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Abstract
It is shown, that a free motion of microparticles (elementary particles) in

the gravitational field is multivariant (stochastic). This multivariance is con-
ditioned by multivariant physical space-time geometry. The physical geome-
try is described completely by a world function. The Riemannian geometries
form a small part of possible physical geometries. The contemporary theory
of gravitation ignores existence of physical geometries. It supposes, that any
space-time geometry is a Riemannian geometry. It is a mistake. As a result the
contemporary theory of gravitation needs a revision. Besides, the Riemannian
geometry is inconsistent, and conclusions of the gravitational theory, based on
inconsistent geometry may be invalid. Free motion of macroparticles (plan-
ets), consisting of many connected microparticles, is deterministic, because
connection of microparticles inside the macroparticle averages stochastic mo-
tion of single microparticles.

Key words: non-Riemannian geometry; stochastic motion of microparticles

1 Introduction

The physical geometry describes the space-time in terms of a finite space-time dis-
tance ρ (or in terms of world function σ = 1

2
ρ2). This description in terms of distance

ρ and only in terms of ρ is a complete description. The Riemannian geometry tries
to describe the space-time in terms of infinitesimal space-time distance dρ, which is
determined by the metric tensor gik, given at any point of the space-time.

dρ2 = gik (x) dxidxk (1.1)
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The distance ρ = ρ (x, x′) is a function of two space-time points x and x′. The
distance ρ as a function of two points contains much more information, than ten
functions gik, which are functions of one point. To obtain the finite distance ρ
from the infinitesimal distance dρ, a set of additional conditions (and additional
information) is to be fulfilled. In particular, the obtained finite distance ρ is to be
a single-valued function of any two points of the space-time. Construction of the
space-time geometry by methods of the Riemannian geometry construction leads,
in general, to a many-valued finite distance ρ. This fact is a nonsense. Besides,
the Riemannian geometry in itself appeared to be inconsistent [1, 2]. However, in
the twentieth century nobody paid attention to this fact, because there were no
alternative to the Riemannian geometry.

When this alternative appeared [3], the problem of the general relativity revision
arose. Let us stress, that it was just the problem of revision, but not a problem of a
new gravitational theory construction, because the main idea of the general relativity
(geometrization of physics) remains changeless.

The problem of the general relativity revision contains two essential points
1. A use of more effective and general mathematical method: the physical ge-

ometry, described completely by the finite space-time distance and only by it.
2. Description of the relativity theory in terms, which are adequate to this theory.
In fact, when the relativity theory came in the stead of the nonrelativistic physics,

some terms and concepts of the nonrelativistic physics remained in the relativity
theory. These concepts do not prevent one to solve concrete physical problems.
However, they prevent from development of the relativity theory. In particular,
nonrelativistic concept of two events nearness prevents from the general relativity
generalization [4].

The present paper is written in the framework of the physics geometrization.
The program of the physics geometrization is a generalization of the relativity the-
ory on the case of non–Riemannian space-time geometry. The general relativity
(theory of gravitation) is created at the supposition, that the space-time geometry
is a Riemannian geometry. In the twentieth century the Riemannian geometry was
considered as the most general kind of geometry, which is available for the space-
time description. However, it appears, that there exist non-Riemannian geometries,
which are more general in the sense, that the set of Riemannian geometries is only a
negligible part of the set of non-Riemannian (physical) geometries. Physical geome-
tries are described completely by a finite space-time interval, but not by infinitesimal
space-time interval as Riemannian geometries. Physical geometry is a constructive
(nonaxiomatizable) geometry, which cannot be deduced from axiomatics.

It has been shown [4], that a heavy sphere creates a deformation of the space-time
in such a way, that the space-time geometry ceases to be a Riemannian geometry.
The fact is that, the metric tensor, given in the whole space-time, determines the
space-time geometry only under condition that the space-time geometry is Rieman-
nian. In the twentieth century the Riemannian geometry was considered as a most
general space-time geometry. The condition, that the space-time geometry is a
Riemannian geometry, seemed to be very reasonable.
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The Riemannian geometry is a mathematical geometry in the sense, that it is
a logical construction, and all propositions of mathematical geometry are deduced
from a system of axioms. The main property of a mathematical geometry is the
fact, that any mathematical geometry is a logical construction. It is a secondary
circumstance, whether or not the mathematical geometry describes mutual disposi-
tion of geometrical objects. There are such mathematical geometries (for instance,
symplectic geometry), which do not describe a disposition of geometrical objects.

On the contrary, any physical geometry is defined as a science on mutual dis-
position of geometrical objects in the space or in the space-time. It is a secondary
circumstance, whether or not the physical geometry is a logical construction. The
physical geometry is described completely by means of a distance ρ (P, Q) between
any two points P and Q of the space, or of the space-time. In this sense the phys-
ical geometry is a distance geometry [5]. Physical geometry distinguishes from the
distance (metric) geometry in the sense, that the distance geometry is not com-
pletely a metric geometry. For instance, in the distance geometry the concept of a
curve is formulated not only in terms of a distance, whereas in physical geometry all
geometrical concepts are formulated in terms of a distance ρ and only in terms of
distance. In fact the physical geometry is formulated in terms of the world function
σ (P, Q) = 1

2
ρ2 (P, Q) [6]. A use of world function is more effective from technical

viewpoint. (For instance, the scalar product (PQ.RS) of vectors PQ and RS is
a linear function of world functions of points P, Q,R, S, whereas in terms of the
distance ρ the scalar product is a more complicated expression.

In reality there exist nonaxiomaitzable space-time geometries, which cannot be
deduced from a system of axioms. Riemannian geometries form a small subset of
all possible physical space-time geometries, which are nonaxiomatizable, in general.
Different nonaxiomatizable space-time geometries may have the same metric tensor.
As a result metric tensor does not determine the space-time geometry uniquely.

