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Abstract

One considers a free neutral particle whose world chain is a spacelike helix
with timelike axis. Such world chain appears to be possible in some dis-
crete space-time geometry. Radius of the helix may be macroscopic. This
fact agrees with the results of the OPERA experiment, where superluminal
velocity of a neutrino has been discovered. The helical world chain can be
approximated by a world tube of macroscopic radius. Discovery of the neu-
trino superluminal velocity is an end effect of the thick world tube, but not the
mean superluminal velocity of neutrino. The discrete space-time geometry has
no definite metric dimension. Mathematical technique of linear vector space
(technique of differential geometry) cannot be used in the discrete space-time
geometry. Coordinateless description of the discrete space-time geometry is
used.

Key words: discrete geometry; metric dimension and coordinate dimension; ge-
ometry without metric dimension; superluminal velocity; tachyons;

1 Introduction

Investigation of dynamic system SD, described by the Dirac equation, has shown,
that the classical approximation of SD is a classical dynamic system SDcl, which has
ten degrees of freedom [1, 2, 3, 4, 5]. The dynamic system SDcl describes a free
particle, whose world line is a spacelike helix with timelike axis. The particle moves
along the world line with superluminal velocity. At first sight, a free particle cannot
move with superluminal velocity along a helix. Such a viewpoint is conditioned by
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the fact, that we do not deal with discrete space-time geometry and do not know
its properties.

It appears, that there exist such space-time geometries, where a free particle may
move along a spacelike helical world line [6]. This helical world line forms a world
tube, describing the mean particle motion. Such a particle has no electric charge.
It may be interpreted as a neutrino. In the paper [6] one considered a model of such
a space-time geometry, where a free particle may have a helical world line. Here we
hope to investigate more real space-time geometry, were parameters of the neutrino
world tube are close to results of observation.

Experiment [7] shows, that neutrinos pass the distance 730km faster, than the
light signal. The time of the lead is about 60.7 ± 6.9ns. It corresponds to differ-
ence (v − c) c−1 ≈ 3 × 10−5. This experiment is interpreted usually as a discovery
of superluminal speed of the neutrino mean motion, and generates problems, con-
nected with the relativity principles. Such interpretation is based on the supposition,
that the mean neutrino motion is described by one-dimensional straight world line.
However, if the mean neutrino motion is described by a world tube, the OPERA
experiment is explained freely, as an effect, conditioned by the neutrino world tube
thickness. Estimation of the world tube radius from the OPERA experiment gives
a macroscopic size of the tube radius: R > 2.5km. Such a result looks rather unex-
pected, because one believes that all parameters of the elementary particles motion
are microscopic.

In this paper we investigate the neutrino world tube in the case of a more realistic
space-time geometry. As a result one obtains the neutrino motion structure. It
appears, that the space-time geometry may be such one that the radius of the
neutrino tube appears to be macroscopic. Space-time geometry in microcosm is
either discrete, or partly discrete. The simplest example of a discrete space-time
geometry Gd is described by the world function

σd (P,Q) = σM (P,Q) +
λ2

0

2
sgn (σM (P,Q)) , ∀P,Q ∈ Ω (1.1)

where σM is the world function of the Minkowski geometry GM, and Ω is the set of
points (events) where the space-time geometry of Minkowski is given. The geometry
(1.1) is discrete in the sense that the distance ρd (P,Q) =

√

2σd (P,Q) between the
points P and Q satisfies the restriction

|ρd (P,Q)| /∈ (0, λ0) , ∀P,Q ∈ Ω (1.2)

Here λ0 is the characteristic length of the discrete geometry. The inequality means
that in the discrete geometry Gd there are no close points. The constraint (1.2) may
be described also in terms of the relative density of points

nd ≡ dσM

dσd

=

{

1 if |σd| ≥ λ2

0

2

0 if |σd| < λ2

0

2

(1.3)

One can compare relative densities of points in Gd and in GM, because they given
on the same set of points. Here the points density in the interval (0, λ0) of values
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|ρd| vanishes, whereas in other intervals of values |ρd| the point density is the same
as in the Minkowski geometry.

The granular space-time geometry Gg, described by the world function

σg = σM +
λ2

0

2

{

sgn (σM) if |σM| > σ0 > 0
σM

σ0
if | σM| < σ0

(1.4)

is discrete only partly. Here σ0 > 0 is a constant of the order of λ2
0. The relative

density ng of points in Gg has the form

ng =
dσM

dσg

=

{

1 if |σg| ≥ λ2

0

2
σ0

σ0+λ2

0
/2

if |σg| < λ2

0

2

(1.5)

If σ0 → 0, the relative density ng of points in Gg tends to the relative density of
points in the discrete space-time geometry Gd. In general, the space-time geometry
Gg may be considered as a partly discrete geometry, because in the interval (0, λ0) of
the values |ρ| the relative point density is less, than in the geometry of Minkowski.
We shall refer to space-time geometry (1.4) as the granular space-time geometry Gg.
The granular geometry Gg has the properties of the discrete geometry. It is a kind
of discrete geometry, and sometimes we shall use the name discrete geometry for the
granular geometry.

Granular geometry and discrete geometry are special cases of the physical ge-
ometry, which is defined as a geometry, described in terms and only in terms of the
world function, given on some point set Ω

σ : Ω × Ω → R, σ(P,Q) = σ(Q,P ), σ(P, P ) = 0, ∀P,Q ∈ Ω (1.6)

The metric geometry is a special case of the physical geometry, equipped by the
triangle axiom. The distant geometry [8, 9] is free of the triangle axiom, but it uses
the restriction σ(P,Q) ≥ 0, ∀P,Q ∈ Ω.

The discrete geometry (and other physical geometries) is constructed as a gen-
eralization of the proper Euclidean geometry. To carry out such a generalization,
the proper Euclidean geometry GE has to be presented in the σ-representation [10],
where all concepts, quantities, and geometrical objects of the proper Euclidean ge-
ometry are expressed via the world function σE of the proper Euclidean geometry.
The reason of such a demand lies in the fact that usually all concepts of the Eu-
clidean geometry (dimension, manifold, smooth line, differential relations) relate to
the differential (continuous) geometry, and there are no such concepts in the dis-
crete geometry. The only concept which is common for the discrete geometry and
for the proper Euclidean geometry is the world function σ (or the distance function
ρ =

√
2σ).

