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Abstract

One uses the investigation strategy: ”Find a mistake in foundation of
physics and correct it”. Two fundamental defects are corrected: (1) non-
relativistic concept of the particle state, (2) inadequacy of the differential
geometry formalism at the metric approach to geometry. Usage of relativis-
tic concept of the particle state admits one to create united formalism for
description of deterministic and stochastic particles motion. The quantum
mechanics is founded as a statistical description of the stochastic particles
motion. Stochasticity of the quantum particles motion is explained by multi-
variance of the space-time geometry, which leads to the world lines wobbling
of elementary particles. Relativistic concept of the particle state and the met-
ric approach to the space-time geometry admit one to construct the skeleton
conception of elementary particles. The skeleton conception admits one to in-
vestigate the arrangement of elementary particles (but not only to systamatize
them, ascribing quantum numbers to them).

Key words: relativistic particle state; united formalism of dynamics; metric ap-
proach to geometry; multivariant geometry; inadequacy of differential geometry for-
malism

1 Introduction

We believe that many problems of the contemporary theoretical physics are results
of some mistakes in the physics foundation. Finding these mistakes and correcting
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them, one can solve many problems of theoretical physics, if these mistakes were
made in the foundations of physics on a deep level. Correction of such mistakes (if
they exist) may change essentially the direction of physics development. It can lead
to development of a new formalism (of course, if the mistake does exist and concerns
foundations of physics).

In this paper we consider two essential mistakes in the physics foundation. The
first mistake is connected with the fact that the relativistic particle dynamics is
not completely relativistic in the sense that dynamic equations of the particle mo-
tion are relativistic, whereas the particle state is described nonrelativistically. It is
unessential at description of deterministic particles, but it is essential at description
of stochastic (quantum) particles. Introduction of relativistical state of a particle
admits one to create a united formalism for description of deterministic and stochas-
tic particles. As a result one succeeded to explain quantum effects as a result of a
statistical description of the stochastic particle motion, and the quantum principles
cease to be primary principles of nature.

The second mistake is connected with the concept of multivariant geometry.
Conventional space-time geometry does not acknowledge concept of multivariance
in a geometry. Consideration of multivariant space-time geometries admits one to
explain stochastic motion of free quantum particles. Consideration of multivariant
space-time geometries admits one to construct skeleton conception of elementary
particles. The skeleton conception admits one to investigate arrangement of ele-
mentary particles, whereas the conventional elementary particle theory can only
systematize elementary particles, ascribing them quantum numbers.

The relativistic particle dynamics was not formulated completely in the beginning
of the twentieth century. Dynamic equations of the particle motion were relativistic,
but the state of a particle remains to be nonrelativistic. It is unessential for dynam-
ics of deterministic particles. But it is essential for description of nondeterministic
(stochastic) particles. Without a use of relativistic description of the particle state
one could not describe a stochastic motion of quantum particles in terms of classical
particle dynamics. As a result one was forced to invent an axiomatic conception,
known as nonrelativistic quantum mechanics. In reality nonrelativistic quantum
mechanics is a relativistic conception in the sense, that only the mean motion of
nonrelativistic quantum particles is nonrelativistic, whereas the stochastic compo-
nent of the quantum particle motion is relativistic. The mean value of the stochastic
component vanishes at averaging, and it is not taken into account in the quantum
mechanics. Nevertheless for construction of the quantum particle dynamics one
needs to use the relativistic conception of the particle dynamics. A true (relativis-
tic) description of the particle state admits one to describe motion of quantum
particles as a statistical description of the stochastic classical particles motion. As a
result one obtains a statistical foundation of quantum mechanics, where principles
of quantum mechanics are secondary principles, which are obtained as a result of a
statistical description of the classical stochastic particles dynamics.

Besides, for statistical foundation of the quantum mechanics one needs to ex-
plain, what is the wave function and how it appears in the statistical description.
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It appears, that the wave function is a method of the ideal continuous medium de-
scription [1]. Indeed, a statistical description of stochastic particles is a description
of a statistical ensemble, which is a set of many independent identical particles (de-
terministic or stochastic). Motion of a statistical ensemble is close to a motion of
a gas, which is a set of many identical particles, interacting via collisions. Methods
of a gas description coincide with methods of the statistical ensemble description.
This circumstance explains appearance of the wave function in quantum mechanics,
provided the quantum mechanics is a statistical description of the stochastic particle
motion in terms of the statistical ensemble.