Besides, the Riemannian geometry is inconsistent, in general. The Riemannian
geometry is considered as a kind of a mathematical geometry, i.e. it can be deduced
from a system of axioms. These axioms are inconsistent at some points. As a
result the Riemannian have at least three well known defects. First, a parallel
transport of a vector from the point P0 to the point P1 depends on the path of
the transport. It means that there is no absolute parallelism in the Riemannian
geometry. Second, from physical viewpoint the main characteristic of the space-
time geometry is a distance ρ (P,Q) between two space-time points P and Q. This
distance must be single-valued. However, in the Riemannian geometry the distance
ρ (P, Q) is defined as the length of the geodesic, connecting points P and Q. In the
Riemannian geometry there are such points P and Q , which my be connected by
several geodesics of different length. It leads to multiformity of the distance ρ (P,Q).

Third, the Euclidean geometry is a partial case of a Riemannian geometry.
Let us construct Euclidean geometry on a two-dimensional plane P2 by means of
the method of the Riemannian geometry construction, i.e. we define the distance
ρ (P, Q) as a length of a geodesic (the shortest line, connecting points P and Q). As
far as in the case of Euclidean geometry the geodesics are straight lines, one obtains
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in the Cartesian coordinate system

ρ (P, Q) = ρ (x,x′) =

√
(x− x′)2 (1.2)

Let us cut a hole in the two-dimensional plane P2.The geodesics, passing through
the hole, become to be impossible, and the shortest lines pass around the hole. Their
lengths change, and the formula (1.2) ceases to be valid for some points. As a result
the plane P2 with a hole cannot be embedded isometrically into the same plane P2

without the hole.
This result is a paradox, because, if experimentally one cuts a hole in a flat

piece of tin-plate, the obtained piece with a hole can be embedded isometrically in
the original piece of tin-plate. Mathematicians know this paradoxical result, which
means, that the conventional method of the Riemannian geometry construction is
inconsistent. However, they have no alternative to the conventional method of the
Riemannian geometry construction. As a result they prefer to consider Riemannian
geometries on convex sets of points.

Of course, such a restriction by the convex point sets does not solve the problem
of the Riemannian geometry inconsistency. This problem may be solved only by a
change of the geometry construction method.

Deduction of the geometrical propositions from a system of basic axioms is a
very laborious process. One needs to prove numerous theorems. Besides, one should
be sure that the basic axioms are compatible between themselves. A test of this
compatibility is a very laborious process. For any new space-time geometry one
needs to repeat this test of the geometry consistency.

However, the main problem of the mathematical geometries construction is a
doubt, that any space-time geometry may be deduced from a finite system of basic
axioms. Indeed, any geometry is a continual set of geometrical propositions. It
follows from no quarter, that a continual set of geometrical propositions can be
deduced from a finite number of basic propositions by means of the formal logic. It
is true, that Euclid succeeded to deduce all propositions of the Euclidean geometry
from several axioms. However, it does not mean that such a deduction is possible
for other geometries. In reality such a deduction is impossible for most of physical
geometries, i.e. for geometries, which can be used for the space-time description
[1, 2].

For construction of physical geometries one should use the proper Euclidean
geometry itself (but not the method of its construction). The proper Euclidean
geometry GE is a mathematical geometry and a physical geometry at the same time.
It means, that the proper Euclidean geometry GE can be deduced from a system of
basic axioms, and all its propositions can be expressed in terms of the world function
σE of the proper Euclidean geometry GE. Replacing σE in all propositions of the
Euclidean geometry GE by the world function σ of other physical geometry G, one
obtains all propositions of the physical geometry G.

The procedure of the world function replacement is a change of distances be-
tween the points of the space (or space-time). Such a change is a deformation of the
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Euclidean geometry. This method of a physical geometry construction is called the
deformation principle [3]. The deformation principle is very simple. It does not need
a proof of numerous theorems and a test of the geometry consistency. (All theorems
has been proved at the construction of the proper Euclidean geometry). A use of
the deformation principle for the physical geometry construction does not need an
application of the formal logic. The deformation principle admits one to construct
nonaxiomatizable geometries. Most of physical geometries are nonaxiomaitzable,
and they cannot be constructed by the conventional method (deduction of a geom-
etry from axioms). In particular, the Riemannian geometry (σ-Riemannian one),
constructed by means of the deformation principle, has not defects, which are char-
acteristic for the Riemannian geometry, constructed by the conventional method.
There is a fern-parallelism in the σ-Riemannian geometry. The world function is
single-valued. Cutting a hole in the space-time, one does not change the space-time
geometry in the remaining part of the space-time.

Contemporary theory of gravitation as well as the contemporary cosmology are
based on the supposition, that the space-time geometry is a Riemannian geometry.
However, generalization of the general relativity on the case of a physical space-time
geometry shows that the deformation of the space-time geometry of Minkowski
generates a non-Riemannian space-time geometry [4]. The obtained generalization
admits one to obtain the world function of the space-time geometry directly [4]. In
particular, the space-time geometry, generated by a heavy sphere is non-Riemannian.

The world function of a Riemannian geometry satisfies the equation

σ,i (x, x′) gik (x) σ,k (x, x′) = 2σ (x, x′) , σ,i (x, x′) ≡ ∂

∂xi
σ (x, x′) (1.3)

The first approximation of the world function of the space-time, generated by the
heavy sphere of mass M has the form

σ (t1,x1; t2,x2) =
1

2

(
c2

(
1− 4GM

c2 |x2+x1|
)

(t2 − t1)
2 − (x2−x1)

2

)
(1.4)

where G is the gravitational constant. The world function (1.4) does not satisfy
equation (1.3). It describes non-Riemannian space-time geometry, although the
metric tensor coincides with the metric tensor of Newtonian approximation

g00 (x) = c2 − 2
Gm

|x| , g0α = gαβ = 0, α, β = 1, 2, 3 (1.5)

Note, that in Riemannian geometry, constructed for the metric tensor (1.5), the
world function is many-valued, whereas the function of non-Riemannian geometry is
single-valued [4], as it follows from (1.4). This fact tells in behalf of non-Riemannian
geometry.

Note, that a use of physical (non-Riemannian) geometry is not a hypothesis,
which should be tested by experiments. It is a logical necessity, because the Rie-
mannian geometry is incosistent. It means that contemporary theory of gravitation
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and cosmology need a revision. We do not state, that such a revision will lead to
a change of our cosmological conceptions. However, such a change may take place.
For instance, the concept of dark matter, made on the basis of unsatisfactory theory
of gravitation may appear to be invalid.