Being presented in terms of the world function σE, the proper Euclidean geometry
GE contains two kinds of relations: (1) general geometric relations, which contains
only world function σE, and (2) special relations of the geometry GE, which are
constraints, imposed on the world function σE.
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Let us adduce some general geometric definitions:
Vector PQ is an ordered set {P,Q} of two points P,Q (but not an element of the

linear vector space as usually). Scalar product (P0P1.Q0Q1) of two vectors P0P1

and Q0Q1 is defined by the relation

(P0P1.Q0Q1) = σ (P0, Q1) + σ (P1, Q0) − σ (P0, Q0) − σ (P1, Q1) (1.7)

The length |PQ| of the vector PQ is defined by the relation

|PQ|2 = (PQ.PQ) = 2σ (P,Q) (1.8)

n vectors P0P1,P0P2, ...P0Pn are linear dependent, if and only if the Gram
determinant

Fn (Pn) = det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n, Pn ≡ {P0, P2, ...Pn} (1.9)

vanishes
Fn (Pn) = 0 (1.10)

Two vectors P0P1 and Q0Q1 are equivalent (equal) (P0P1eqvQ0Q1), if the vectors
are in parallel

(P0P1 � Q0Q1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| (1.11)

and their lengths are equal

σ (P0, P1) = σ (Q0, Q1) (1.12)

According to (1.11), (1.12) the equivalence definition has the form

P0P1eqvQ0Q1 : (P0P1.Q0Q1) = |P0P1|2 ∧ |P0P1|2 = |Q0Q1|2 (1.13)

All general geometric relations (1.7) - (1.13) are obtained as properties of the
linear vector space. However, they do not contain any reference to the linear vector
space. They are written in terms of the world function σE of the proper Euclidean
geometry, and they may be used in any physical geometry even in the case, when
one cannot introduce linear vector space in this geometry. To use the relation (1.7)
- (1.13) in a discrete geometry, it is sufficient to use the world function σd of the
discrete geometry Gd in them.

Formally general geometric relations (1.7) - (1.13) realize some processing of
information, contained in the world function. Such a processing is to be universal,
i.e. it is uniform for all generalized geometries. This method of processing is known
for the proper Euclidean geometry GE. It may applied for construction of general
geometric relations for other generalized geometries. In the case, when one can
introduce linear vector space, such a processing admits one to construct the particle
dynamics in the space-time geometry, equipped by the linear vector space. As far

4



as the general geometric relations (1.7) - (1.13) are universal in the sense that they
do not refer to the linear vector space, they may be used for construction of the
particle dynamics in those space-time geometries, where introduction of the linear
vector space is impossible.

The special relations of the proper Euclidean geometry have the form [11]:
I. Definition of the metric dimension:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(

Ωk+1
)

= 0, k > n (1.14)

where Fn (Pn) is the n-th order Gram’s determinant (1.9). Vectors P0Pi, i =
1, 2, ...n are basic vectors of the rectilinear coordinate system Kn with the origin at
the point P0. The covariant coordinates of the point P in the coordinate system Kn

are defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (1.15)

The metric tensors gik (Pn) and gik (Pn), i, k = 1, 2, ...n in Kn are defined by the
relations

k=n
∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (1.16)

II. Linear structure of the Euclidean space:

σE (P,Q) =
1

2

i,k=n
∑

i,k=1

gik (Pn) (xi (P ) − xi (Q)) (xk (P ) − xk (Q)) , ∀P,Q ∈ Ω

(1.17)
where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the vectors P0P, P0Q respectively in the coordinate system K.

III: The metric tensor matrix glk (Pn) has only positive eigenvalues gk

gk > 0, k = 1, 2, ..., n (1.18)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (1.19)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution. Conditions I –
IV contain a reference to the dimension n of the Euclidean space, which is defined
by the relations (1.14).

Special relations of the proper Euclidean geometry GE may be not valid for other
physical geometries. In some cases these relations may used partly. For instance,
the metric dimension may be defined locally. Instead of constraint (1.14) one uses
the condition

∀P0 ∈ Ω, ∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk (Pk) = 0, k > n
(1.20)
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where all skeletons Pn contain only infinitely close points. The conditions (1.20)
determine the metric dimension for locally flat (Riemannian) geometry.

All relations I – IV are written in terms of the world function. They are con-
straints on the form of the world function of the proper Euclidean geometry.

The proper Euclidean geometry looks in the σ-representation quite different, than
in conventional representation on the basis of the linear vector space. For instance,
such a quantity as dimension has two different meanings in the σ-representation. On
one hand, the metrical dimension nm is the maximal number of linear independent
vectors, which is determined by the relations (1.14). On the other hand, the coor-
dinate dimension nc, is a number of coordinates, which is used at the description
of the point set Ω. In the proper Euclidean geometry GE the coordinate dimension
nc = nm, and this fact is a corollary of special (not general geometric) relations
(1.14), (1.15)

In general, the coordinate labelling of points of Ω has no relation to the geometry.
In the proper Euclidean geometry the two dimensions coincide, because the coordi-
nate dimension nc is determined by the special conditions (1.14), (1.15), which are
characteristic for the proper Euclidean geometry. In the geometry Gd the number
nm of linear independent vectors is more, than the number of coordinates nc. For
instance, for six points P5 = {P0, P1...P5} and five vectors

P0P1 = {l, 0, 0, 0} , P0P2 = {0, l, 0, 0, 0} , P0P3 = {0, 0, l, 0} ,

P0P4 = {0, 0, 0, l} , P0P5 = {a, 0, 0, 0}

the Gram determinant F5(P5) does not vanish in the geometry Gd with the world
function (1.1). One obtains for the case d = λ2

0/2 � a2, l2

F4(P4) =

∣

∣

∣

∣

∣

∣

∣

∣

l2 + d 0 0 0
0 −l2 − d −2d −2d
0 −2d −l2 − d −2d
0 −2d −2d −l2 − d

∣

∣

∣

∣

∣

∣

∣

∣

= −l8 − 4l6d + O
(

d2
)

(1.21)

F5(P5) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l2 + d 0 0 0 al + 3
2
d

0 −l2 − d −2d −2d d
0 −2d −l2 − d −2d d
0 −2d −2d −l2 − d d

al + 3
2
d d d d a2 + d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= d
(