After explanation of the quantum mechanics as a statistical description of stochas-
tically moving particles the question arose, why free particles of small mass move
stochastically. The reason of the particle stochasticity appeared to be a discreteness
of the space-time geometry. More exactly, the reason of the stochastic motion is a
multivariance of the discrete space-time geometry.

Multivariance is such a property of a geometry, when at a point P there are many
vectors PQ, PQ′, PQ′′,... which are equivalent to the vector AB at the point A, but
vectors PQ, PQ′, PQ′′,... are not equivalent between themselves. Even in the geom-
etry of Minkowski the equivalence of spacelike vectors is multivariant. For instance,
vector PQ = (r1, r1 cos φ1, r1 sin φ1, z) and vector PQ′ = (r2, r2 cos φ2, r2 sin φ2, z)
are equivalent to the spacelike vector AB = (0, 0, 0, z) for arbitrary values of quan-
tities r1, φ1, r2, φ2, but vectors PQ and PQ′ are not equivalent, generally speaking.
Equivalence of timelike vectors is single-variant in the geometry of Minkowski GM,
but it is multivariant in the discrete geometry Gd. Multivariance of a vectors which
are tangent to the particle world line leads to wobbling of the world line, which
means a stochasticity of the particle.

Equivalence of two vectors PQ and AB is defined as follows

PQeqvAB : (PQ.AB) = |PQ| · |AB| ∧ |PQ| = |AB| (1.1)

where (PQ.AB) is the scalar product of vectors PQ and AB, and |PQ| is the
length of the vector PQ.

Note that the discrete geometry Gd is such a geometry, where distance ρ (A,B)
between any points A and B is greater than the elementary length λ0

|ρ (A,B)| /∈ (0, λ0) , ∀A,B ∈ Ω (1.2)

Here Ω is the set of points, where the geometry is given. Let us stress that the
relation (1.2) is a restriction on the form of the distance function ρ, but not on the
point set Ω. In particular, the set Ω may coincide with the manifold ΩM, where
the geometry of Minkowski is given. Instead of the distance function ρ it is more
convenient to use the world function σ = 1

2
ρ2, because world function is always

real, even in the geometry of Minkowski, where ρ is imaginary for spacelike vectors.
World function σd of the discrete geometry Gd may have the form

σd (P, Q) = σM (P,Q) +
λ2

0

2
sgn (σM (P, Q)) (1.3)
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where σM is the world function of geometry of Minkowski. In the inertial coordinate
system σM has the form

σM (x, x′) =
1

2
gik

(
xi − x′i

) (
xk − x′k

)
, gik = diag

(
c2,−1,−1,−1

)
(1.4)

Here and later on there is a summation (0÷ 3) over repeating Latin indices and
(1÷ 3) on the Greek ones. It is easy to verify that (1.3) satisfies the restriction
(1.2).

In terms of the world function the scalar product (PQ.AB) and the length |PQ|
may be presented in the form

(PQ.AB) = σ (P,B) + σ (Q,A)− σ (P,A)− σ (Q, B) (1.5)

|PQ| =
√

2σ (P, Q) (1.6)

The coordinateless formulas (1.5) and (1.6) are valid in any physical geometry. The
physical geometry is such a geometry, which can be described completely in terms
and only terms of the world function σ. Description of a geometry in terms of
the world function σ (or in terms of the distance function ρ) is known as a metric
approach to geometry.

Unfortunately, the metric approach to geometry cannot be realized consistently
at the conventional approach to geometry. The reason of this circumstance is con-
nected with inadequacy of the linear vector space operations at the metric approach
to geometry.

