; P0P3 = fa; bg ; P0P2 = f2a; 0g (3.8)

Let us suppose for simplicity, that coordinates a; b� �0. Then the scalar products of
any vectors (3.8) in the proper Euclidean geometry GE and in the distorted geometry
Gd are connected by the relations

(P0Pi;P0Pk)d = (P0Pi;P0Pk)E � 2�
2
0; if Pi 6= Pk (3.9)

(P0Pi;P0Pi)d = (P0Pi;P0Pi)E � �
2
0 (3.10)

These relations are the corollaries of the relations (3.4) and (1.3)
The Gram�s determinant in Gd for the �rst three vectors (3.8) has the form������

a2 � 2�20 ��20 a2 � �20
��20 b2 � 2�20 b2 � �20
a2 � �20 b2 � �20 a2 + b2 � 2�20

������ = �4�20 �b2 � �20� �a2 � �20� (3.11)

For the four vectors (3.8) the Gram�s determinant in Gd has the form��������
a2 � 2�20 ��20 a2 � �20 2a2 � �20
��20 b2 � 2�20 b2 � �20 b2 � �20
a2 � �20 b� �20 a2 + b2 � 2�20 2a2 + b2 � �20
2a2 � �20 b2 � �20 2a2 + b2 � �20 a2 + b2 � 2�20

��������
= ��20

�
12a4�20 � 12a4b2 + 2a2�40 + 6b2�40 � 5�60 � 3a2b2�20

�
(3.12)

In Gd the Gram�s determinant for two "collinear" vectorsP0P1 = fa; 0g ; P0P2 =
f2a; 0g has the form. ���� a2 � �20 2a2 � 2�20

2a2 � 2�20 4a2 � �20

���� = 3�20 �a2 � �20� (3.13)

although in the Euclidean geometry GE this determinant vanishes. In general, in
the geometry GE all three determinants (3.11), (3.12), (3.13) vanish, because �20 = 0
and dimension of the geometry GE is equal to 2.
It follows from (3.11) and (3.12), that in the distorted geometry Gd there are,

at least, four linear independent vectors, although the dimension of the manifold
remains to be equal to 2. One should expect, that in the distorted geometry Gd
there is in�nite number of linear independent vectors, and concept of dimension is
inadequate for the physical geometry Gd.
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Thus, in the proper Euclidean geometry the dimension nM of a manifold is equal
to the dimension nG of the geometry, whereas in the distorted geometry Gd dimension
of the manifold and dimension of the geometry are quite di¤erent quantities. It looks
rather unexpected. How is it possible?
The dimension nG of a geometry is a very complicated concept, but it concerns

to the geometry itself. The dimension nM of a manifold is a simple concept, but
it relates only to the method of description (manifold). In the proper Euclidean
geometry the values (but not concepts) of the two dimensions coincide (nG = nM).
Conventionally one does not distinguish between the two dimensions. It leads to a
confusion and to an ascription of the description properties to the geometry in itself.
The dimension nM of manifold may be de�ned only for a continuous set of space

points. It is invariant only with respect to continuous coordinate transformation. In
this connection it is interesting a consideration of the discrete geometry Gdis. Let us
consider the two-dimensional proper Euclidean geometry, given on the point set 
2.
The point set 
2 is obtained from the point set 
 as follows. Let K2 be a Cartesian
coordinate system on 
. Let us remove all points of 
, except of those points, for
which both Cartesian coordinates are integer. The remaining point set 
2 forms a
grid. World function �dis is de�ned on the set (
2 � 
2) � (
� 
). On this set
the world function �dis coincides with �E and, hence, it satis�es to all conditions of
Euclideaness [1] except for the condition IV (the continuity condition). Dimension
nG of geometry Gdis, determined by means of the de�nition (3.6), is equal to 2. Di-
mension nM of the "manifold" 
2 cannot determined de�nitely, because the number
of integer variables, labeling the points of 
2 may be 1; 2;...The dimension nM is
invariant only with respect to continuous coordinate transformation. In the case,
when coordinates are integer, there are no continuous coordinate transformations.
In this case the dimension of manifold has no sense, because there is no manifold,
whereas the geometry dimension nG is de�ned correctly in the case of the discrete
geometry.

4 Multivariance, discreteness and graininess of
space-time

Conventionally the discrete geometry is considered on some grid of points. It seems
that a geometry, given on a continuous manifold, cannot be discrete. It means
that conventionally a discreteness of a geometry is connected with the means of
the geometry description, (but not with the geometry in itself). In reality, the
discreteness of the geometry is determined by the world function. In particular, a
discrete geometry may be given on the continuous manifold. Besides, there may be
di¤erent degrees of the physical geometry discreteness.
Let us consider the question on discreteness of the space-time geometry, described

by the world function

�d = �M + d � sgn (�M) ; d = �20 = const > 0 (4.1)
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sgn (x) =

8<:
1; if x > 0
0; if x = 0
�1; if x < 0

; (4.2)

where �M is the world function of the 4-dimensional space-time of Minkowski. �0 is
some elementary length. The space-time geometry (4.1) is closer to the real space-
time geometry of microcosm, than the space-time of Minkowski, because at this
space-time geometry the quantum e¤ects may be described without a use of the
quantum principles, if the elementary length �0 = ~1=2 (2bc)�1=2. Here c is the speed
of the light, ~ is the quantum constant, and b is some universal constant, whose
exact value is not determined [4].
The space-time geometry (4.1) is a discrete space-time geometry, because in

this space-time geometry there are no vector P0P1, whose length jP0P1j be small
enough, i.e.