−a2l6 + 3al7 − l8
)

+ O
(

d2
)

(1.22)

It means that, in general, the metric dimension nm ≥ 5 in Gd. In Gd the metric di-
mension nm cannot coincide with the coordinate dimension nc. It means essentially
that one cannot introduce a finite number of linear independent basic vectors and
expand space-time vectors over these basic vectors. It is very unexpected, because
the conventional construction of a differential geometry (for instance, the Rieman-
nian one) starts, giving n-dimensional manifold with a coordinate system on it. Of
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course, one assumes, that the number of linear independent basic vectors at any
point is equal to n = nm = nc. Only in this case one can expand vectors over
basic vectors and use operations, defined in the linear vector space. In the case of
a discrete space-time geometry, where nm 6= nc, the linear vector space cannot be
introduced, although the coordinate system can be introduced, and the coordinate
dimension nc = 4 as in the space-time geometry of Minkowski. Four coordinates
x = {x0, x1, x2, x3}, xk ∈ R are defined as usually.

Note, that the conditions (1.14), defining metric dimension nm contain a lot of
constraints, and all they are special conditions of the proper Euclidean geometry.
It means that there is a lot of physical geometries, where nm 6= nc, and one cannot
introduce a linear vector space there. In the limit d → 0, F5(P5) = 0 in (1.22), and
Gd transforms to GM. In this case the metric dimension nm = 4 coincides with the
coordinate dimension nc = 4. It means that one may use approximately the space-
time geometry GM in the case, when typical lengths l of vectors is much greater,
than the elementary length λ0. In this case one may set approximately λ0 = 0, and
suppose that nm = nc.

The set of the Gram determinants values Fn (Pn), n = 2, 3, ... may be such, that
one cannot introduce the metric dimension nm. Apparently, the discrete space-time
geometries are geometries without a definite metric dimension. Such ”dimension-
less” geometries look especially exotic. Contemporary researchers deal only with
space-time geometries of definite dimension. They can hardly conceive properties
of ”dimensionless” space-time geometries. On the other hand, the classical particle
dynamics does not work in microcosm, described by the geometry of Minkowski.
As far as the discrete (”dimensionless”) space-time geometries are not known for
most researchers, they use quantum dynamics, which imitates the discrete geome-
try properties. This imitation is arbitrary and desultory. Besides, this imitation is
not complete. There are such properties of real particle dynamics, which cannot be
imitated by quantum dynamics in the space-time of Minkowski.

We see that coincidence of metric dimension nm with the coordinate dimension
nc and a construction of a smooth manifold with the dimension n = nm = nc is
a special property of the proper Euclidean geometry GE, which is not a general
geometric property. The conventional method of the differential geometry construc-
tion starts from the definition of a smooth manifold with fixed dimension. Such a
method is not a general method of the generalized geometries construction, because
it uses special properties of GE, which, generally speaking, are not characteristic for
all generalized geometries. In general, a use of the coordinate description for the
generalized geometries construction is a use of special properties of the proper Eu-
clidean geometry GE for such a construction. Such an approach cannot be a general
method of the generalized geometries construction. Using special properties of GE,
one obtains only a part of possible generalized geometries. In particular, a use of
the coordinate description does not admit to construct geometries with indefinite
metric dimension and with intransitive equality relation. However, the coordinate
labelling of points of Ω has nothing to do with a construction of a manifold. The
coordinate labelling of points may be used always, and it has no relation to a con-
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struction of generalized geometries. The coordinate labelling becomes to deal with
the generalized geometry construction, when one imposes the condition nc = nm.

The relation nc = nm is a special property of the proper Euclidean geometry GE,
and it may be wrong for many physical geometries, because physical geometries may
have no definite metric dimension. Using the relation nc = nm at the construction
of a generalized geometry, one may meet such a situation, when the real space-time
geometries appear beyond the scope of consideration.

2 Particle dynamics in the discrete space-time

geometry

In the discrete space-time geometry there are no smooth world lines and no differen-
tial relations. The state of a particle cannot be described by its position and momen-
tum, because the momentum is defined as a derivative along a smooth world line.
In this case one uses the skeleton conception of particle dynamics [12]. According
to this conception the particle state is described by its skeleton Pn = {P0, P1, ...Pn}.
The skeleton is a discrete analog of the frame, attached rigidly to a physical body.
Tracing the skeleton motion one traces the physical body motion. Dynamics of an
elementary particle, having initial skeleton Pn = {P0, P1, ...Pn}, is described by the
world chain

CPn
=

∞
⋃

k=0

P (k)
n , P (s)

n =
{

P
(s)
0 , P

(s)
1 , ...P (s)

n

}

, P (0)
n = Pn, (2.1)

P
(s+1)
0 = P

(s)
1 s = 0, 1, 2, ... (2.2)

Connection between adjacent links (skeletons) of the chain is realized by the relation
(2.2). Direction of the skeleton evolution in the space-time is described by the leading

vector P
(s)
0 P

(s)
1 = P

(s)
0 P

(s+1)
0 . If the motion of the elementary particle is free, the

adjacent links Pn
(s) and Pn

(s+1) are equivalent in the sense that

P (s)
n eqvP (s+1)

n : P
(s)
i P

(s)
k eqvP

(s+1)
i P

(s+1)
k , i, k = 0, 1, ...n, s = ...0, 1, 2, ...

(2.3)
Relations (2.1) - (2.3) realizes coordinateless description of the free elementary

particle motion. In the simplest case, when the space-time is the space-time of
Minkowski, and the skeleton consists of two points P0, P1 with timelike leading vector
P0P1, the coordinateless description by means of relations (2.1) - (2.3) coincides with
the conventional description. The conventional classical dynamics is well defined
only in the Riemannian space-time. The coordinateless dynamic description (2.1) -
(2.3) of elementary particles is a generalization of the conventional classical dynamics
onto the case of arbitrary space-time geometry.