Metric approach to geometry means that a geometry is described in coordinate-
less way in terms of the distance function ρ or world function σ = 1

2
ρ2. Metric

approach is necessary for recognition of the same geometrical object in different
geometries. Geometric vector (g-vector) PQ = {P,Q} is the ordered set of two
points P, Q ∈ Ω. In a geometry G = {σ, Ω} there are many g-vectors AB, which
are equivalent to g-vector PQ. They defined by the relation (1.1)

If the equivalence relation is transitive, and for any g-vectors it follows from
(P1Q1eqvAB)∧ (P2Q2eqvAB), that (P1Q1eqvP2Q2), then the set of all g-vectors
PQ, (PQeqvAB) forms the equivalence class [AB] of the g-vector AB. In this case
the geometry G = {σ, Ω} is single-variant. If the equivalence relation is intransitive,
the geometry G = {σ, Ω} is multivariant.

In the single-variant geometry G = {σ, Ω} one can connect any equivalence class
[AB] with a linear vector (linvector) u ∈ Ln of a linear vector space Ln and apply
operations defined for linvectors in Ln for equivalence classes of geometry G = {σ, Ω}.

In the multivariant geometry G = {σ, Ω} one cannot to define linear operation
of the linear vector space Ln. If nevertheless one defines a summation of two g-
vectors and multiplication of a g-vector by a number, these operations appear to be
many-valued, because such a definition of these operations contains the relation of
equivalence (1.1), which is many-valued in the multivariant geometry G = {σ, Ω}.

The geometry of Minkowski is single-variant with respect to timelike vectors
and it is multivariant with respect to spacelike vectors. Usually one does not con-
sider spacelike vectors and spacelike world lines, supposing, that tachyons do not
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exist. Consideration of tachyons in geometry of Minkowski shows that world lines of
tachyons wobble with infinite amplitude, and a single tachyon cannot be detected.
However, the tachyon gas can be detected by its gravitational field. As a result the
tachyons may exist, and the tachyon gas is the best candidate for the dark matter
[2].

In the contemporary geometry one does not distinguish between linvectors and
g-vectors, supposing that the g-vectors forms the equivalence classes. It is sup-
posed that the equivalence relation is transitive in any geometry, and one supposes
that there are no geometries with intransitive equivalence relation. If intransitive
equivalence relation appears accidentally (for instance, in Riemannian geometry for
g-vectors having different origins), then such an equivalence is restricted by some
additional condition (parallel transport), or the equivalence relation is ignored as
in the case of spacelike vectors in the geometry of Minkowski. Such a denial of
multivariance of the g-vectors equivalence relation is a mistake, which can lead to
erroneous conclusions.

In the presented paper we overcome two defects of the contemporary elementary
particles theory. The two defects are connected with a use of nonrelativistic concept
of the particle state and with disregard of the concept of multivariance in the space-
time geometry. Correction of these defects admits one to construct the skeleton
conception of elementary particles [3], which allows one to determine structure of
elementary particles (but not only to systematize the elementary particles and to
ascribe some quantum numbers to any elementary particle).

2 Relativistic concept of the particle state

After explanation of heat phenomena by means of the kinetic gas theory it was
reasonable to think, that quantum effects may be explained as some stochastic
motion of microparticles. Some researchers [4, 5] tried to obtain quantum mechanics
as a statistical description of stochastically moving microparticles. They failed to
explain the quantum mechanics as a statistical description of stochastically moving
particles. Moyal [4] tried to reduce quantum dynamic equations to the form, which
is characteristic for dynamic equations of stochastic processes. Fenyes [5] tried to
obtain statistical description, using similarity between the Schrödinger equation and
the Fokker equation for diffusion processes. Both authors used the concept of the
wave function without understanding, what it means. Explanation of quantum
phenomena is hardly possible without understanding, what is the wave function.
However, in the beginning of the twentieth century nobody knew, what is the wave
function.

The fact, that the Schrödinger equation may be reduced to a description of an
irrotational flow of some quantum fluid, was shown by Madelung [6]. However,
representation of the hydrodynamic equations for ideal fluid in terms of the wave
function needs a complete integration of hydrodynamic equations.