jP0P1j4 =2
�
0; �40

�
; 8P0; P1 � 
 (4.3)

In other words, the space-time geometry (4.1) has no close points.
Let us consider another space-time geometry Gd which is partly discrete. World

function �d of this geometry has the form

�d = �M + d (�M) (4.4)

d (�M) = �
2
0f

�
�M
�0

�
=

(
�20sgn

�
�M
�0

�
if j�Mj > �0 > 0

�20
�M
�0

if j�Mj � �0
(4.5)

where �M is the world function of the geometry of Minkowski.
If �0 is small, the world function is close to the world function (4.1). If �0 ! 0,

the world function (4.5) tends to (4.1). Strictly, the space-time geometry (4.5) is
not discrete, however it is close to the discrete space-time geometry (4.1).
Let us consider the relative density � (�d) = d�d=d�E of points of the geometry

Gd with respect to the geometry GE. One obtains

� (�d) = d�d=d�E =

�
1 if j�dj > �0 + �20
�0

�0+�
2
0
if j�dj � �0 + �20

(4.6)

If �0 = 0, there is no close points which are separated by interval with the world
function �d 2

�
0; �20

�
and �d 2

�
��20; 0

�
. It means, that the space-time geometry is

discrete at �0 = 0.
If �0 � �20, the relative density � (�d) ' �0=�

2
0 of points inside the interval

�d 2
�
��0 � �20; �0 + �20

�
is much less, than unity. It means that space-time geom-

etry is almost discrete. The quantity 1 � � (�d), �d 2
�
��0 � �20; �0 + �20

�
may be

interpreted as a degree of the discreteness of the space-time geometry. One can see,
that the discreteness of the space-time geometry and the degree of the discreteness
is determined by properties of the world function (but not by properties of the man-
ifold). The fact, that the space-time geometry, given on a continuous manifold may
be discrete, seems to be very unexpected. This fact acknowledges the statement,
that the world function and only world function determines the space-time geometry.
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It is reasonable to interpret the relative density � (�d) = d�d=d�E of points
of the distorted space-time with respect to the density of points of the standard
(Minkowskian) space-time as a measure of the space-time granulation. Discreteness
is a special case of graininess. Continuity is another special case of graininess. The
graininess of the space-time describes also all intermediate cases, when the space-
time is partly continuous and partly discrete. Interrelation of the graininess with
the discreteness reminds interrelation of rational numbers with the natural ones.
Graininess of the space-time is a physical property of the space-time, whereas

the multivariance is a mathematical property of the space-time geometry. The
graininess of the space-time is connected with the multivariance, and the world
function formalism is a mathematical technique, which can describe the graininess
of the space-time.
One can easily imagine two limit cases of graininess: discreteness and continuity.

The relative density � (�d) = d�d=d�E admits one to realize intermediate cases of
graininess. Conventional approach to geometry, based on the concept of linear vector
space, describes only continuous geometries. Vector representation of geometry [3],
based on the concept of the linear vector space, cannot describe inde�nite graininess
of the space-time. No �nesses, based on the vector representation of geometry,
enables to describe e¤ectively the space-time, whose graininess distinguishes from
continuity.
The discrete values of the elementary particles characteristics (mass, charge,

spin) are generated by some discrimination mechanism. The reason of this dis-
crimination is conditioned by the multivariance (more exactly by zero-variance) of
the space-time geometry [13]. From physical viewpoint the reason of the discrete
characteristics is the graininess of the space-time.

5 Concluding remarks

Thus, the multivariance is a general property of the space-time geometry. Class
of uniform, isotropic �at space-time geometries is a continual set, whose elements
are labelled by a real function of one argument. Only one geometry of this class
may be considered as single-variant (geometry of Minkowski). All other space-time
geometries are multivariant. Considering the Riemannian geometry as a more gen-
eral space-time geometry, we restrict our capacities. At the conventional approach,
based on concepts of the linear vector space, the natural multivariance of the Rie-
mannian geometry is suppressed by means of the fernparallelism interdict.
In the framework of the Riemannian geometry one cannot describe such proper-

ties of the space-time as the limited divisibility and the graininess, which are very
important for geometrical description of elementary particles. In general, ignor-
ing multivariant geometries, we manifest, that our knowledge of geometry are very
restrictive. Our knowledge of geometry does not admit one to construct e¤ective
description and e¤ective dynamics of elementary particles in microcosm, where the
graininess of the space-time is important.
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The multivariance and the graininess are connected between themselves. How-
ever, the graininess is rather physical concept, whereas the multivariance is rather
mathematical concept. The multivariance describes the interrelation of two vectors,
whereas the graininess describes interrelation of the point density in the space-time
with the standard point density in the space-time of Minkowski. The graininess is
more demonstrative and more complicate, whereas the multivariance is less demon-
strative and simpler. As a result the multivariance is considered as a basic concept
of the space-time, whereas the graininess is considered as a derivative concept.
In the Riemannian geometry the unlimited divisibility of the space-time takes

place. As a result, on one hand, the particle dynamics can be described in terms of
di¤erential equations, whose application supposes the unlimited divisibility of the
space-time. On the other hand, the unlimited divisibility generates such problems
as con�nement
One can hardly formulate mathematically the particle dynamics in the grainy

space-time, where the space-time divisibility is restricted, and one cannot use dif-
ferential equations. In the grainy space-time the particle dynamics is determined by
the space-time geometry in itself and by the structure of the particle. Such a geo-
metric dynamics is formulated in terms of the world chain with �nite links [14]. The
world chain is such a generalization of the world line, when in�nitesimal segments
of the world line are replaced by �nite geometrical objects.
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