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Abstract

It shown that the space-time geometry is multivariant, and one cannot
describe it completely, using formalism of the linear space. Tachyons and
tachyon gas cannot be described in terms of the linear space formalism. To
describe correctly the space-time geometry, one needs to use the metric ap-
proach and description in terms of the world function. In the framework of
metric approach to geometry one can explain freely the dark matter nature.
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1 Introduction

Multivariance of the space-time geometry is a such its property, when at the point
C there are many vectors CD, CD1,CD2, ...which are equivalent to a vector AB
at the point A, but vectors CD, CD1,CD2, ...are not equivalent between them-
selves. Multivariance of the space-time geometry appears only in the case, when the
geometry is described in terms of the world function σ. In this case the geometry
may be described in the coordinateless form, and restrictions imposed by a use of
coordinate system are removed. Such a description is impossible in the case, when
the space-time geometry is described in terms of the linear space (linear algebra) in
some coordinate system. The space-time geometry G is a result of a generalization
of the proper Euclidean geometry GE. A generalization of the proper Euclidean
geometry GE depends on the representation of the GE.
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In the metric approach [1] the space-time geometry is described by a structure
σ, given on the set Ω of points (events) P . The structure σ is defined by the world
function σ, which is a single-valued real function

σ : Ω× Ω → R, σ (P, Q) = σ (Q,P ) , σ (P, P ) = 0, ∀P, Q ∈ Ω (1.1)

The world function has been introduced by Synge and Ruse for description of the
Riemannian geometry [2, 3]. For description of the space-time geometry the world
function has been used by Synge [4]. Representation of the proper Euclidean geom-
etry GE in terms of the world function σ is called the σ-representation. Conventional
representation of the proper Euclidean geometry GE in terms of the linear space and
in some coordinate system is called the V -representation of GE.

In the proper Euclidean geometry GE the world function σ has a special form
σE,

σE (P, P ′) = σE (x, x′) =
1

2

k=n∑

k=1

(
xk − x′k

)2
(1.2)

where P = {x1, x2, ...xn}, P ′ = {x′1, x′2, ...x′n} are points of the n-dimensional
Euclidean space En, P, P ′ ∈ En and x = {x1, x2, ...xn}, x′ = {x′1, x′2, ...x′n} are
coordinates in some Cartesian coordinate system Kn.

The way of generalization of GE depends essentially on the method of the GE

representation. There are two methods of GE representation: (1) V-representation
and (2) σ-representation [5].

At V-representation one uses axiomatic approach to GE, when the Euclidean
geometry is constructed on the basis of linear space Ln. The linear space Ln is a
set Ωn of elements u ∈ Ωn. These elements u will be referred to as linear vectors
(linvectors). Multiplication of a linvector u ∈ Ωn by a real number a gives linvector
au ∈ Ωn. Sum of two linvectors u ∈ Ωn and v ∈ Ωn gives a new linvector (u + v) ∈
Ωn. These operations has the linear properties, which can be found in any textbook
on linear algebra. The term ”linvector” (instead of conventional term ”vector”) is
used, because any linvector u ∈ Ωn exists in one copy.

On the contrary, vector AB in GE is defined as the ordered set AB = {A,B} ∈
Ω×Ω of two points A,B ∈ Ω, where Ω is the set of points of the space-time. Among
vectors PQ ∈ Ω×Ω of the Euclidean space En there are equivalent (equal) vectors,
and there are many equivalent vectors PQ ∈ Ω×Ω. It is incorrect to use the same
term for objects with different properties.

The set ΩAB of vectors CD which are equivalent to vector AB is defined as a
set of vectors CD which are in parallel with AB and length |CD| and |AB| are
equal.

ΩAB = {CD| (CDeqvAB)} (1.3)

(CDeqvAB) : (CD · AB) ∧ |CD| = |AB| (1.4)

(CD · AB) : (CD.AB) = |CD| · |AB| (1.5)
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Here (CD.AB) ∈ R is the scalar product of two vectors CD and AB which is
defined by the relation

(CD.AB) = σE (C, B) + σE (D, A)− σE (C, A)− σE (D, B) (1.6)

|CD|2 = 2σE (C, D) (1.7)

Equivalence of two vectors CD ∈ Ω×Ω and AB ∈ Ω×Ω is defined in terms of
the Euclidean world function σE. In the Cartesian coordinate system Kn, where
the world function σE has the form (1.2) and points A,B, C, D have respectively
coordinates xA, xB, xC , xD the scalar product (1.6) and |CD| take respectively the
form

(CD.AB) =
k=n∑

k=1

(
xk

D − xk
C

) (
xk

B − xk
A

)
(1.8)

|CD|2 =
k=n∑

k=1

(
xk

D − xk
C

)2
(1.9)

These expressions coincide respectively with the scalar product of two linvectors
(uCD.uAB) and with |uCD|2, provided uCD and uAB have coordinates respectively(
xk

D − xk
C

)
and

(
xk

B − xk
A

)
.