For transition from the Schrödinger equation to the system of four hydrody-
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namic equations, the complex Schrödinger equation for the wave function ψ =√
ρ exp (iϕ/~) is represented in the form of two real equations for amplitude

√
ρ

and for the phase ϕ. To obtain hydrodynamic equations, it is sufficient to take
gradient from the equation for the phase ϕ. As a result one obtains four dynamic
equations, which turn into hydrodynamic equations after introducing proper desig-
nations. In other words, for transition from dynamic equations in terms of the wave
function to the hydrodynamic form of these equations, one needs to differentiate
dynamic equations. On the contrary, to pass from hydrodynamic form of dynamic
equations to their representation in terms of the wave function, one needs to in-
tegrate dynamic equations. In the case of the irrotational flow this integration is
carried out rather simply, whereas in the case of vortical flow the way of integration
became to be known only in the end of twentieth century [1].

Bohm [7] used the hydrodynamic representation of the Schrödinger equation
for interpretation of quantum mechanics. He started from the wave function and
quantum principles and interpreted them in hydrodynamic terms. However, he could
not found quantum mechanics on the basis of hydrodynamics, because for such a
foundation he would start from hydrodynamic concepts and equations, in order to
obtain the wave function in hydrodynamic terms. He could not make this, because
in this case he would be forced to integrate hydrodynamic equations in general case,
but not only for irrotational flows. Integration of the hydrodynamic equations was
not known almost during the whole twentieth century. It was rather complicated
mathematical problem.

Information on other attempts of a statistical foundation of quantum mechanics
can be found in the book by Holland [8]. All authors tried to found the nonrela-
tivistic quantum phenomena on the basis of nonrelativistic statistical description.
This circumstance was the main reason of failures. Besides, they did not under-
stand, that the wave function is a method of the continuous medium description.
The nonrelativistic quantum mechanics describes a mean motion of particles, and
the mean motion is nonrelativistic. However, the nonrelativistic character of the
mean motion does not mean, that the exact particle motion is also nonrelativistic.
Stochastic component of the particle motion may be relativistic, and this compo-
nent disappear at the averaging. To obtain a correct description one should use a
relativistic statistical description.

In the nonrelativistic physics the state of the particle is described as a point in
the phase space of coordinates and momenta. In the relativistic physics the particle
state is described as a world line in the space-time. In the nonrelativistic physics
the state density is defined as factor n in the relation

dN = ndV (2.1)

where dN is the number of particles in the volume dV of the phase space. the quan-
tity n is nonnegative. It turns to probability density w at a proper normalization.

In the relativistic physics the particle state density jk is defined as a factor in
the relation

dF = jkdSk (2.2)
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where dF is the flux of world lines through three-dimensional spacelike area dSk.
As far as the state of a statistical ensemble is a state density of particles, the state
density appears to be different in the relativistic physics and in the nonrelativistic
one. Nonrelativistic state density w leads to the probabilistic conception of the
statistical ensemble, whereas the relativistic state density jk leads to the dynamic
(hydrodynamic) conception of the statistical ensemble [9, 10, 11].

Hydrodynamic equations have the form

∂0ρ + ∇ (ρv) = 0, ∂0v + (v∇)v = −1

ρ
∇p (2.3)

where ρ,v, p = p (ρ) are respectively density, velocity and pressure in the fluid. The
system of four hydrodynamic equations do not form a complete system of dynamic
equations of the fluid. It forms only a closed subsystem of the complete system
of dynamic equations. To obtain the complete system of dynamic equations of the
fluid, one needs to add the dynamic equations

dx

dt
= v (t,x) (2.4)

describing motion of the fluid particles in the given field of velocities. Formal dif-
ference between the system (2.3) and the system (2.3), (2.4) is as follows. The
complete system of equations (2.3), (2.4) can be derived from the variational prin-
ciple, whereas the closed subsystem (2.3) cannot be derived from the variational
principle in general case. It can be obtained only in the case of irrotational motion
[12].