In this paper we try to obtain the law of free particle motion in non-Riemannian
space-time geometry. This law has been formulated for microparticles, moving in
the arbitrary space-time geometry [7]. This law has been presented in invariant form
(in terms of the world function). Now we present it in terms of differential equations
(in the conventional coordinate form).

2 Motion of a free microparticle in physical space-

time geometry

The state of a simple microparticle is described by its skeleton P1, which consists of
two points P0, P1. These two points form a vector P0P1 = {P0, P1}, which describes
the energy-momentum of the microparticle. The length |P0P1| of vector P0P1 is the
geometrical mass µ of the microparticle

µ = |P0P1| =
√

2σ (P0, P1) (2.1)

where σ is the world function of space-time geometry. The geometrical mass µ is
connected with the usual mass m of the microparticle by means of relation

m = bµ (2.2)

where b is some universal constant. There are complex microparticles, whose skele-
ton Pn consists of n + 1, n = 1, 2, .. space-time points.

The world function of the space-time of Minkowski has the form

σM (P, P ′) = σM (x, x′) =
1

2
gik

(
xi − x′i

) (
xk − x′k

)
(2.3)

gik = diag
{
c2,−1,−1,−1

}
(2.4)

Evolution of the microparticle in the space-time is described by a world chain Tbr of
connected links

Tbr =
⋃
s

P1
s =

⋃
s

T[s,s+1] (2.5)

where any link T[s,s+1] is a set of points R, defined by the relation

T[s,s+1] =
{

R|
√

2σ (Ps, R) +
√

2σ (R,Ps+1) =
√

2σ (Ps, Ps+1)
}

(2.6)

The links PsPs+1 of the world chain have the same length. According to (2.1)
it means that they have the same mass. If the particle motion is free, the adjacent
vectors PsPs+1 and Ps+1Ps+2 are in parallel. It means that

(PsPs+1.Ps+1Ps+2) = |PsPs+1| · |Ps+1Ps+2| , s = 0,±1,±2, ... (2.7)
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where (PsPs+1.Ps+1Ps+2) is the scalar product of vectors PsPs+1 and Ps+1Ps+2.
The scalar product (PQ.RS) of two vectors PQ and RS in physical geometry

is defined by the relation

(PQ.RS) = σ (P, S) + σ (Q,R)− σ (P, R)− σ (Q,S) (2.8)

where P, Q, R, S are the points, which determine the vectors PQ and RS. In the
proper Euclidean geometry the definition of the scalar product (2.8) is equivalent
to the conventional definition of the scalar product in the linear vector space. The
definition (2.8) via world function does not refer to the linear vector space, and it
may be used in the case of such a physical geometry, where one cannot introduce a
linear vector space.

Equivalence (parallelism and equality of lengths) of two vectors PsPs+1 and
Ps+1Ps+2 is written in the form of two equations

(PsPs+1.Ps+1Ps+2) ≡ σ (Ps, Ps+2)− σ (Ps, Ps+1)− σ (Ps+1, Ps+2) = 2σ (Ps, Ps+1)
(2.9)

σ (Ps, Ps+1) = σ (Ps+1, Ps+2) , s = 0,±1,±2, ... (2.10)

By means of relation (2.10) the equation (2.9) can be reduced to the form

σ (Ps, Ps+2) = 4σ (Ps, Ps+1) , s = 0,±1,±2, ... (2.11)

Two equations (2.10), (2.11) describe the world chain of a free microparticle. In
the space-time of Minkowski the timelike links (2.6) of this chain are segments of
the straight line. These segments became infinitesimal, if the lengths |PsPs+1| of
links tend to zero, and world chain transforms into a world line in space-time of
Minkowski. At such a limit the geometrical length µ → 0, and the relation (2.2)
cannot be used for geometrization of the finite mass m of the particle. In this case
the particle mass m becomes some external characteristic of a particle, which is not
connected with the space-time geometry directly.

In the case of arbitrary space-time geometry the link (2.6) is not a segment
of one-dimensional straight, in general. Indeed, according to definition (2.6) the
link T[PsPs+1] is a three-dimensional surface in the 4-dimensional space-time. In the
case of the space-time of Minkowski and timelike vector PsPs+1 the surface T[PsPs+1]

degenerates into a segment of one-dimensional straight line. The same degeneration
takes place in the case of the Riemannian space-time geometry.

This degeneration is connected with original suppositions on the space-time ge-
ometry and on geometry, in general. One supposes, that the geometry is single-
variant and infinitely divisible. In reality the space-time geometry is multivariant
and restrictedly divisible.

Let us explain concept of multivariance. Two vectors P0P1 and Q0Q1 are equiv-
alent (equal) (P0P1eqvQ0Q1), if they are in parallel and their length are equal.

(P0P1.Q0Q1) = |P0P1| · |Q0Q1| (2.12)

|P0P1| = |Q0Q1| (2.13)
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In terms of the world function the relations (2.12), (2.13) are written in the form

σ (P0, Q1) + σ (P1, Q0)− σ (P0, Q0)− σ (P1, Q0) = 2σ (P0, P1) (2.14)

σ (P0, P1) = σ (Q0, Q1) (2.15)

The definition of equivalence of two vectors does not refer to a coordinate system,
or to dimension of the space-time. If vector P0P1 is given, and we are going to
determine vector Q0Q1 at the point Q0, which is equivalent to vector P0P1, we
should solve the system of two equations (2.14), (2.15) with respect to the point Q1

at given points Q0, P0, P1.
In the proper Euclidean space and in the space of Minkowski for timelike vector

P0P1 (σ (P0, P1) > 0) one obtains one and only one solution Q1 of the two equations
(2.14), (2.15). This fact is formulated as follows. The geometry of Minkowski is
single-variant with respect to any point Q0 and with respect to any timelike vector
P0P1.

However, the same geometry of Minkowski is multivariant with respect to any
point Q0 and any spacelike vector P0P1 (σ (P0, P1) < 0). It means, that in the
case of given point Q0 and given spacelike vector P0P1 the system of two equations
(2.14), (2.15) has many solutions for the point Q1.