In GE the equivalence relation (1.4) is reflexive, symmetric and transitive. Then
the set ΩAB is the equivalence class of the vector AB. One may identify the linvector
uAB ∈ Ln with the equivalence class ΩAB of the vector AB ∈ Ω×Ω. Axiomatics of
the linear space Ln and operations in Ln can be used for construction of geometric
relations in GE. After generalization of GE, when σE is replaced by another world
function σ, the equivalence relation (1.4) ceases to be transitive, in general. As
a result the set ΩAB ceases to be an equivalence class of the vector AB. One
may not identify the linvector uAB ∈ Ln with the set ΩAB, because not all vectors
CD ∈ ΩAB are equivalent between themselves. The geometry G, obtained as a
result of the replacement σE → σ, appears to be multivariant.

At the generalization of the proper Euclidean geometry one obtains a physical
geometry G, replacing the world function σE by the world function σ of the geometry
G in all geometric relations of GE, which can be expressed in terms of only the
Euclidean world function σE. These relations will referred to as general geometric
relations. Expressions (1.6), (1.7) are examples of general geometric relations.

Another example of such a relation is definition of linear dependence of n vec-
tors P0P1,P0P2,...P0Pn . Vectors P0P1,P0P2,...P0Pn are linear dependent, if the
condition

Fn (Pn) = 0 (1.10)

is fulfilled. Here Pn = {P0, P1, ...Pn} and Fn (Pn) is the Gram determinant

Fn (Pn) ≡ det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n (1.11)

Scalar product in (1.11) is expressed via the world function by means of (1.6).

3



2 Multivariant geometry

Let us consider a generalization G of the proper Euclidean geometry GE. One replaces
the world function σE by the world function σ in all general geometric relations. But
there are special relations of the geometry GE, which depends on special properties of
the world function σE. These special properties determine dimension of the geometry
GE and properties of the Cartesian coordinate system in GE.

If σE is the world function of n-dimensional Euclidean space En, it satisfies the
following relations.

I. Definition of the dimension and introduction of the rectilinear coordinate sys-
tem:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (2.12)

where Fn (Pn) is the Gram’s determinant (1.11). Vectors P0Pi, i = 1, 2, ...n are
basic vectors of the rectilinear coordinate system Kn with the origin at the point
P0. The covariant metric tensor gik (Pn), i, k = 1, 2, ...n and the contravariant one
gik (Pn), i, k = 1, 2, ...n in a rectilinear coordinate system Kn are defined by the
relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (2.13)

Fn (Pn) = det ||gik (Pn)|| 6= 0, i, k = 1, 2, ...n (2.14)

II. Linear structure of the Euclidean space:

σE (P,Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(2.15)
where coordinates xi (P ) , i = 1, 2, ...n of the point P are covariant coordinates of
the vector P0P, defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (2.16)

III: The metric tensor matrix glk (Pn) has only positive eigenvalues

gk > 0, k = 1, 2, ..., n (2.17)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (2.18)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution.

Not all conditions I – IV are independent, they determine different properties
of GE. For instance, the condition I determines the dimension n of the Euclidean

4



space En. This dimension n is the maximal number of linear independent vectors
in GE. This number is determined by the general geometric expression (1.11) which
depends on the form of the world function. If conditions (2.12) are not fulfilled, one
cannot introduce a coordinate system in the conventional form, because the metric
dimension nm of the geometry G remains to be not determined.