Equations (2.4) are ordinary differential equations, whereas equations (2.3) are
partial differential equations. From viewpoint of hydrodynamicists solution of equa-
tions (2.3) is the most difficult and important problem of hydrodynamics. If the
equations (2.3) have been solved and the velocity field v (t,x) has been determined,
a solution of equations (2.4) seems a very simple problem as compared with a solu-
tion of (2.3). As a result hydrodynamicists are apt to consider the closed subsystem
(2.3) as a system of hydrodynamic equations, ignoring equations (2.4). To obtain
description of hydrodynamic equations in terms of the wave function, one needs to
integrate equations (2.3), (2.4).

Let us rewrite equations (2.4) in the form

∂ξ

∂t
+ (v∇) ξ = 0 (2.5)

where ξ (t,x) = ξ = {ξ1, ξ2, ξ3} are independent integrals of equations (2.4). Equa-
tions (2.4) and (2.5) are equivalent, and variables ξ may be considered as Lagrangian
coordinates, labelling the fluid particles, because according to (2.5) the variable ξ
is constant along the world line of the fluid particle. Formally equations (2.5) are
partial differential equations, but they may be reduced to the form of ordinary
differential equations (2.4).
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Let us consider the action for the statistical ensemble E [Sst] of free stochastic
particles Sst, whose mean motion is nonrelativistic.

AE[Sst] [x,u] =

∫ ∫

Vξ

{
m

2
ẋ2 +

m

2
u2 − ~

2
∇u

}
ρ0 (ξ) dtdξ, ẋ ≡dx

dt
(2.6)

The variable x = x (t, ξ) describes the regular component of the particle motion. The
variable u = u (t,x) describes the mean value of the stochastic velocity component,
~ is the quantum constant. The second term in (2.6) describes the kinetic energy
of the stochastic velocity component. The third term describes interaction between
the stochastic component u (t,x) and the regular component ẋ (t, ξ). The operator

∇ =

{
∂

∂x1
,

∂

∂x2
,

∂

∂x3

}
(2.7)

is defined in the space of coordinates x. The quantity ρ0 (ξ) is the weight function.
Formally the action (2.6) looks as an action for a set of deterministic particles,

interacting via some force field u. Variation of (2.6) with respect to u gives

u = u (t,x) = − ~
2m

∇ ln ρ, (2.8)

where

ρ = ρ0 (ξ)
∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
= ρ0 (ξ)

(
∂ (x1, x2, x3)

∂ (ξ1, ξ2, ξ3)

)−1

(2.9)

Variation with respect x gives

δx : −m
d2x

dt2
+ ∇

(
m

2
u2 − ~

2
∇u

)
= 0 (2.10)

Substituting (2.8) in (2.10) and considering ρ as a function of t,x, one obtains

m
d2x

dt2
= −∇UB (2.11)

where d/dt means the substantial derivative with respect to time t

dF

dt
≡ ∂ (F, ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)

∇ is gradient in the space of coordinates x, and UB is so-called Bohm potential

UB (t,x) = −m

2
u2 +

~
2
∇u = U

(
ρ, ∇ρ, ∇2ρ

)

=
~2

8m

(∇ρ)2

ρ2
− ~2

4m

∇2ρ

ρ
= − ~

2

2m

1√
ρ
∇2√ρ (2.12)
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Let us transform the dynamic equation (2.11) to the form, where variables ξ are
dependent dynamic variables, and t,x are independent dynamic variables. At this
representation the variables ξ (Clebsch potentials [14, 15]) may be considered as a
generalized stream function, because they have the property of the stream function:
(1) they label the world lines of the fluid particles and (2) some combination of the
derivatives of ξ satisfy the continuity equation identically at any values of ξ. (See
for details [16]).

The dynamic equation (2.11) can be obtained from the action

AE[Sst] [x] =

∫ ∫

Vξ

{
m

2

(
dx

dt

)2

− UB (t,x)

}
ρ0 (ξ) dtdξ (2.13)

where x ≡ x (t, ξ). The variables ρ and UB = U
(
ρ, ∇ρ,∇2ρ

)
are defined by the

relations (2.12), (2.9).
To transform the action (2.13) to independent variables x =