We investigate now, whether a world chain with a spacelike leading vector may
form a helix with timelike axis. If it is possible, then we try to investigate, under
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which world function such a situation is possible. We consider the world function
σg of the form

σg = σM+
λ2

0

2
f

(

σM

σ0

)

, f (x) =

{

sgn (x) if |x| > 1
Cx + εg (x) if |x| ≤ 1

, σ0 = const > 0

(2.4)
g (x) = −g (−x) , 0 ≤ ε � 1 (2.5)

where C is a constant, which is determined from the relation

C + εg (1) = 1

The function f
(

σM

σ0

)

should be determined from the condition that the world chain

with spacelike leading vectors P
(s)
0 P

(s)
1 forms a helix with timelike axis. The shape

of the chain is determined by leading vectors.
To estimate the form of σg as a function of σM at σM < σ0, it is useful to

consider the world chain, consisting only of spacelike leading vectors P0P1, P1P2,
P2P3,...Other vectors of the skeleton will be considered later, when one needs to
reduce the chain wobbling.

The world chain wobbling depends on difference between the number Ndyn of
dynamic equations and the number Nv of dynamic variables. In the case of simplest
skeleton with the number of points n+1 = 2, Ndyn = 2 and Nv = 4 the vectors of the
chain are determined ambiguous, and world chain wobbles. In the case of timelike
vectors the wobbling amplitude is of the order of λ0, and one obtains quantum effects
[13]. In the case of spacelike vectors the wobbling amplitude is infinite, as a result
one cannot trace the world chain of spacelike vectors. It does not mean that the
tachyon does not exist. It means simply that tachyon is unobservable.

If the number of the skeleton points n + 1 = 3, Ndyn = 6 and Nv = 8. Although
the difference Nv − Ndyn = 2 is the same, the situation may be changed, because
some skeleton vectors are timelike, and the wobbling amplitude may be reduced.
As a result the particle (neutrino) with three-point skeleton and with the spacelike
leading vector may appear to be observable. This case should be investigated.

Finally, if the number of the skeleton points n + 1 = 4, Ndyn = Nv = 12, one
should expect that the wobbling will be absent.

The chain describes the free particle motion, and its links satisfy the equations
(2.3) We suppose that the chain is a helix with timelike axis in the space-time. Let
the points ...P0, P1, ... have the coordinates

Pk = {kl0, R cos (kϕ) , R sin (kϕ) , 0} , k = ...0, 1, 2, ... (2.6)

All points (2.6) lie on a helix with timelike axis. The quantities R, l0, ϕ are pa-
rameters of the chain. We suppose, that the radius R of the helix has macroscopic
size. We investigate, if it is possible such a space-time geometry (2.4), that the
world chain, consisting of connected vectors P0P1, P1P2, P2P3,... form a helix
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with macroscopic radius R, although its parameters l0, l1 = 2R sin ϕ
2

are small in
the sense, that

|l0| , |l1| <
√

2σ0, l1 = 2R sin
ϕ

2
(2.7)

To obtain connection between parameters l0, l1, ϕ, it is sufficient to solve equations,
connecting adjacent leading vectors P0P1, P1P2, which have the form

(P0P1.P1P2)g = |P0P1|2g (2.8)

|P0P1|2g = |P1P2|2g (2.9)

Here index ”g” means that the quantities are calculated in the space-time geometry
Gg, whose world function σg is chosen in the form (2.4) where g is some function
g (x) = −g (−x), x ∈ (−1, 1) and ε � 1.

We are to verify that two adjacent vectors P0P1 and P1P2 satisfy the relations
(2.8), (2.9), if

P0 = {0, 0, 0, 0} , P1 = {l0, l1, 0, 0} , P2 = {2l0, l1 cos ϕ, l1 sin ϕ, 0} (2.10)

and l20 < l21. The points (2.10) correspond to three points of the helix (2.6). It is
sufficient to verify, that the points (2.10) satisfy equations (2.8), (2.9), because in
this case all other pairs of adjacent points (2.6) will satisfy equations of the form
(2.8), (2.9).

It is important to keep in mind that the vectors

P0P1 = {l0, l1, 0, 0} , P1P2 = {l0, l1 (cos ϕ − 1) , l1 sin ϕ, 0} (2.11)

are not unique solution of the equations (2.8), (2.9). There is a lot of other solutions,
which lead to unpredictable wobbling of the world chain (2.6) [12]. Amplitude of this
wobbling is infinite. The world chain of a pointlike particle, described by two-point
skeleton P2 = {P0, P1} with spacelike vector P0P1, is unobservable, because it is
impossible to trace such a world chain. One cannot trace the world chain, because
the spatial distance between points Ps and Ps+1 may be infinite in any coordinate
system. It means that the statement of the relativity theory on impossibility of
the tachyons existence is strongly overstated. Tachyons may exist, but they are
unobservable.

However, the tachyon with the skeleton P3 = {P0, P1, Q1} and spacelike leading
vector P0P1 may be observable, because wobbling of its world chain is finite, and
one may trace this world chain.

Considering equations (2.8), (2.9), we write them in the Minkowski space-time,
setting

σg (P0, P1) = σM (P0, P1) + d (P0, P1) , d (P0, P1) ≡
λ2

0

2
f

(

σM (P0, P1)

σ0

)

(2.12)

Then equations (2.8), (2.9) take the form

(P0P1.P1P2)M + w (P0, P1, P1, P2) = |P0P1|2M + 2d (P0, P1) (2.13)
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|P0P1|2M = |P1P2|2M (2.14)

where

w (P0, P1, P3, P4) = d (P0, P4) + d (P1, P3) − d (P0, P3) − d (P1, P4) (2.15)

Dynamic equations (2.13), (2.14) may be treated as a description of the particle
motion in the space-time geometry of Minkowski under influence of force fields
w and d . In other words, we pass from description in Gg to description in the
Minkowski space-time geometry GM, introducing additional force fields, generated
by the geometry Gg. Such a passage admits one to use conventional mathematical
technique of the Minkowski geometry.

Further we shall use the scalar product only in the space-time of Minkowski. For
brevity index ”M” will be omitted. We present points (2.10) in the form

P0 = {0, 0, 0, 0} , P1 = l, P2 = l+q + α (2.16)

P0P1 = l, P1P2 = q + α, P0P2 = l + q + α (2.17)

Here

l = {l0, l1, 0, 0} , q = {l0, l1 cos ϕ, l1 sin ϕ, 0} , α = {α0, α1, α2, α3} = {α0,α}
(2.18)

Vector α describes wobbling of the point P2 near the ”helical” position of the point
P2 = l + q.