The sum of two vectors is defined as follows. If one adds vectors AB and BC,
when the end of one vector is the origin of the other, then one obtains

AB + BC = AC (2.19)

If one adds arbitrary vectors AB and CD, one obtains

AB + CD = AB + BR = AR (2.20)

where the point R is defined from the relation

(CDeqvBR) (2.21)

According to (1.4) - (1.6) the relation (2.21) represents two equations of the type
(1.4). If these equations have always one and only one solution for the point R (as
in GE), the operation of addition is defined univalently. However, if the solution is
multivariant, one cannot define the addition as a single-valued operation in the form,
that is used in linear space for addition of linvectors. Multiplication of a vector AB
by a real number a is defined as follows

aAB = AR (2.22)

where the point R is determined from the relations

(AB.AR) = a |AB|2 , |AR| = a |AB| (2.23)

If solution of equations (2.23) is multivariant, the multiplication operation is multi-
variant also.

Summarizing, one can say, that the proper Euclidean geometry GE can be reduced
to linear algebra. However, generalizations of GE cannot be reduced, in general,
to linear algebra. They are multivariant, in general, and this multivariance is a
corollary of the vector directivity which is absent in algebra.

Most restrictions on world function σE of GE arise from restrictions (2.12), which
consist of many equations. These restriction have a global character. One may
reduce these restriction to a local form

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ωε, Fn (Pn) 6= 0, Fk

(
Ωk+1

ε

)
= 0, k > n

(2.24)
where Ωε is an infinitesimal vicinity of the point P0, defined by the relation

∣∣∣
√

2σ (P0, P )
∣∣∣ < ε, ε → +0 (2.25)
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If these conditions (2.24) take place, one can use formalism of the linear space
locally. For instance, the Riemannian geometry is obtained at application of restric-
tions (2.12) in the form (2.24). A use of restriction (2.24) admits one to suppress
multivariance of the vector equivalence for vectors having common origin. But mul-
tivariance of the vector equality remains for vectors having different origin. Consid-
eration of equality of vectors with different origin is forbidden in the Riemannian
geometry or it is connected with the way of the vector transport. It is necessary for
a use of the linear space formalism.

3 Space-time geometry of Minkowski

There is a very important question. May the space-time geometry be multivariant?
Or the space-time geometry is single-variant, and the linear space is a necessary
attribute of the space-time geometry. To answer this question, we consider the
space-geometry of Minkowski. In this case conditions (2.12) - (2.16) are fulfilled,
and one can introduce rectilinear coordinate system, where the world function σM

has the form

σM (x, x) =
1

2
gik

(
xi − x′i

) (
xk − x′k

)
, gik = diag

(
c2,−1,−1,−1

)
(3.26)

where c is the speed of the light.
At the axiomatic approach to geometry vectors P0P1 = (x0, x1, x2, x3) and

P0P2 = (y0, y1, y2, y3) are equal (equivalent), if and only if xk = yk, k = 0, 1, 2, 3. At
the metric approach the condition of equality of vectors P0P1 = (x0, x1, x2, x3) and
P0P2 = (y0, y1, y2, y3) depends on sign of the world function (3.26). If vectors are
timelike σM (P0, P1) > 0, then vectors are equal (equivalent), if xk = yk, k = 0, 1, 2, 3

In the case of spacelike vector P0P1 (σM (P0, P1) < 0) one can choose the coor-
dinate system in such a way, that coordinates of vector P0P1 = (0, 0, 0, x3). The
equivalent vector P0P2 has coordinates P0P2 = (r, r cos φ, r sin φ, x3), where r and
φ are arbitrary real numbers. Thus, at the metric approach the space-time geometry
of Minkowski is single-variant with respect to timelike vectors and it is multivariant
with respect to spacelike vectors.

In the dynamics we deal only with tardions (particles with timelike world line).
Tachyons (particles with spacelike world line) were not discovered experimentally.
Does it mean that the real space-time should be described in the framework of
axiomatic approach, when linear space is a necessary attribute of the space-time
geometry? It is not so, because in the framework of axiomatic approach the tachyon
world lines are smooth and differentiable [6] - [10].

Consideration of tachyons in the framework of metric approach, when space-time
geometry is described in terms of world function leads almost to the same result. A
single tachyons cannot be discovered, because of infinite wobbling of its world line.
This wobbling is conditioned by multivariance of spacelike vectors in the space-
time geometry of Minkowski [11]. Although a single tachyon cannot be discovered
experimentally, the tachyon gas may be discovered by its gravitational field.
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Astronomers have discovered additional gravitational field of some galaxies, which
can be explained as a gravitational field of some invisible matter (dark matter) [12].
This dark matter can be freely explained as a galo of tachyon gas. The tachyon
gas has a very strong pressure, which can explain a possibility of the galo forma-
tion [11]. Discovery of dark matter testifies in favour of metric approach to the
space-time geometry.