{
xk

}
= {t,x}, we

use the parametric representation of the mean world lines x ≡ x (t, ξ). Let

xk = xk (ξ0, ξ) = xk (ξ) , k = 0, 1, 2, 3 (2.14)

where ξ = {ξk} = {ξ0, ξ}, k = 0, 1, 2, 3. The shape of the world line is described by
xk, considered as a function of ξ0 at fixed ξ. The action (2.13) can be rewritten in
the form

AE[Sst] [x] =

∫

Vξ

{
m

2

(
∂x

∂ξ0

)2 (
∂x0

∂ξ0

)−1

− UB
∂x0

∂ξ0

}
ρ0 (ξ) d4ξ, (2.15)

Let us consider the variables ξ = {ξk}, k = 0, 1, 2, 3 as dependent variables and
variables x =

{
xk

}
as independent ones. We consider the Jacobian

J =
∂ (ξ0,ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= det

∣∣∣∣ξl,k

∣∣∣∣ , ξl,k ≡
∂ξl

∂xk
l, k = 0, 1, 2, 3 (2.16)

as a four-linear function of variables ξl,k ≡ ∂kξl, l, k = 0, 1, 2, 3. We take into account
that

∂xk

∂ξ0

=
∂

(
xk,ξ1, ξ2, ξ3

)

∂ (ξ0,ξ1, ξ2, ξ3)
=

∂
(
xk,ξ1, ξ2, ξ3

)

∂ (x0, x1, x2, x3)

∂ (x0, x1, x2, x3)

∂ (ξ0,ξ1, ξ2, ξ3)
= J−1 ∂J

∂ξ0,k

(2.17)

and

ρ = ρ0 (ξ)
∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
= ρ0 (ξ)

∂ (x0,ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= ρ0 (ξ)

∂J

∂ξ0,0

(2.18)

The action (2.15) takes the form

AE[Sst] [ξ] =

∫

Vx

{
m

2

(
∂J

∂ξ0,α

)2 (
∂J

∂ξ0,0

)−2

− UB

}
ρd4x (2.19)
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ρ ≡ ρ0 (ξ)
∂J

∂ξ0,0

It follows from (2.12) that

ρUB = ρU
(
ρ, ∇ρ, ∇2ρ

)
=
~2

8m

(∇ρ)2

ρ
− ~2

4m
∇2ρ (2.20)

The last term of (2.20) has a form of divergence, and it does not contribute to
dynamic equations. This term may be omitted.

If the relation
∂J

∂ξ0,0

6= 0 (2.21)

takes place, the variational problems (2.15) and (2.19) are equivalent. On the con-
trary, if the relation (2.21) is violated we cannot be sure, that they are equivalent.

Now we introduce designation j = {j0, j} = {ρ, j} =
{
jk

}
, k = 0, 1, 2, 3

jk = ρ0 (ξ)
∂

(
xk,ξ1, ξ2, ξ3

)

∂ (x0, x1, x2, x3)
= ρ0 (ξ)

∂J

∂ξ0,k

, k = 0, 1, 2, 3 (2.22)

and add designation (2.22) to the action (2.19) by means the Lagrangian multipliers
pk, k = 0, 1, 2, 3. We obtain

AE[Sst] [ξ, j, p] =

∫

Vx

{
m

j2

2ρ
− ρUB − pk

(
jk − ρ0 (ξ)

∂J

∂ξ0,k

)}
d4x, (2.23)

UB = U
(
ρ, ∇ρ,∇2ρ

)
, ρ ≡ j0

Note that the action (2.19) and the action (2.23) describe the same variational
problem. The action (2.23) is interesting in the sense, that the Lagrangian coordi-
nates ξ = {ξ0, ξ} are concentrated in the last term of the action. The Lagrangian
coordinates ξ = {ξ0, ξ} are defined to within the transformation

ξ0 = f0

(
ξ̃0

)
, ξα = fα

(
ξ̃
)

, α = 1, 2, 3 (2.24)

where fk, k = 0, 1, 2, 3 are arbitrary functions of their arguments. The variable ξ0

is fictitious, and variation with respect to ξ0 does not give an independent dynamic
equation.