To determine the form of the world function , we set α = 0 in (2.16), (2.17). For
|P0P1|2, |P1P2|2, |P0P2|2 and w in (2.13) one obtains dynamic equations

|P0P1|2M = |P1P2|2M = 2σM (P0, P1) = l20 − l21 ≡ l2, l20 < l21 < 0 (2.19)

|P0P2|2M = 4l2 + 4l21 sin2 ϕ

2
, l2 < 0, l20, l

2
1 < σ0 (2.20)

w (P0, P1, P1, P2) =
λ2

0

2

(

f

(

2l21 sin2 ϕ
2

+ 2 (l20 − l21)

σ0

)

− 2f

(

l20 − l21
2σ0

))

(2.21)

Setting
l2 = l20 − l21 = −2νσ0, ν > 0 (2.22)

a =
2l21
σ0

sin2 ϕ

2
, κ =

σ0

λ2
0

(2.23)

dynamic equation (2.8) may be written in the form

aκ + f (a − 4ν) = −4f (ν) (2.24)

Here the function f is an antisymmetric function, defined by the relation (2.4).
Dynamic equation (2.6) transforms to the identity.

After a use of (2.4) equation (2.24) turns into

a (κ + 1) − εg (4ν − a) + 4εg (ν) = 0 (2.25)
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As far as a = O (ε), then

a (κ + 1) − ε (g (4ν) − ag′ (4ν) − 4g (ν)) = O
(

ε2
)

(2.26)

a =
ε (g (4ν) − 4g (ν))

κ + 1 − εg′ (4ν)
=

ε (g (4ν) − 4g (ν))

κ + 1
+ O

(

ε2
)

(2.27)

It follows from (2.27), that a may be a small quantity, if ε � 1. According to (2.23)
a must be positive. It is possible, if

g (4ν) > 4g (ν) , ν > 0, 0 < ε � 1 (2.28)

According to (2.7) and (2.23) one obtains

R =
l1

2 sin ϕ
2

=
l21√
2aσ0

=
l1√
ε

l1√
2σ0

√

1 + σ0

λ2

0

√

(g (4ν) − 4g (ν))
(2.29)

It means that the radius R of helix may be macroscopic, if ε is small enough.
The result obtained

P1P2 = q, P0P2 = l + q (2.30)

corresponds to position of the point P2 on the helix (2.6). However, there are another
solutions of equations (2.8), (2.9), where the point P2 is described by relations (2.16)
and vectors (2.17)

P1P2 = q + α, P0P2 = l + q + α (2.31)

Here vector α describes wobbling of the point P2. It satisfies the dynamic equations

l2 = (q + α)2 (2.32)

(l.q + α) + w (P0, P1, P1, P2) = l2 + 2d

(

l2

2

)

(2.33)

which are reduced to the form

α2 + 2 (q.α) = 0 (2.34)

2l21 sin2 ϕ

2
+ (l.α) +

λ2
0

2
f

(

2l2 + 2l21 sin2 ϕ
2

+ (l.α)

σ0

)

− 2λ2
0f

(

l2

2σ0

)

= 0 (2.35)

Supposing that (l.α) = l0α0−lα is a small quantity and expanding (2.35) over (l.α),
one obtains from (2.35)

(l.α) + ε
λ2

0

2
g′
(

2l2 + 2l21 sin2 ϕ
2

σ0

)

(l.α)

σ0

= 0 (2.36)

or

(l.α) = l0α0 − l1α1 = 0, α0 =
l1α1

l0
(2.37)
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Substituting α0 from (2.37) in (2.34), one obtains

2 (l1 − l1 cos ϕ) α1 − 2l1 sin ϕα2 +

(

l1α1

l0

)2

− α2
1 − α2

2 − α2
3 = 0 (2.38)

Taking into account that ϕ is small and setting for simplicity ϕ = 0, one obtains for
spatial components of vector α

(

(

l1
l0

)2

− 1

)

α2
1 − α2

2 − α2
3 = 0 (2.39)

As far as l21 > l20, the first term in (2.39) is positive, and components of 3-vector α

may be infinitely large. It means that the wobbling amplitude is infinite. Thus, the

helical world chain (2.6) with the two-point skeleton P (s)
1 =

{

P
(s)
0 , P

(s)
1

}

is unstable

with respect to metric wobbling.

3 Helical world chain with three-point skeleton

Suppression of the wobbling of the world chain, consisting of spacelike vectors, can
be achieved, if we consider the world chain with composed links, whose skeleton
consists of three points {Pk, Pk+1, Qk+1}, k = ...1.2, ... Let PkPk+1 be a spacelike
vector, whereas the vector PkQk+1 be a timelike vector in GM. To investigate the
effect of stabilization, it is sufficient to consider the points P0, P1, P2, Q1, Q2, having
coordinates

P0 = {0} , P1 = {l} , P2 = {l+q + α} ,

Q1 = {s} , Q2 = {s + q + β} , (3.1)

Corresponding vectors have the form

P0P1 = l, P1P2 = q + α, P0P2 = l+q + α, (3.2)

P0Q1 = s, P1Q2 = s + q − l + β, P0Q2 = s + q + β, (3.3)

P1Q1 = s − l, P2Q2 = s − l + γ, Q1Q2 = q + β, (3.4)

Q1P2 = l + q − s + α, γ = β − α (3.5)

l = {l0, l1, 0, 0} q = {l0, l1 cos ϕ, l1 sin ϕ, 0} , s = {s0, 0, 0, 0} (3.6)

Vector P0Q1 = s is directed along the axis of the helix. Vectors α, β, γ = β −α are
vectors describing wobbling, connected with points P2 and Q2. On needs to write six
dynamic equations corresponding to equalities P0P1eqvP1P2, P0Q1eqvP1Q2, and
P1Q1eqvP2Q2. Two equations, corresponding to P0P1eqvP1P2, have been written
and investigated in the previous section: equations (2.8), (2.9)

One obtains for the case P0Q1eqvP1Q2

s2 = (s + q − l + β)2 (3.7)
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s2 + (β.s) + w (P0, Q1, P1, Q2) = s2 + 2d

(

s2

2

)

(3.8)

where according to (2.15) and (3.2) - (3.5)

−w (P0, Q1, P1, Q2) = d (P0, Q2) + d (Q1, P1) − d (P0, P1) − d (Q1, Q2)