4 Multivalence as a natural property of the space-

time geometry and the Galiley phenomenon

The proper Euclidean geometry is a degenerate geometry, because its world function
has a special form and it is not multivariant. On one hand, it is fine, because the
single-variance admits one to use the linear space formalism and to construct the
Euclidean geometry axiomatically. On the other hand, a generalization of a degen-
erate conception is difficult, because in the general case one obtains new properties
which are absent in the degenerate conception. One does not accept appearance
of new properties at the geometry construction by means of the degenerate version
generalization. These new properties look unnatural. They meet opposition from
researchers, who do not guess on the degenerate character of the proper Euclidean
geometry. This preconception becomes very strong, when it becomes clear that the
physical (multivariant) geometry is nonaxiomatizable and it cannot be deduced from
axioms. Beginning since Euclid, the geometry was constructed by a logic way, i.e.
it was deduced from axioms. It is very difficult to accept the fact that a geome-
try can be constructed by means of a deformation of the Euclidean geometry, i.e.
replacing the world function (that is not a logical operation). Necessity of a new
mathematical formalism construction does not generate enthusiasm of researchers,
learning the multivariant geometry.

Nobody wants to take into account that at the Euclidean geometry construc-
tion the axiomatic approach appears to be possible, because the proper Euclidean
geometry is continuous and infinitely divisible. This circumstance admits one to
construct any geometrical object from finite number of blocks. Their properties are
known and described by axioms. In concrete their number is small (point segment
of straight and angle). The real space-time geometry may not be continuous and
infinitely divisible, especially if one considers physical phenomena in microcosm.

Note that a discrete geometry, i.e. the geometry which is not continuous, can
be given not on a lattice set. In the discrete geometry there are no infinitely close
points and it is described by the condition

|ρ (P,Q)| /∈ (0, λ0) , ∀P, Q ∈ Ω (4.27)

where ρ is the distance between points and λ0 is the elementary length of the discrete
geometry. Condition (4.27) is a restriction on the form of the distance function ρ.
Usually this condition is considered as a restriction on the set of points, where the
geometry is given. The Euclidean function of distance is considered as a distance
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function. If the condition is considered as a restriction on the form of the distance
function, the discrete geometry may be given on the same set of points (events),
where the geometry of Minkowski is given. For instance, the world function σd of
the discrete geometry may have the form

σd = σM +
λ2

0

2
sgn (σM) , ρ =

√
2σd (4.28)

where σM is the the world function of the geometry of Minkowski. Then the ax-
iomatic approach to the geometry appears to be impossible. The discrete geometry
is arranged in such a way that points with close coordinates may be not close by dis-
tance between them. It means that the (metric) dimension of the geometry cannot
be introduced correctly.

Dynamics constructed on the basis of axiomatic geometry appears to be imper-
fect. It cannot explain what the dark matter is. Dynamics constructed on the basis
of multivariant space-time geometry appears to be more perfect. It resolve freely
the dark matter problem [11]. However, the multivariant dynamics contains a new
concept of multivariance, which is met sceptically by the scientific community. To
understand , what is the matter, it is useful to consider the case of transition from
Aristotelian dynamics to the Newtonian one.

In the Newtonian dynamics one uses a new concept which was absent in the
Aristotelian dynamics. The concept of inertia was such a new concept which is
generated introduction of acceleration in dynamics. In XVI century one dealt with
balanced motion of bodies when the bodies moved evenly and the motive force was
balanced with the force of friction. Transition from the rest to the state of motion
was very short. This transition was considered as a transitive process which did not
demand a construction of special dynamics. Of course there were processes, where
the cumulative energy was used, for instance, plugging of a nail by a hammer.
But apparently, one used concept of a force for description of such processes. For
instance, Leibniz has introduced the concept of living force (vis viva),which meant
the kinetic energy. In other words, the kinetic energy connected with inertia was
perceived as an appearance of a force. It is difficult to image now how it was made
in XVI century. However, the concept of inertia introduced by Galiley has been not
accepted by researchers of XVI century more than hundred years. I call effect of
long non-recognition of a new fundamental concept as Galiley phenomenon, because
it was applied first time namely to Galiley.