All axiomatizable geometries, constructed on the basis of the linear vector space
appear to be single-variant, because the construction of the linear vector space does
not admit multivariance. The fact is that, in a multivariant geometry the equiva-
lence relation is intransitive, whereas axioms of the linear vector space demands a
transitive equivalence relation. The axiomatizable geometries cannot be multivari-
ant, because they are constructed on the basis of the linear vector space. Thus,
multivariance and intransitivity of the equivalence relation are incompatible with
axiomatizability of a geometry.

In the nonaxiomatizable space-time geometry the links T[PsPs+1] of the world
chain (2.5) are surfaces. If the space-time geometry is close to the geometry of
Minkowski, the links T[PsPs+1] have the shape of narrow tubes. If the space-time
geometry tends to the geometry of Minkowski, these tubes degenerate into segments
of one-dimensional straight line. However, such a degeneration takes place only, if
vectors PsPs+1 are timelike.

In the case of spacelike vectors PsPs+1 any link T[PsPs+1] has the shape of infinite
3-dimensional hyperplanes, which are tangent to the light cone and contain the
points of one-dimensional segment, restricted by points Ps, Ps+1. Such a shape of
spacelike links T[PsPs+1] is a reason, why there are only timelike world lines. Spacelike
world lines have not been discovered. At the conventional approach to space-time
geometry absence of spacelike world lines is simply postulated.

It is worth to note, that the multivariant space-time geometries exist indeed. In
such a space-time geometry world chains appear to be stochastic, and one needs to
use statistical description to obtain a deterministic description and to make some
prediction on possible evolution of a particle.
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For instance, the world function

σd = σM + d · signσM, d =
~

2bc
= const (2.16)

where σM is the world function (2.3) of the Minkowski geometry, describes the space-
time geometry, which is multivariant with respect to timelike vectors. Here ~ is the
quantum constant and b is the universal constant, defined by the relation (2.2).
World chains are stochastic in this space-time geometry. Statistical description of
stochastic timelike world chains is equivalent to the quantum description in terms
of the Schrödinger equation [8]. The quantum constant ~ appears in the description
from the expression (2.16) for the world function, whereas the universal constant b
disappears, because the statistical description is sensitive to the length µ of links of
the world chain. Replacement of µ by its expression µ = m/b, which follows form
(2.2), leads to disappearance of b and appearance of m instead of µ.

It should note, that the geometry (2.16) is uniform, isotropic and discrete. At
conventional approach to a geometry as a logical construction, an isotropic geom-
etry cannot be discrete. Such a viewpoint takes place, because the conventional
approach connects any discreteness with properties of the manifold. According to
this approach a discrete geometry cannot be given on continual manifold. In real-
ity, a discreteness is determined by properties of the world function. On the same
manifold of Minkowski one can define both a continual geometry and a discrete one.
The space-time geometry (2.16) is discrete, because in this geometry there are no
vectors PQ of the length |PQ|, satisfying the condition

0 < |PQ|2 < d2 (2.17)

where d is the constant, defined in (2.16). Of course, such a space-time should be
qualified as a discrete. See details in [9].

3 General properties of dynamic equations

Dynamic equations (2.10), (2.11) describe evolution of microparticle state, which
is described by the vector PsPs+1. The dynamic equations are finite difference
equations (not differential). They are sensitive to the length of a step (link of
the chain). They are written in the form, which is insensitive to a choice of a
coordinate system and to the dimension of the space-time. All information on
dynamic equations is concentrated in the space-time geometry and in the length of
links of the world chain. We are going to rewrite equations (2.10), (2.11) in the form
of differential equations, tending the length of links to zero. We are interested in
the form of dynamic equations in the case of non-Riemannian space-time geometry.
In particular, we are interested in the form of dynamic equations in the case, when
the space-time geometry is deformed by a presence of a heavy sphere.
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Before to write dynamic equations (2.10), (2.11) in the form of differential equa-
tions, we rewrite them in terms of distance ρ =

√
2σ. We obtain

ρ (Ps, Ps+1) = ρ (Ps+1, Ps+2) , s = 0,±1,±2, ... (3.1)

ρ (Ps, Ps+2) = 2ρ (Ps, Ps+1) , s = 0,±1,±2, .. (3.2)

In the case of the proper Euclidean space all points Ps, s = 0,±1,±2, ... lie on
one straight line. In the space-time geometry of Minkowski all points Ps, s =
0,±1,±2, ... lie on one timelike straight, provided ρ2 (Ps, Ps+1) = ρ2 (P0, P1) > 0.

The equations (3.1), (3.2), as well equations (2.10), (2.11) realize the procedure
of the straight line construction by means of only compasses. One starts from the
segment P0P1 of length ρ0 and draws a sphere SP1,ρ0

of radius ρ0 with the center
at the point P1. Besides, one draws a sphere SP0,2ρ0

of radius 2ρ0 with the center
at the point P0. The spheres SP1,ρ0

and SP0,2ρ0
have the only common point P2. It

is the point P2, which is defined as a common point of spheres SP1,ρ0
and SP0,2ρ0

,
which are tangent to each other at this point. The segment P1P2 has the length
ρ0. One draws spheres SP2,ρ0

and SP1,2ρ0
, which has the only common point P3

and so on. All points , constructed by this method, lie on the same straight line.
This procedure is sensitive to an error of the radius ρ0 in the sense, that the error
δρ0 = αρ0, 0 < α ¿ 1 of the radius generates the error δρ of the point P2 position,
which is larger, than δρ0 ( δρ =

√
αρ0 À δρ0).

One can construct points P0, P1, P2, ... which lie on the same straight in the proper
Euclidean space, if one uses the fact, that adjacent vectors PsPs+1 and Ps+1Ps+2

are in parallel. However, in this case one uses usually parallelism, defined in the
linear vector space. This definition of parallelism refers to a coordinate system and
to the dimension of the Euclidean space. This fact prevents from a use of dynamic
equations in the case of arbitrary space-time geometry, where one cannot introduce
a linear vector space. Dynamic equation (3.2) has been obtained from the equation
(2.9), which describes parallelism of vectors PsPs+1 and Ps+1Ps+2. However, in this
case one uses the definition of parallelism in the form (2.7), which refers to the world
function only. As a result the form of dynamic equations (2.10), (2.11) appears to
be valid in the case of arbitrary physical space-time geometry.

