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Abstract

Primordially a geometry was a science on properties of geometrical objects
and their mutual disposition. A use of the proper Euclidean geometry gener-
ated the axiomatic conception of geometry, where the geometry is considered
as a logical construction. There is the metrical conception of a geometry,
where the geometry is considered as a science on properties of geometric ob-
jects. In the framework of metrical conception the space-time geometries
form a more powerful set of geometries, than those do in the framework of
the axiomatic conception. It is important at the construction of the general
relativity.
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1 Introduction

Conception of the space-time geometry describes an interaction of concepts in the
space-time geometry. Hierarchy of concepts is essential in the conception. There
are two conceptions in the space-time geometry: (1) axiomatic conception and (2)
metric conception.

Geometry has been arisen many years ago as a science on a shape of geometrical
objects and on their mutual disposition in space. It was the proper Euclidean
geometry GE. Any geometrical object in GE can be constructed of blocks. Blocks
are segments of straight line. Any geometrical object O can be filled by a set S
of straight line segments L in such a way, that any point ∀P ∈ O belongs to one
and only one segment L ∈ S. Segments L have no common points. This property
of GE can be used for construction of any geometrical object O of the Euclidean
geometry GE. Properties of the straight line segment can be formulated as some
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statements St1. The rules of displacement of the straight line segments can be also
formulated as some statements St2. Using these statements St1 and St2, one can
formulate the rules for construction of any geometrical object in GE. Considering
St = St1 ∧ St2 as basic statements (axioms) of GE, one can obtain the rules of
any geometrical object construction as a logical corollary of St and of definition of
the geometric object. These rules can be formulated as some statements. The set
of these statements forms the proper Euclidean geometry GE. Such a form of the
Euclidean geometry GE presentation can be qualified as the axiomatic conception of
GE.

The Euclidean geometry GE is considered formally as a logical construction
founded on the set St of Euclidean axioms. Usually one does not consider the
reasons, why the logical construction describes the Euclidean geometry GE. One
believes, that any logical construction, containing axioms about properties of the
simplest geometrical objects such as the straight line, describes some geometry G
which may differ from GE. The symplectic geometry has no relation to properties of
geometrical objects. Nevertheless, it is treated as some kind of a geometry, because
it is a logical construction, which is close to the Euclidean geometry GE.

For construction of a generalized geometry G one uses another set Sg of axioms
Ag. If the axioms Sg are consistent, one obtains a generalized geometry G, which is
a logical construction in the framework of the axiomatic conception of a geometry.
In such a way one constructed the geometry GM of the space-time, known as the
geometry of Minkowski. Such a logical construction is possible, because axioms
describing properties of straight lines are practically the same in GE and in GM.
However, if the properties of the straight line segments in the generalized geometry
G differ from those in GE, the logical construction of G becomes to be problematic.
Let us imagine that the straight line segment Lg in G has the shape of a hallow tube.
In this case a usage of the segments Lg as constructing blocks for construction of
geometric objects becomes to be impossible. In the microcosm the real space-time
geometry is discrete, and the straight line segments have the shape of hallow tubes.
In this case axiomatic conception of the space-time geometry cannot describe the
real space-time geometry. Then a connection between the geometry as a logical
construction and geometry as a science on the shape of geometrical objects fails. It
means that capacities of the axiomatic conception for construction of generalized
geometries are restricted.

Besides, a construction of a geometrical object in GE and in the generalized
geometry G, obtained from GE in the framework of the axiomatic conception, needs
a proof of numerous theorems. In other words, a construction of a geometrical object
in G needs a repeating of the construction of this object in GE. There is another
way of a geometrical object O construction in G. One constructs OE in GE and
thereafter one deforms GE into G. At this deformation the geometrical object OE in
GE is deformed in the geometrical object O in G. The deformation procedure of OE

is much simpler, than the construction of OE and O from constructing blocks (it
means a proof of theorems). Such a procedure of the geometric object construction
is used in the metric conception of a geometry. This procedure (deformation) is very
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simple.
The fact is that, the Euclidean geometry can be presented completely in terms

of its metric ρ (P, Q). Here the quantity ρ (P, Q) is the distance between ∀P, Q ∈ Ω.
Here Ω is the set of points, where the Euclidean geometry GE is given. Instead of ρ
it is convenient to use the world function σ (P,Q) = 1.

2
ρ2 (P, Q). The world function

is real even in the geometry of Minkowski, where the distance ρ is imaginary for
spacelike intervals.

2 Metric conception of Euclidean geometry

Idea of metric conception is not new [1]. Unfortunately, the distance geometry of
Blumenthal [1] is not a monistic conception, when a geometry is described completely
in terms of distance and only in terms of distance. Blumenthal failed to construct
a monistic conception of geometry, although the monism is very important for the
metric conception construction.