Variation of the action (2.23) with respect to ξl, l = 0, 1, 2, 3 leads to the dynamic
equations

δAE[Sst]

δξl

= −∂s

(
ρ0 (ξ) pk

∂2J

∂ξ0,k∂ξl,s

)
+ pk

∂ρ0

∂ξl

(ξ)
∂J

∂ξ0,k

= 0, l = 0, 1, 2, 3 (2.25)

Using identities
∂J

∂ξi,l

ξk,l ≡ Jδi
k, ∂l

∂2J

∂ξ0,k∂ξi,l

≡ 0 (2.26)
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∂2J

∂ξ0,k∂ξl,s

≡ J−1

(
∂J

∂ξ0,k

∂J

∂ξl,s

− ∂J

∂ξ0,s

∂J

∂ξl,k

)
(2.27)

we obtain from (2.25) by means of identities (2.27), (2.26)

− ∂2J

∂ξ0,k∂ξl,s

ρ0∂spk − ∂2J

∂ξ0,k∂ξl,s

∂ρ0

∂ξj

ξj,spk + pk
∂ρ0

∂ξl

∂J

∂ξ0,k

= 0, l = 0, 1, 2, 3

−J−1

(
∂J

∂ξ0,k

∂J

∂ξl,s

− ∂J

∂ξ0,s

∂J

∂ξl,k

)
ρ0 (ξ) ∂spk −

(
∂J

∂ξ0,k

δl
j − δ0

j

∂J

∂ξl,k

)
∂ρ0 (ξ)

∂ξj

pk

+pk
∂ρ0 (ξ)

∂ξl

∂J

∂ξ0,k

= 0, l = 0, 1, 2, 3 (2.28)

Simplifying (2.28) by means of the first identity (2.26), we obtain

J−1

(
∂J

∂ξ0,k

∂J

∂ξl,s

− ∂J

∂ξ0,s

∂J

∂ξl,k

)
ρ0∂spk = 0 (2.29)

Convoluting (2.29) with ξl,i and using the first identity (2.26) and designations
(2.22), we obtain

jk∂ipk − jk∂kpi = 0, i = 0, 1, 2, 3 (2.30)

Variation of (2.23) with respect to jβ gives

δjβ : pβ = m
jβ

ρ
, β = 1, 2, 3 (2.31)

Varying (2.23) with respect to j0 = ρ, using designations

ργ ≡ ∂γρ, ραβ ≡ ∂α∂βρ

and taking into account relation (2.12) for UB = U
(
ρ, ∇ρ, ∇2ρ

)
, we obtain

δj0 : p0 = − m

2ρ2
jαjα − ∂

∂ρ
(ρUB) + ∂γ

∂

∂ργ

(ρUB)− ∂α∂β
∂

∂ραβ

(ρUB)

= − m

2ρ2
jαjα − UB (2.32)

We note the remarkable property of the Bohm potential UB = U
(
ρ, ∇ρ, ∇2ρ

)
,

defined by the relation (2.12). The quantity p0 is expressed via UB = U
(
ρ, ∇ρ, ∇2ρ

)
in such a way, as if U

(
ρ, ∇ρ,∇2ρ

)
does not depend on ρ and its derivatives.

Eliminating pk from the equations (2.30) by means of relations (2.31), (2.32) and
setting v = j/ρ, we obtain dynamic equations in the Eulerian form (2.3).

There is another possibility. The dynamic equations (2.29) may be considered
to be linear partial differential equations with respect to variables pk. They can be
solved in the form

pk = b0 (∂kϕ + gα (ξ) ∂kξα) , k = 0, 1, 2, 3 (2.33)
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where gα (ξ) , α = 1, 2, 3 are arbitrary functions of the argument ξ = {ξ1, ξ2, ξ3},
b0 6= 0 is an arbitrary real constant, and ϕ is the variable ξ0, which ceases to be
fictitious. Note that the constant b0 may be eliminated, including it in the functions
g = {g1, g2, g3} and in the variable ϕ.