Let us consider dynamic equations (2.10), (2.11) in the space-time, whose geom-
etry is close to that of Minkowski. For simplicity we consider the case of the particle
at rest, where coordinates of the points P0, P1 are

P0 = {−µ,0} , P1 = {0,0} , , P2 = {t,x} (3.3)

Equations of ”spheres” SP0,2µ and SP1,µ are

SP1,µ : t2 − x2 + α1 (t,x) µ2 = µ2, |α1 (t,x)| ¿ 1 (3.4)

SP0,2µ : (t + µ)2 − x2 + α2 (t,x) µ2 = (2µ)2 , |α2 (t,x)| ¿ 1 (3.5)

where the small quantities α1 (t,x) µ2 and α2 (t,x) µ2 take into account a small
deflection of the space-time geometry from the geometry of Minkowski. In fact the
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”spheres” SP0,2µ and SP1,µ are deformed spheres, i.e. the surfaces, which are close
to spheres.

The time coordinate t of the intersection point is defined by the relation

(t + µ)2 − t2 = 3µ2 − (α2 − α1) µ2 (3.6)

or

t = µ

(
1− α2 (t,x)− α1 (t,x)

2

)
(3.7)

In the space-time of Minkowski, where α1 = α2 = 0, one obtains t = µ, x = 0. It
means that three points P0, P1, P2 lie on the same timelike straight line.

One obtains from (3.7) and (3.4), that the spatial coordinates x of the intersection
point are placed on the two-dimensional surface

x2 =

(
−α2 +

(α2 − α1)
2

4

)
µ2 (3.8)

If
α2 < 0 and |α2| , |α1| ¿ 1 (3.9)

there are many intersection points, placed in the small spatial region with radius
of the order

√
|α2|µ. In this case the world chain of the particle is multivariant

(stochastic).
In the case, when

α2 >
(α2 − α1)

2

4
(3.10)

there are no intersection points between the spheres SP0,2µ and SP1,µ, defined by
the relations (3.5), (3.4). It means, that the world chain with geometrical mass µ
(length of the chain link) cannot exist. Such a region of the space-time is a ”dead
region” for microparticles of the geometrical mass µ.

The most interesting case is realized, when rhs of (3.8) vanishes. In this case the
links of the world chain are determined uniquely. The world chain appears to be
deterministic. Deterministic (single-variant) world chain appears in the space-time
geometry of Minkowski and in the Riemannian space-time geometry.

The result on stochasticity of world chains, which are obtained in this section, are
valid only for a simple microparticle (elementary particle), which is described by the
skeleton P1 = {P0, P1}, consisting of two points. Macroparticles (metorites, planets,
stars) consist of many microparticles, connected between themselves by some force
fields. Microparticles cannot move independently and stochastically, because they
are connected between themselves. As a result the motion of all microparticles inside
the macroparticle is not free. It is described by a deterministic (single-valued) world
chain. Any such a deterministic world chain is determined as a mean chain, which is
a result of averaging over the surface (3.8). A result of this averaging of the surface
(3.8) leads to the point P2 = {t,x}, which together with the given point P1 = {0,0}
determines uniquely the next link (P1, P2).
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Thus, to obtain a deterministic world chain of a macroparticle, one needs to pro-
duce an averaging of stochastic world chains of microparticles, which is equivalent to
a statistical description. The obtained mean world chains are described by dynamic
equations in finite difference, which depend on the geometrical mass µ of micropar-
ticles, constituting the macroparticle. To obtain differential dynamic equations, one
needs to go to the limit µ → 0 in finite difference equations of dynamics. As a result
one obtains differential dynamic equations, describing free motion of macroparticles
in the given physical space-time.

Multivariant physical space-time geometries are not considered in the contem-
porary theoretical physics. One believes, that the space-time geometry may not be
nonaxiomatizable (multivariant), because it is not known, how to construct such
geometries (the deformation principle is either unknown, or is not accepted). One
does not admit, that a free motion of microparticles may be stochastic, and sta-
tistical averaging of these stochastic world chains is not considered. One believes,
that the mean world lines of free macroparticles are geodesic lines of the space-time
geometry. Restoring the space-time geometry on the basis of these geodesic lines
one obtains the Riemannian geometry, which is determined by its geodesic lines and
lengths of their segments. One ignores the fact, that there is an intermediate link
between the world lines of free macroparticles and the space-time geometry. This
intermediate link has a form of statistical averaging. As a result different physical
geometries of space-time, having similar mean world lines of free macroparticles, are
substituted by one (Riemannian) geometry.

Such an approach is admissible, when one considers motion of free macroparticles
in a fixed space-time geometry. However, this approach appear to be wrong, when
a generation of the space-time geometry by the matter distribution is considered.
For instance, the world function of the space-time geometry, generated by a heavy
sphere gives in the first approximation [4]

σ(1) (t1,x1; t2,x2) =
1

2

(
c2 (1− V1 (x1,x2)) (t2 − t1)

2 − (x2−x1)
2) (3.11)

where

V1 (x1,x2) =
2GM

c2

√
|x|2

, x =
x1 + x2

2
, ρ0 =

3M

4πR3

In the second approximation we obtain [4]

σ(2) (t1,x1; t2,x2) =
1

2

(
c2 (t2 − t1)

2 − (x2 − x1)
2) + δσ2 (t1,x1; t2,x2) (3.12)

where

δσ2 (t1,x1; t2,x2) = −1

2
V2 (x1,x2) c2 (t2 − t1)

2 + B2 (x1,x2) c (t2 − t1) (3.13)

12



V2 (x1,x2) = V1 (x1,x2) +
3GM

2πR3c2

∫

V

ρ0 (ξ) V1 (ξ, ξ)√
(x− ξ)2

dξ (3.14)

+
3GM

4πR3c2

∫

V

ρ0 (ξ) (−V1 (ξ,x) + V1 (x,x)− V1 (ξ,x2)− V1 (ξ,x1))√
(x− ξ)2

dξ

B2 (x1,x2) = − 3GM

2πR3c2

∫

V

ρ0 (ξ) (V1 (ξ,x2)− V1 (ξ,x1)) dξ (3.15)

and the heavy sphere of the mass M and of radius R is placed at the origin of the
coordinate system.