=
λ2

0

2

(

f

(

(s + q + β)2

2σ0

)

+ f

(

(s − l)2

2σ0

)

− f

(

l2

2σ0

)

− f

(

(q + β)2

2σ0

))

(3.9)

As far as (s.q − l) = 0, these equations are transformed to the form

2 (s.β) + β2 = 0 (3.10)

(β.s) +
λ2

0

2





f
(

(s+q+β)2

2σ0

)

+ f
(

(s−l)2

2σ0

)

− f
(

l2

2σ0

)

−f
(

(q+β)2

2σ0

)

− 2f
(

s2

2σ0

)



 = 0 (3.11)

The necessary condition of the fact, that β = 0, has the form

f

(

(s + q)2

2σ0

)

+ f

(

(s − l)2

2σ0

)

− fd

(

l2

2σ0

)

− fd

(

s2

2σ0

)

= 0 (3.12)

Substituting f from (2.4) in (3.12), equation (3.12) takes the form

εg

(

(s0 + l0)
2 − l21

2σ0

)

+ εg

(

(s0 − l0)
2 − l21

2σ0

)

− 2εg

(

l20 − l21
2σ0

)

− 2εg

(

s2
0

2σ0

)

= 0

(3.13)
It determines the connection between parameters l0, l1, s0 of the helical world chain.
This connection depends on the form of function g. One should verify that there
exist such functions g, for which equation (3.13) admits solutions l20, l

2
1, s

2
0 < σ0 and

l20 < l21. Let us show that such a function g does exist. In particular, if

g (x) = x3 (3.14)

equation (3.13) takes the form

(

(s0 + l0)
2 − l21

)3
+
(

(s0 − l0)
2 − l21

)3 − 2
(

l20 − l21
)3 − 2

(

s2
0

)3
= 0 (3.15)

After simplification (3.15) is reduced to equation

−6s2
0

(

l21 − 5l20
) (

l20 − l21 + s2
0

)

= 0 (3.16)

which admits solutions satisfying the relation

l20, l
2
1, s

2
0 < σ0 and l20 =

l21
5

< l21 (3.17)
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Let us now solve equations (3.10), (3.11) with respect to β, supposing that
parameters l20, l

2
1, s

2
0 satisfy relations (3.16), (3.17). Let us suppose that β is a small

quantity and expand equation (3.11) over β. Keeping in mind (3.13), one obtains

(β.s) +
λ2

0

2
εg′

(

(s + q)2

2σ0

)

(

(2 (s + q) .β) + β2

2σ0

)

− λ2
0

2
εg′
(

q2

2σ0

)

2 (q.β) + β2

2σ0

= 0

(3.18)
Taking into account (3.10), one obtains from (3.18)

(β.s)

(

1 +
λ2

0

2σ0

εg′

(

(s + q)2

2σ0

))

= 0 (3.19)

It means that
(β.s) = β0s0 = 0, β0 = 0 (3.20)

Then it follows from (3.20) and (3.10) that

β2 = β2
0 − β2 = 0, βk = 0, k = 0, 1, 2, 3 (3.21)

Thus, the vector P0Q1 directed along the helix axis does not wobbles at all. In
other words the wobbling of point Q2 is absent.

We obtain from the condition P1Q1eqvP2Q2

(s − l)2 = (s − l + γ)2 (3.22)

(s − l.s − l + γ) + w (P1, Q1, P2, Q2) = (s − l)2 + 2d

(

(s − l)2

2

)

(3.23)

where according to (2.15) and (3.2) - (3.5)

w (P1, Q1, P2, Q2) = d (σM (P1, Q2))+d (σM (Q1, P2))−d (σM (P1, P2))−d (σM (Q1, Q2))

=
λ2

0

2
f

(

(s + q − l + β)2

2σ0

)

+
λ2

0

2
f

(

(l + q − s + α)2

2σ0

)

−λ2
0

2
f

(

l2

2σ0

)

−λ2
0

2
f

(

(q + β)2

2σ0

)

(3.24)
Equations (3.22) and (3.23) take the form

γ2 + 2 ((s − l) .γ) = 0, γ = β − α (3.25)

((s − l) .γ) +
λ2

0

2
f

(

(s + q − l + β)2

2σ0

)

+
λ2

0

2
f

(

(l + q − s + α)2

2σ0

)

−λ2
0

2
f

(

l2

2σ0

)

− λ2
0

2
f

(

(q + β)2

2σ0

)

− λ2
0f

(

(s − l)2

2σ0

)

= 0 (3.26)
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In the case α = β = γ = 0 equation (3.26) turns to the equation

ε

(

g

(

(s + q − l)2

2σ0

)

+ g

(

(l + q − s)2

2σ0

)

− 2g

(

l2

2σ0

)

− 2g

(

(s − l)2

2σ0

))

= 0

(3.27)
One should show that there exist such a function g that the system of two

equations (3.13) and (3.27) has a solution for parameters l0, l1, s0 of the helix (2.6).
For equation (3.13) such a solution has been obtained for the function g of the form
(3.14). For this form of the function g equation (3.27) takes the form

(

s2
0 − 2l21 (1 − cos ϕ)

)3
+
(

(s0 − 2l0)
2 − 2l21 (1 + cos ϕ)

)3

−2
(

l20 − l21
)3 − 2

(

(s0 − l0)
2 − l21

)3
= 0 (3.28)

After simplification this equation takes the form

6
(

2l20 − 2l0s0 − 2l21 + s2
0

)

(

5l40 − 10l30s0 − 8l20l
2
1 cos ϕ − 2l20l

2
1 + 5l20s

2
0

+8l0l
2
1s0 cos ϕ + 2l0l

2
1s0 + 4l41 cos2 ϕ + l41 − l21s

2
0

)

= 0

(3.29)
Comparing (3.29) with (3.16)

−6s2
0

(

l21 − 5l20
) (

l20 − l21 + s2
0

)

= 0

we see that the system of the two equations has the solution

(s0 − l0)
2 = 2l21 − l20, s0 = l0 ±

√

2l21 − l20 (3.30)

l1 = ±
√

5l0, s0 = l0 ± 3l0 = l0

{

4
−2

(3.31)

If the ratio l20/σ0 is small enough, the lengths of all vectors (3.2) -(3.5) are less,
than

√
2σ0, and application of that part of the world function (2.4), where |σM| < σ0,

is justified. As a result we obtain the rather rigid connection between the helical
world chain parameters. One should expect that solution exist for other forms of
the functions g.