In the metric conception the world function σ of a generalized geometry is defined
as a single-valued function

σ : Ω× Ω → R, σ (P, Q) = σ (Q,P ) , σ (P, P ) = 0, ∀P,Q ∈ Ω (1)

Here Ω is the the point set, where the geometry is given. In the Euclidean geometry
GE the world function σE has definite properties which can be described by additional
restrictions.

The Euclidean geometry GE is formulated in terms of the world function σE

and only in terms of the world function as follows. Geometrical vector (g-vector)
PQ = {P,Q} is defined as an ordered set of two points P, Q ∈ Ω. The term
”geometrical vector” is used in order to distingush it from the linvector u, which is
defined as an element of the linear vector space Ln, which is used in GE, and u ∈ Ln

In GE linvector and g-vector can coincide. However after deformation of GE they do
not coincide, generally speaking.

Two g-vectors PQ and RS are equivalent (PQeqvRS), if their lengths are equal
and they are in parallel (PQ · RS)

(PQ · RS) : (PQ.RS) = |PQ| · |RS| (2)

Here (PQ.RS) is the scalar product of two g-vectors PQ and RS, defined in terms
of the world function in the form

(PQ.RS) = σ (P, S) + σ (Q,R)− σ (P, R)− σ (Q,S) (3)

The length |PQ| of the g-vector PQ is defined by the relation

|PQ| =
√

2σ (P, Q) (4)

Here σ is the world function of GE. Thus, the g-vectors PQ and RS are equivalent,
if

(PQeqvRS) : (PQ.RS) = |PQ| · |RS| ∧ |PQ| = |RS| (5)
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The scalar product of two g-vectors is defined by (3). Equivalence of two g-vectors
is defined by (5).

n g-vectors P0P1,P0P2, ...P0Pn are linear dependent, if and only if the Gram
determinant

Fn (Pn) = det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n, Pn ≡ {P0, P2, ...Pn} (6)

vanishes
Fn (Pn) = 0 (7)

The relations (4), (5), (7) are general geometric relations. They are valid in any
generalized geometry G obtained as a result of deformation of GE. Deformation of
GE into G is obtained at the replacement σE → σ in relations (4), (5), (7). Here σE

is the world function of GE, and σ is the world function of G.
The special relations of the n-dimensional proper Euclidean geometry have the

form [2]:
I. Definition of the metric dimension:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (8)

where Fn (Pn) is the n-th order Gram’s determinant (6). g-vectors P0Pi, i =
1, 2, ...n are basic g-vectors of the rectilinear coordinate system Kn with the origin
at the point P0. The covariant coordinates xi (P ) of the point P in the coordinate
system Kn are defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (9)

The metric tensors gik (Pn) and gik (Pn), i, k = 1, 2, ...n in Kn are defined by the
relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (10)

II. Linear structure of the Euclidean space:

σE (P,Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(11)
where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the g-vectors P0P, P0Q respectively in the coordinate system Kn.

III: The metric tensor matrix glk (Pn) has only positive eigenvalues gk

gk > 0, k = 1, 2, ..., n (12)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (13)
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considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution. Conditions I –
IV contain a reference to the dimension n of the Euclidean space, which is defined
by the relations (8). The conditions I – IV are necessary and sufficient conditions
of the fact that the world function is the world function of n-dimensional Euclidean
geometry.

In the framework of the metric conception any generalized geometry is obtained
by repalcement of the Euclidean world function σE by the world function σ of the
generalized geometry G in relations (4), (5), (7). Such a replacement in the special
relations of GE is not produced, because these relations describe properties of the
world function σE of GE. There is not yet established name for the generalized
geometry G, obtained in the framework of the metric conception. One uses the
names T-geometry (tubular geometry) and physical geometry. Here I shall use the
name physical geometry.

3 Definition of geometrical objects

Geometrical objectO ⊂Ω is a subset of points in the point set Ω, where the geometry
is given. In the physical geometry the geometric object O is described by means of
the skeleton-envelope method. It means that any geometric object O is considered
to be a set of intersections and joins of elementary geometric objects (EGO).

The finite set Pn ≡ {P0, P1, ..., Pn} ⊂ Ω of parameters of the envelope function
fPn is the skeleton of elementary geometric object (EGO) E ⊂ Ω. The set E ⊂ Ω
of points forming a boundary of EGO is called the envelope of its skeleton Pn. The
envelope function fPn

fPn : Ω → R, (14)

determining the boundary of EGO is a function of the running point R ∈ Ω and
of parameters Pn ⊂ Ω. The envelope function fPn is supposed to be an algebraic
function of s arguments w = {w1, w2, ...ws}, s = (n + 2)(n + 1)/2. Each of ar-
guments wk = σ (Qk, Lk) is the world function σ of two points Qk, Lk ∈ {R,Pn},
either belonging to skeleton Pn, or coinciding with the running point R. Thus, the
boundary E of any elementary geometric object is determined by its skeleton Pn

and its envelope function fPn . The boundary E of a geometric object O is the set
of zeros of the envelope function

E = {R|fPn (R) = 0} (15)

The envelope E is a boundary of the point set O, forming the geometric object.
Characteristic points of the EGO are the skeleton points Pn ≡ {P0, P1, ..., Pn}.