The Aristotelian dynamics did not work in application to the planet motion,
as far as the force of friction did not appear in this motion. A special mechanism
consisting of many gears - epicycles has been invented for explanation of the cyclic
plant motion. Choosing gears in proper way, one can explain any cyclic motion of
planets. However, one failed to explain the comet motion, whose cyclic character
of motion was not evident. The fitting method used for construction of Ptolemaic
epicycles reminds contemporary method of the elementary particle description.

A use of new fundamental concept (concept of inertia) admits one to construct a
new (Newtonian) dynamics. The Newtonian dynamics used a formalism essentially
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other, than the formalism of the Aristotelian dynamics. This admits one to replace
the complicated system of epicycles by simple free motion of planets in the gravita-
tional field of Sun. Analogously one may hope that a use of the skeleton conception
of dynamics, based on the multivariant space-time geometry admits one to simplify
the method of the elementary particles description [13].

Apparently, the Galiley phenomenon is conditioned by the difficulty of perception
of the new fundamental concepts changing the dynamics formalism. Apparently, the
concept of multivariance is difficult for perception of physicists of the XX century
as the concept of inertia was for scientists of XVI century.

The scientific community has a preconception against the concept of multivari-
ance not only in geometry, but in dynamics also. In his papers Boltzman explained
deterministic motion of a gas by multivariant (stochastic) motion of its molecules.
Scientific community did accept these papers during several years. As far as I know
the reasons of this abruption of Boltzman papers remained unknown. I think, that
the reason was a use of the new concept of dynamic multivariance (or stochasticity
conditioned by the molecular collisions). In the usual life one does not meet the
concept of multivariance (stochasticity). It is not clear how one can describe it
mathematically. The kinetic equation of Boltzman is more complicated and more
informative, than known equation of the gas dynamics which can be obtained as
a result of averaging the kinetic equation. A preconception against the concept of
multivariance arose,in particular, because its application needs a new mathematical
formalism using concept of multivariance. The multivariance is perceived psycho-
logically as anything unnatural. Only experimental discovery of Brounian motion
reconciled the scientific community with the dynamic multivariance.

As it concerns multivariant space-time geometry, its multivariance is also per-
ceived as anything unnatural. The conventional axiomatic approach to geometry is
perceived as habitual and natural. It is especially valid, if one takes into account,
that multivariance turns the space-time geometry to nonaxiomatizable geometry,
whose mathematical formalism does not use infinitesimal quantities and differential
equations connected with them. Distinction of the mathematical formalism of the
multivariant geometry appears to be essential as in microcosm as in cosmology.

The discrete geometry appears to be multivariant automatically. If one admits
that the space-time geometry may be discrete, one leads to necessity of multivariant
space-time geometry in description of microcosm. Quantum effects may be consid-
ered as effects of the discrete space-time geometry [14], if the quantum constant is
connected with the elementary length of the discrete geometry.

It appears that in microcosm the particle state is not described by its position
and momentum. The particle state is described by the particle skeleton. It consists
of n + 1 points (n > 1), connecting rigidly between themselves. The n(n + 1)/2
distances between points form n(n + 1)/2 invariant characteristics of the particle.
These characteristic include the mass and other parameters of the particle. For
instance, a fermion is a tachyon with n > 2. In the simplest case n = 2. Then
the world line of the tachyon is a spacelike helix with timelike axis. Such a helix
explained freely spin and magnetic moment of the particle [15, 16, 17]. This result
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agrees with the Dirac equation. The number of dynamic equation describing the
skeleton motion is equal to n(n+1), whereas the number of dynamic variables which
are to be determined is equal to 4n. In the case, when n < 3, the world line (chain)
wobbles. In the case of n > 3 some restrictions on the skeleton parameters arise.
The fact that the electric charge of an elementary particle is not greater than the
elementary charge is explained by uniqueness of the world function in multivariant
geometry [18]. Axiomatic approach cannot explain this fact.

The observed symmetries of elementary particles [19] can be explained by the
arrangement of the particle skeleton, like a crystal symmetry is explained by the
arrangement of the elementary cell of crystal.

A use of the multivariant space-time geometry is essential in the gravitation
theory. It leads to extended general relativity, where dynamic equations are written
directly for the world function (but not for metric tensor as in general relativity)
[20]. It appears that in the extended general relativity the event horison is not
formed at the strong compression of a star, because the antigravitation is induced
at some stage of compression [21]. This antigravitation prevents from a black hole
formation.

The physics geometrization, generated by the metric approach to space-time
geometry is a serious alternative to the quantum theory in microcosm. It is also an
alternative to general relativity in cosmology.
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