4 Stabilization of helical world chain with

three-point skeleton

To obtain additional constraints, imposed on the wobbling vector α, we return
to equations (2.34), (3.25), and (3.26). Let us assume that conditions (3.27) and
(3.13) are fulfilled due to a proper choice of function g. Then keeping in mind that
according to (3.20) β = 0. Equations (2.34), (3.25), and (3.26) are written in the
form

α2 + 2 (q.α) = 0 (4.1)
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α2 − 2 ((s − l) .α) = 0 (4.2)

− ((s − l) .α) +
λ2

0

2
f

(

(s + q − l)2

2σ0

)

+
λ2

0

2
f

(

(l + q − s + α)2

2σ0

)

−λ2
0

2
f

(

l2

2σ0

)

− λ2
0

2
f

(

q2

2σ0

)

− λ2
0f

(

(s − l)2

2σ0

)

= 0 (4.3)

Supposing that α is a small quantity, we expand equation (4.3) over powers of α.
Taking into account (2.4), and (3.27), one obtains from (4.3)

− ((s − l) .α) +
λ2

0

2
εg′

(

(l + q − s)2

2σ0

)

2 (l + q − s.α) + α2

2σ0

= 0 (4.4)

Substituting α2 from (4.1) in (4.4), one obtains

(l − s.α)

(

1 +
λ2

0

2σ0

εg′

(

(l + q − s)2

2σ0

))

= 0 (4.5)

It follows from (4.5) that
(l − s.α) = 0 (4.6)

From (4.2) and (4.6) one obtains that

α2 = 0 (4.7)

If vector s − l is timelike (s − l)2 > 0, it follows from (4.6) and (4.7) that vector
α = 0. In the partial case, when the function g is determined by (3.14) we have
according to (3.31) that s0 = 4l0, l21 = 5l20, and hence

(s − l)2 = (s0 − l0)
2 − l21 = 4l20 > 0 (4.8)

In this case
αk = 0, k = 0, 1, 2, 3 (4.9)

and wobbling of the helical world line (2.6) is absent.
In the general case one obtains from (4.1) and (4.7) that

α0l0 − α1l1 cos ϕ − α2l1 sin ϕ = 0

α0 = − l1 (α1 cos ϕ + α2 sin ϕ)

l0
(4.10)

Substituting (4.10) in (4.6) and (4.7), one obtains

− (s0 − l0)
l1 (α1 cos ϕ + α2 sin ϕ)

l0
− l1α1 = 0 (4.11)
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(

l1 (α1 cos ϕ + α2 sin ϕ)

l0

)2

− α2
1 − α2

2 − α2
3 = 0 (4.12)

If the radius R of the helix is macroscopic, the angle ϕ is a small quantity. Then
one may set ϕ = 0. It follows from (4.11) (4.10) that α0 = α1 = 0, and one obtains
from (4.12)

α2
2 + α2

3 = 0

As a result one obtains (4.9).
Thus, the helical world chain (2.6) is stable for large radius R, provided it is de-

scribed by the three point skeleton with the vector P0Q1, directed along the timelike
helix axis. The coordinate system K, where the vector P0Q1 is directed along the
time axis of the coordinate system K may be considered as a coordinate system,
where the particle (neutrino) is at rest. Such a statement is based on the fact that
the mean 4-momentum of the particle is directed along the timelike vector P0Q1,
which is the temporal basic vector of the coordinate system K. In reality the par-
ticle rotates in this coordinate system K with the superluminal velocity. Speaking
about the coordinate system K, we mean the coordinate system in the geometry GM

of Minkowski, which is associated with the discrete space-time geometry Gd. This
coordinate system K is used simply for labelling of points of the space-time, which
is not a manifold.

5 Simulation of the OPERA experiment

The principal space-time scheme of the OPERA experiment is shown in the figure.
Two vertical lines are world lines of radiator and of detector. Neutrino and photon
are radiated simultaneously at the time moment t = 0 at the origin of the coordinate
system. The photon is detected at the time TL. The neutrino world line is replaced
by a world tube. The surface of the world tube is formed by helical world line of
neutrino. The neutrino may be detected practically at any point of the tube surface.
In the figure the projection of the tube on two-dimensional section of the space-time
is shown. World lines of the anterior and back fronts of the tube are presented by
inclined lines. The neutrino may be detected at any point between these fronts.
The time of detecting neutrino lies in interval (tmin, tmax). Time of passage of the
neutrino world tube through the radiator position is 2tin, tmax − tmin = 2tin. Let the
distance between the radiator and detector be L, and the neutrino velocity be V .
The radius of the neutrino world tube is R. The distance between the fronts in the
motionless coordinate system reduces to 2R

√
1 − c−2V 2

We obtain

tin =
R
√

1 − β2

V
, β =

V

c
(5.1)

TL =
L

c
, tmin =

L

V
− tin =

L

V
− R

V

√

1 − β2 (5.2)
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Figure 1: Space-time scheme of neutrino propagation

TL − tmin =
L

c
−
(

L

V
− R

V

√

1 − β2

)

=
L

V

(

−1 + β +
R
√

1 − β2

L

)

(5.3)

or

TL − tmin =
L

V
(1 − β)

(

R

L

√

1 + β

1 − β
− 1

)

(5.4)

As far as ε = 1 − β � 1, the retardation of the photon detection with respect to
the neutrino detection may be written in the form

∆t = TL − tmin =

√
ε

c

(

R
√

2 − L
√

ε
)

(5.5)

In the OPERA experiment the quantities ∆t and L are known. We try to
estimate the minimally possible radius of the neutrino world tube. We have

R >
L
√

ε√
2

, ∆t <

√
ε

c
R
√

2, R >
c∆t√

2ε

The radius R of the neutrino world tube may be minimal, if

L
√

ε√
2

=
c∆t√

2ε
, ε =

c∆t

L
, R >

L
√

ε√
2

= 2−1/2
√

Lc∆t (5.6)

According to the results of the OPERA experiment [7]

L ' 7.3 × 107cm, ∆t ' 6 × 10−8s (5.7)

Estimation of the neutrino world tube radius has the form

R > 2−1/4
√

Lc∆t = 2.5 × 105cm ' 2.5km (5.8)
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One obtains from (5.6)

ε =
√

2
c∆t

L
≈ 3.5 × 10−5 (5.9)

The neutrino Lorentz factor γ

γ =
1

√

1 − β2
=

1√
2ε

=' 1.2 × 102 (5.10)

According to (5.5) the retardation of the photon with respect to neutrino is not
proportional to the distance L. On the contrary, at fixed parameters of neutrino an
increase of L leads to a reduction of the retardation ∆t. It means, that the OPERA
effect does not evidence the superluminal mean speed of neutrino. This fact may be
tested by other experiment with other value of the distance L between the radiator
and detector. This is conditioned by the fact that the retardation of the photon
with respect to neutrino depends essentially on the phase of the helical world chain
at the moment of the neutrino detection. As one can see on the figure the moment
td of the neutrino detection lies in the interval (tmin, tmax).