The simplest example of EGO is the segment T[P0P1] of the straight line between the
points P0 and P1, which is defined by the relation

T[P0P1] = {R|fP0P1 (R) = 0} , (16)

fP0P1 (R) =
√

2σ (P0, R) +
√

2σ (R,P1)−
√

2σ (P0, P1) (17)
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The set of points T[P0P1], defined by (16), (17) is a segment of a straight line in
any physical geometry. In the space-time it is a three-dimensional surface, generally
speaking. In the space-time geometry of Minkowski T[P0P1] degenerates into one-
dimensional line for a timelike g-vector P0P1, but it remains a three-dimensional
surface for a spacelike g-vector P0P1.

The physical geometry is formulated without a use of coordinates. It is impor-
tant in the case, when a physical body travels from the space-time region with the
geometry G1 to the region with the space-time geometry G2. Geometrical object
O is a geometrical image of a physical body. The geometric object O is described
by its skeleton Pn = {P0, P1, ...Pn} and its envelope function fPn . All points of
the skeleton are connected rigidly in the sense, that distances between the skeleton
points are the same in any physical geometry

σ1 (Pi, Pk) = σ2 (Pi, Pk) , i, k = 0, 1, ...n

where σ1 is the world function in the geometry G1 and σ2 is the world function in
the geometry G2. The envelope function (14) as a function of arguments ws is the
same in geometries G1 and G2, although values of some arguments ws are different
in geometries G1 and G2

The Riemannian geometry which is used as the most general geometry in the ax-
iomatic conception cannot be described without a reference to a coordinate system.
It is a defect of the axiomatic conception with respect to the metric conception.
One cannot identify the same geometric object in different space-time geometries
described in the axiomatic conception. It is also a defect of the axiomatic conception
The set of physical space-time geometries is more powerful, than the set of Rieman-
nian space-time geometries. It is also a defect of the axiomatic conception at its use
as a space-time geometry..

In the general relativity, where the space-time geometry is determined by the
matter distribution, one should use the metric conception for a description of the
space-time geometry. A use of the metric conception leads to impossibility of the
dark holes formation [3]. The reason of such an impossibility is the induced anti-
gravitation, arising in the case, when the matter is very dense [4].

In the Minkiwski space-time existence of taxions depends on the conception
of the space-time geometry. In the axiomatic conceptions existence of tachyons
is considered to be impossible. In the metric conception world line of a tachyon
wobbles with infinite amplitude, and detection of a single tachyon is impossible.
However, the tachyon gas forms the dark matter and its gravitational influence can
be detected [5, 6]. The metric conception of the space-time geometry solves easily
the problem of the dark matter, which fails to be solved in the framework of the
axiomatic conception.
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4 Preference of axiomatic conception. Social

reasons of such a preference

The axiomatic conception of the space-time geometry exists many years. The metric
conception of the space-time geometry exists about twenty years. The scientific com-
munity does not perceive the metric conception, although nobody can take objection
against it. What is a reason of such behaviour? The scientific community perceives
easily very exotic new ideas, provided they do not need a revision of the existing
theory. However, if one speaks about a new conception which needs a revision of the
existing conception, the scientific community does not consider the new conception.
A transition to a new conception is especially difficult, if the new conception uses
a new mathematical formalism. There are examples of such a transition to a new
conception in the science history. For instance, the transition from the Aristotelian
conception of mechanics to the Newtonian conception of mechanics lasted almost
hundred years, because the scientific community did not accept the concept of in-
ertia. Papers by Boltzmann on foundation of axiomatic thermodynamics were not
accepted, because one needs to revise the thermodynamic laws, which were exact in
thermodynamics and which are fulfilled on the average in the Boltzmann’s papers.

Conception of the particle dynamics, where the statistical ensemble is considered
as the basic object of dynamics, admits one to describe quantum particles as clas-
sical stochastic particles [7]. In this classical conception of the quantum particles
dynamics the quantum principles are not used, and there is no necessity to consider
the quantum principles as the first laws of nature. For instance, one does not need
to quantize the gravitational field. Nevertheless the problem of the gravitational
field quantization is considered as one of the main problems of theoretical physics.

In the space-time geometry also there are problems with transition from ax-
iomatic conception to metric conception of the space-time geometry. I believe that
disinclination of the scientific community to consider new conception is conditioned
by disinclination of revising the existing conception.
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