Comparison of the world function (3.11) of the first approximation, with the
world function (3.12) of the second approximation (3.12) - (3.15) shows that the
iteration process is to converge rapidly, if the gravitational potential is slight, i.e.

2GM

c2 |x| ¿ 1 (3.16)

The well known Schwarzchild solution for gravitational field of a heavy sphere
has the form

ds2 =

(
1− 2GM

c2r

)
c2dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
(3.17)

Gravitational potential V (r) = 2GM
c2r

of (3.17) coincides with the gravitational po-
tential of the first approximation (3.11)

V1 (x1,x2) =
4GM

c2 |x1 + x2| (3.18)

However, it distinguishes from the gravitational potential (3.14) of the second ap-
proximation.

Comparison of expressions (3.11) - (3.14) with exact Schwarzchild solution (3.17)
shows the following differences.

1. Geometry (3.11) - (3.14) is not a Riemannian geometry. Corresponding world
function is obtained directly, whereas in the case of the Schwarzchild solution (3.17)
the space-time geometry is supposed to be Riemannian. Under this supposition it
is obtained by means of the metric tensor, which is obtained as a solution of the
gravitational equations.

2. Potential (3.14) in the metric component g00 depends on the particle mass M
linearly in the Schwarzchild solution, whereas this dependence is not linear in the
case of geometry (3.12) - (3.15).

Both equations (3.17) and (3.12) - (3.15) cannot be true. Although the world
function (3.12) - (3.14) is only a second approximation, (but not an exact solution), it
is closer to the truth, than the Schwarzchild solution (3.17), because the Schwarzchild
solution is based on a use of inconsistent Riemannian geometry.
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In the light of hesitations in consistency of the Riemannian geometry the con-
clusion on existence of the dark matter and other astrophysical conclusions, based
on the contemporary (Riemannian) theory of gravitation may appear to be a little
too previous.

4 Dynamic equations for free particle in the space-

time of Minkowski

At first, we consider application of suggested method to the case of space-time ge-
ometry of Minkowski. This method transforms dynamic equations, written in terms
of finite differences to differential equations of dynamics. Although the obtained
result is trivial, it is interesting in the sense, that it forbids an existence of spacelike
world lines.

We consider two connected links of the world chain, defined by the points
P0, P1, P2,having coordinates

P0 = {y − dy1} , P1 = {y} , P2 = {y + dy2} (4.1)

where
y = {t,y} , dy1 = {dt1, dy1} , dy2 = {dt2, dy2} (4.2)

are coordinates in some inertial coordinate system, where the world function has
the form (2.3). Dynamic equations (2.10), (2.11) have the form

σM (y, y − dy1) = σM (y, y + dy2) (4.3)

4σM (y, y − dy1) = σM (y − dy1, y + dy2) (4.4)

In the developed form one obtains

1

2
c2 (dt1)

2 − 1

2
(dy1)

2 =
1

2
c2 (dt2)

2 − 1

2
(dy2)

2 (4.5)

2c2 (dt1)
2 − 2 (dy1)

2 =
1

2
c2 (dt1 + dt2)

2 − 1

2
(dy1 + dy2)

2 (4.6)

We introduce designations

v1 =
dy1

dt1
, v2 =

dy2

dt2
, β1=

v1

c
, β2=

v2

c
(4.7)

β1 = β−1

2
β̇dt, β1 = β+

1

2
β̇dt, β̇ ≡dβ

dt
, dt =

dt1 + dt2
2

(4.8)

where
v =cβ v̇ = cβ̇ (4.9)

are the mean velocity and the mean acceleration of the particle on the interval
(P0, P2).
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One rewrites equations (4.5), (4.6) in the form

1− β2
1 =

dt22
dt21

− β2
2

dt22
dt21

(4.10)

4− 4β2
1 =

(
1 +

dt2
dt1

)2

−
(

β1 + β2

dt2
dt1

)2

(4.11)

One obtains from equation (4.10) to within (dt)2

dt22
dt21

=
1− β2

1

1− β2
2

=
1−

(
β−1

2
β̇dt

)2

1−
(
β+1

2
β̇dt

)2 = 1 + 2
ββ̇dt

1− β2 +
2
(
ββ̇dt

)2

(
1− β2

)2 = 1 + α (4.12)

where

α = 2
ββ̇dt

1− β2 + 2

(
ββ̇dt

)2

(
1− β2

)2 + O
(
dt3

)
(4.13)

Then
dt2
dt1

= 1 +
1

2
α− 1

8
α2 (4.14)

Substituting (4.8) and (4.14) in (4.11), one obtains

4

(
1−

(
β−1

2
β̇dt

)2
)

=


2 +

ββ̇dt

1− β2 +
1

2

(
ββ̇dt

)2

(
1− β2

)2




2

−


2β +

(
β+

1

2
β̇dt

)

1 +

ββ̇dt

1− β2 +
1

2

(
ββ̇dt

)2

(
1− β2

)2







2

(4.15)

After simplification one obtains

−β̇
2
dt2 = +3

(
ββ̇dt

)2

(
1− β2

)2 − 3β2

(
ββ̇dt

1− β2

)2

− 2

(
ββ̇dt

)2

1− β2 (4.16)

Note, that terms, which are proportional dt disappear from the equation (4.16).
After simplification the equation (4.16) takes the form

β̇
2
dt2 +

(
ββ̇dt

)2

1− β2 = 0 (4.17)

Let us introduce designation

ββ̇ =

√
β2β̇

2
cos φ (4.18)
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where φ is the angle between vectors β and β̇. The equation (4.18) takes the form

β̇
2
(

1 +
β2 cos2 φ

1− β2

)
= 0 (4.19)

If the links of the world chain are timelike, then β2 = v2/c2 < 1, the expression
in brackets of (4.19) is positive, and the equation (4.19) can be satisfied only in the
case, when

β̇ =
1

c

dv

dt
= 0, v = v (t) = const (4.20)

It is the expected unique solution. It should stress, that the unique solutions ob-
tained only in the case of timelike world chain. In the case of spacelike world chain