6 Discussion

The lengths of vectors (3.2) - (3.5), which enter in dynamic equations are shorter,
than

√
2σ0, where the world function σg differs from the σM only by a gage factor

and by a small addition

σg =

(

1 +
λ2

0

2σ0

C

)

σM + ε
λ2

0

2
g

(

σM

σ0

)

, |σM| < σ0, ε � 1 (6.1)

As a result the spacelike world chain (2.6) differs slightly from the straight line.
Stabilization of the world chain is achieved due to two timelike vectors P0Q1 and
P1Q1 in the skeleton P3 = {P0, P1, Q1} of the world chain. Quantum wobbling of
these timelike vectors is absent because of small term ελ2

0g/2 for |σg| < σ0 added
to σM (instead of λ2

0sgn (σM) /2 for |σg| > σ0, where the quantum wobbling takes
place).

In the conventional approach to the space-time geometry the spacelike world
lines (with superluminal velocities) are absent, because the tachyons have not been
discovered experimentally. This experimental fact is considered as a principle of the
relativity theory. However, it is too strong generalization of the experimental fact. In
reality, tachyons may exist, but they cannot be traced because of infinite wobbling
amplitude. Tachyons have not electric charge, and they cannot be discovered by
means of the electromagnetic interaction. However, the gravitational interaction of
the tachyon gas may be observed. Maybe, the tachyon gas contributes to so called
dark matter, which has been discovered around galaxies. Due to great tachyons
mobility they can form powerful ”tachyionspheres” around galaxies, changing es-
sentially their gravitational fields. The radius of the tachyon sphere is greater, than
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the radius of a galaxy. As a result the rotation velocities of stars do not decrease, if
their distance from the galaxy center increases. Such a situation seems to be rather
believable. Of course, one should investigate gravitational properties of the tachyon
gas for certain conclusions.

One should stress that a use of the space-time geometry with indefinite metric
dimension nm is not a hypothesis. It is a corollary of the fact, that one does not take
into account the numerous restrictions (1.14), which describe special properties of
the proper Euclidean geometry. Considering these properties as general geometric
ones, one restricts strongly the set of possible space-time geometries. Thus, we do not
use fitting (invention of new hypotheses). We simply ignore unjustified supposition
on definite metric dimension nm of the space-time geometry. At the same time
we may label space-time points by coordinates, and the number nc of coordinates
(coordinate dimension) is a definite natural number. The coordinate dimension nc

is an attribute of the geometry description. It has nothing to do with the metric
dimension nm which is an attribute of the Euclidean geometry itself. Coincidence
nm = nc is a corollary of unjustified restrictions, taken from the proper Euclidean
geometry.

The difference between nm and nc is perceived hardly, because in the conventional
presentation of differential (Riemannian) geometry one starts from consideration of
a smooth manifold, where nm = nc. One considers the dimension n = nm = nc as
a natural number, and one does not think on existence of restrictions (1.14), which
appear only in the σ-representation of the proper Euclidean geometry. In order one
may introduce the dimension n = nm, the numerous restrictions (1.14) have to be
fulfilled. These restrictions are special properties of the proper Euclidean geometry.
Unfortunately, one does not take into account this fact and believes that there exist
only geometries with a definite metric dimension. One believes that there are no
geometries with indefinite metric dimension n = nm. If the world function of a
generalized geometry is a such one, that several of numerous constraints (1.14) are
not fulfilled, one cannot introduce the metric dimension nm, But a coordinate system
with the coordinate dimension n = nc can be introduced always independently of
the restrictions (1.14). The coordinate system depends on the point set Ω, where
the geometry is given, but not on the world function of the generalized geometry.

Unfortunately, one does not differ usually between the metric dimension nm and
the coordinate dimension nc. One suppose usually, that giving coordinate system
and its dimension nc, one determines also nm. Application of the discrete (or gran-
ular) space-time geometry is conceptual, because in this case the spacelike world
chains (superluminal velocities) are admissible. Simultaneously one explains, why
tachyons cannot be discovered.

7 Concluding remarks

Describing real space-time geometry in microcosm, one should take into account all
possible kinds of geometries. It is an incorrect use only those geometries, where
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metric dimension nm coincides with the coordinate dimension nc. The fact that we
do not know properties of ”dimensionless” space-time geometries cannot be a reason
for disregard of them. Such a disregard leads to the supposition on impossibility of
superluminal velocities, based on absence of the tachyons observation. The lack of
tachyon observation means only that tracing of tachyons is impossible, but it does
not mean, that tachyons do not exist. Tachyons may be discovered in the form of
neutrino, which is a bound tachyon whose mean velocity is less, than the speed of
the light.

The main problem of the microcosm physics lies in the fact, that we do not know
discrete (dimensionless) geometries and do not possess coordinateless technique of
these geometries. Progress in the development of discrete geometries is connected
with the progress in the development of the world function technique. First it ap-
peared as a method of description of the Riemannian geometry [14, 15]. Description
of a geometry in terms of scalar world function is more effective, than description in
terms of metric tensor gik, because description in terms of a scalar function admits
one to use a coordinateless description. Monistic conception of geometry, when the
Euclidean geometry is described in terms of one scalar quantity admits one to dis-
cover hidden connections between different basic concepts of geometry (manifold,
dimension , coordinate system, etc.). Some connections appeared to be specific Eu-
clidean connections, which prevent from construction of more general geometries
and from coordinateless geometry description.
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