β̇
2

> 1, and there is such an angle φ between vectors β and β̇, that length
∣∣∣β̇

∣∣∣ of

the vector β̇ is arbitrary. This angle is defined by the formula

cos2 φ =
β2 − 1

β2 < 1 (4.21)

There is no unique solution in the case of spacelike world chain.
Note, that for obtaining of differential equations from dynamic equations in finite

difference, we use the following representation of finite intervals dy1 = {dt1, dy1},
dy2 = {dt2, dy2}

dy1 = cβdt− c

2
β̇ (dt)2 , dy2 = cβdt +

c

2
β̇ (dt)2

dt =
dt1 + dt2

2

5 Dynamic equations for motion of free particle

in the gravitational field of heavy sphere

We consider the same equations (4.3), (4.4), but now in the space-time geometry
with the world function (3.11)

σ (t,y;t′,y′) =
1

2

(
c2 − 2GM√

x2

)
(t− t′)2 − 1

2
(y − y′)2

(5.1)

where

x =
y + y′

2
(5.2)

We shall use designations (4.1), (4.2) and (4.7), (4.8). Besides, we use the designa-
tions

V = V (y) =
GM√
(y)2

, U =
V

c2
(5.3)
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The equations (4.3), (4.4) with the world function (5.1) take the form

1

2

(
1− 2U

(
y − dy1

2

))
− 1

2
β2

1 =
1

2

(
1− 2U

(
y +

dy2

2

))
dt22
dt21

− 1

2
β2

2

dt22
dt21

(5.4)

2

(
1− 2U

(
y − dy1

2

))
− 2β2

1 =
1

2

(
1− 2U

(
y +

dy2 − dy1

2

))(
1 +

dt2
dt1

)2

−1

2

(
β1 + β2

dt2
dt1

)2

(5.5)

It follows from (5.4), that

dt22
dt21

=
1− 2U

(
y − dy1

2

)− β2
1

1− 2U
(
y + dy2

2

)− β2
2

= 1 + α + O
(
dt3

)
(5.6)

where α is an infinitesimal quantity. We shall consider dt as a principal infinitesimal
quantity, and all infinitesimal quantities dy1, dy2, α will be expressed via dt and
(dt)2. The higher powers of dt will be neglected.

One obtains from (4.7), (4.8) and (5.6)

dt2
dt1

= 1 +
α

2
− α2

8
,

dt1
dt2

= 1− α

2
+

3α2

8
(5.7)

dt

dt1
=

1

2
+

1

2

dt2
dt1

= 1 +
α

4
− α2

16
(5.8)

dt

dt2
=

1

2
+

1

2

dt1
dt2

= 1− α

4
+

3

16
α2 (5.9)

dt1
dt

= 1− α

4
+

α2

8
,

dt2
dt

= 1 +
α

4
− α2

8
(5.10)

dt1 =

(
1− α

4
+

α2

8

)
dt, dt2 =

(
1 +

α

4
− α2

8

)
dt (5.11)

dy1 = cβ1dt1 = cβ1

(
1− α

4

)
dt = c

(
β−1

2
β̇dt

) (
1− α

4

)
dt (5.12)

dy2 = cβ2dt2 = cβ2

(
1 +

α

4

)
dt = c

(
β+

1

2
β̇dt

) (
1 +

α

4

)
dt (5.13)

Besides, the following decompositions are useful

U

(
y − dy1

2

)
= U (y) + δ1U, U

(
y +

dy2

2

)
= U (y) + δ2U (5.14)

U

(
y +

dy2 − dy1

2

)
= U (y) + δ2−1U (5.15)
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where

δ1U = −dy1

2
∇U +

1

8
dyα

1 dyβ
1 U,αβ, U,αβ =

∂2U (y)

∂yα∂yβ
(5.16)

δ2U =
dy2

2
∇U +

1

8
dyα

2 dyβ
2 U,αβ (5.17)

δ2−1U =
dy2 − dy1

2
∇U +

1

8
(dyα

2 − dyα
1 )

(
dyβ

2 − dyβ
1

)
U,αβ (5.18)

Using (5.12), (5.13), one obtains for (5.16) - (5.18)

δ1U = −1

2
cβ∇Udt +

1

8
cβ∇Uαdt +

1

4
cβ̇∇U (dt)2 +

c2

8
βαββU,αβ (dt)2(5.19)

δ2U =
1

2
cβ∇Udt +

1

8
cβ∇Uαdt +

1

4
cβ̇∇U (dt)2 +

c2

8
βαββU,αβ (dt)2 (5.20)

δ2−1U =
1

2

(
1

2
cβαdt + cβ̇ (dt)2

)
∇U + O

(
dt4

)
(5.21)

Using (5.6) and (5.14) (5.15), one obtains for the infinitesimal quantity α

α =
2δ2U − 2δ1U + β2

2 − β2
1

1− 2U − β2
2 − 2δ2U

=
2δ2U − 2δ1U + 2ββ̇dt

1− 2U − β2

+

(
2δ2U − 2δ1U + 2ββ̇dt

)(
ββ̇dt + 2δ2U

)

(
1− 2U − β2

)2 + O
(
dt3

)
(5.22)

Let us substitute expansions (5.12) - (5.22) in the dynamic equation (5.5)/ We
obtain after simplifications

1

2
β̇

2
(dt)2 − cβ̇∇U (dt)2 +

1

2

(
cβ∇U + ββ̇

)2

1− 2U − β2 (dt)2 +
c2

2
βαββU,αβ (dt)2 = 0 (5.23)

Note, that the terms of the order of dt disappear.
In terms of variables v, v̇,V , defined by relations (4.9), (5.3) the relation (5.23)

has the form

1

2
v̇2 − v̇∇V +

1

2

(v∇V + vv̇)2

c2 (1− 2c−2V − c−2v2)
+

1

2c2
vαvβV,αβ = 0 (5.24)

One obtains in the nonrelativistic approximation

1

2
v̇2 − v̇∇V = 0 (5.25)

It is evident, that one cannot determine three components of vector v̇ from one
equation (5.25). One can determine only mean value 〈v̇〉 of vector v̇, choosing some
principle of averaging.
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Let us represent v in the form

v̇ = v̇‖ + v̇⊥, v̇‖ = ∇V
(v̇∇V )

|∇V |2 , v̇⊥ = v̇ −∇V
(v̇∇V )

|∇V |2 (5.26)

where v‖ and v⊥ are components of v, which are parallel to ∇V and perpendicular
to ∇V correspondingly. Let us suppose, that the mean value 〈v̇〉 of vector v̇ is
directed along the vector ∇V. In this case 〈v̇⊥〉 = 0, although 〈v̇2

⊥〉 > 0, in general.
One obtains from (5.25)

v̇2
‖ − 2v̇‖ |∇V |+ 〈

v̇2
⊥
〉

= 0 (5.27)

or

v̇‖ = |∇V | ±
√
|∇V |2 − 〈v̇2

⊥〉 (5.28)

It follows from (5.28), that

0 <
〈
v̇2
⊥
〉 ≤ |∇V |2 , 0 < v̇‖ < 2 |∇V | (5.29)

At any admissible value 〈v̇2
⊥〉 the quantity v̇‖ vibrates around its mean value

〈
v̇‖

〉
=

|∇V |. Taking into account that 〈v̇⊥〉 = 0, one obtains, that

〈v̇〉 = ∇V = ∇GM

r
(5.30)

Any macroparticle moves in the gravitational field with the acceleration (5.30).
Note, that for obtaining of this result only supposition 〈v̇⊥〉 = 0 is important.
Variation of 〈v̇2

⊥〉 do not change the direction of the acceleration 〈v̇〉 .According to
(5.28) this variation can change only

∣∣v̇‖
∣∣, which can be compensated by a proper

change of the gravitational constant G.
In the nonrelativistic case the acceleration v̇ of a macroparticle in the gravita-

tional field is determined be the mean value 〈v̇〉 = ∇V . This result agrees with the
Newtonian theory of gravitation.

In the general case we obtain instead of (5.27)

v̇2
‖ − 2v̇‖ |∇V |+ 〈

v̇2
⊥
〉

= −
(v∇V )2 + 2 (v∇V )

(
v

〈
v̇‖

〉)
+

〈(
v‖v̇‖ + v⊥v̇⊥

)2
〉

c2 − 2V − v2
− 1

c2
vαvβV,αβ(5.31)

This result distinguishes from the conventional result of the general relativity, be-
cause it depends on the second derivatives V,αβ of the gravitational potential. Equa-
tion (5.31) can be written in the form of quadratic equation with respect to v̇‖

v̇2
‖

(
1 +

v2
‖

c2 − 2V − v2

)
− 2v̇‖

(
|∇V | − (v∇V ) v‖

c2 − 2V − v2

)
+

〈
v̇2
⊥
〉

= −(v∇V )2 +
〈
(v⊥v̇⊥)2〉

c2 − 2V − v2
− 1

c2
vαvβV,αβ (5.32)
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6 Concluding remarks

Our consideration of free particle motion led to the conclusion, that the nonrel-
ativistic motion of a free microparticle is multivariant (stochastic) already in the
gravitational field of a heavy sphere. It is multivariant for other gravitational fields
also, because the gravitational field has been considered in the general form of grav-
itational potential. Free motion of a macroparticle appears to be single-variant
(deterministic), because stochastic behavior of different microparticles inside the
macroparticle is independent. Averaging over many microparticles, one obtains
a deterministic free motion. In the nonrelativistic case this average motion of a
macroparticle coincides with predictions of the Newtonian theory of gravitation,
which have been tested experimentally. In the relativistic case there are differences
between predictions of the gravitational theory, based on physical space-time geom-
etry, and predictions of the contemporary gravitational theory (general relativity),
based on the Riemannian space-time geometry.

The Riemannian space-time geometry is an approximate theory of the space-
time, because it is based on the false supposition, that the Riemannian geometry
is the most general geometry, which could be used for the space-time description.
Besides, the Riemannian geometry is constructed as a mathematical geometry, i.e.
the geometry is considered as a logical construction, but not as a science on mutual
disposition of geometrical objects. In particular, the space-time distance (world
function) appears to be many-valued even in the gravitational field of a heavy sphere.
It is inadmissible, if the space-time geometry is a physical geometry, i.e. a science on
mutual disposition of geometrical objects. The world function is to be single-valued,
as the main characteristic of the geometry.

The contemporary theory of gravitation admits one to determine only metric ten-
sor, which determines the world function only under supposition on the Riemannian
space-time geometry. The new conception (generalization of the general relativity
on the case of a physical space-time geometry) admits one to determine the world
function directly, and this world function appears to describe a non-Riemannian
geometry even in the case of the gravitational field of a heavy sphere. Generaliza-
tion of the general relativity appeared to be possible, only when we refuse a use of
nonrelativistic concepts in the relativity theory. In particular, the nonrelativistic
concept of nearness of two events has been replaced by the relativistic one [4].

Interrelation between the multivariant physical space-time geometry and conven-
tional Riemannian geometry may be described as follows. The Riemannian geometry
is a single-variant approximation of the physical geometry, generated by our poor
knowledge of a geometry. From viewpoint of physical geometry this approximation
looks as follows. Multivariant world chains of microparticles are replaced by av-
eraged world chains, which are interpreted as exact world lines of particles. The
space-time geometry is constructed on the basis of these ”exact” world lines in such
a way, that these world lines are geodesics of the geometry. Such an approximation
is possible at large scales for description of the particle motion, although one cannot
be sure, that this approximation is effective at description of the matter distribution
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influence on the space-time geometry, because the Riemannian geometry is incon-
sistent. At small scales, when the multivariance of the microparticle motion can be
observed directly (for instance, diffraction of electrons on small hole), one uses the
quantum description, which takes into account some properties of the multivariant
motion.

The contemporary theory of gravitation, as well interpretation of astronomical
observations, based on this theory, needs a revision. In particular, one needs to
revise such concepts of the contemporary theory as ”black hole” and ”dark matter”.
At the present stage of investigations, one cannot state, that these concepts describe
fictitious objects. However, these concepts becomes disputable, as far as they are
introduced on the basis of a doubtful theory of gravitation. In any case a revision
of the contemporary gravitational theory is necessary.
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