One can test by the direct substitution that the relation (2.33) is the general
solution of linear equations (2.29). Substituting (2.33) in (2.29) and taking into
account antisymmetry of the bracket in (2.29) with respect to transposition of indices
k and s, we obtain

J−1ρ0 (ξ)

(
∂J

∂ξ0,k

∂J

∂ξl,s

− ∂J

∂ξ0,s

∂J

∂ξl,k

)
∂gα (ξ)

∂ξµ

ξµ,sξα,k = 0 (2.34)

The relation (2.34) is a valid equality, as it follows from the first identity (2.26).
Let us substitute (2.33) in the action (2.23). Taking into account the first identity

(2.26) and omitting the term

ρ0 (ξ)
∂J

∂ξ0,k

∂kϕ = ρ0 (ξ)
∂ (ϕ, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)

which does not contribute to the dynamic equations, we obtain

AE[Sst] [ϕ, ξ, j] =

∫ {
m

2

jαjα

j0
− UBρ− jkb0 (∂kϕ + gα (ξ) ∂kξα)

}
d4x, j0 ≡ ρ

(2.35)
Variation of (2.35) with respect to j0 ≡ ρ gives

−mj2

2ρ2
− UB − b0 (∂0ϕ + gα (ξ) ∂0ξα) = 0, UB =

~2

8m

(
(∇ρ)2

ρ2
− 2

∇2ρ

ρ

)
(2.36)

Variation of (2.35) with respect to jµ gives

m
jµ

ρ
= b0 (∂µϕ + gα (ξ) ∂µξα) (2.37)

Variation of (2.35) with respect to ϕ gives

∂kj
k = 0 (2.38)

Finally, varying (2.35) with respect to ξµ and taking into account (2.38), we
obtain

b0j
kΩαµ (ξ) ∂kξα = 0, Ωaµ (ξ) =

(
∂gα (ξ)

∂ξµ

− ∂gµ (ξ)

∂ξα

)
(2.39)

If
det ||Ωαµ|| 6= 0 (2.40)

then taking into account that the velocity v = j/j0, one obtains from (2.39), so
called Lin constraint [17]

∂0ξ+ (v∇) ξ = 0 (2.41)
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which means that the variables ξ = {ξ1, ξ2, ξ3} are constant along the mean world
lines of particles. In other words, the variables ξ are Lagrangian coordinates, which
label mean world lines of particles.

However, the constraint (2.40) does not take place always. In particular, Ωαβ ≡ 0
in the case of irrotational flow. Besides, the quantity Ωαβ is antisymmetric, as it
follows from the second relation (2.39), and

det
∣∣∣∣Ωαβ

∣∣∣∣ =

∣∣∣∣∣∣

0 Ω12 Ω13

−Ω12 0 Ω23

−Ω13 −Ω23 0

∣∣∣∣∣∣
≡ 0 (2.42)

Note that identity (2.42) is a property of the three-dimensional space. In the two-
dimensional space det

∣∣∣∣Ωαβ
∣∣∣∣ = (Ω12)

2
. In the case of four-dimensional space we

have
det

∣∣∣∣Ωαβ
∣∣∣∣ =

(
Ω12Ω34 − Ω13Ω24 + Ω14Ω23

)2

It seems rather strange and unexpected, that the Lin constraint (2.41) is not
a corollary of the dynamic equation (2.39), although the Lin constraint (2.41) is
compatible with the dynamic equation (2.39). In the case of nonrotational flow the
Euler hydrodynamic equations for perfect fluid can be obtained from the variational
principle [12]. In the case of a rotational flow of the same fluid the Euler hydrody-
namic equations can be deduced from the variational principle, only when the Lin
constraints are introduced in the action functional as side conditions, and the vari-
ables ξ are considered as dynamic variables [17]. Does it mean, that the Lagrangian
coordinates ξ are inadequate dynamical variables? Maybe. It is not clear now.

From equations (2.36) - (2.41) one obtains five equations

−(∇ϕ + gα (ξ) ∇ξα)2

2m
− UB − (∂0ϕ + gα (ξ) ∂0ξα) = 0, (2.43)

∂0ξ+ (v∇) ξ = 0 (2.44)

∂0ρ + ∇
(

ρ
(∇ϕ + gα (ξ) ∇ξα)

m

)
(2.45)

for five dynamic variables ρ, ϕ, ξ. Indefinite functions g (ξ) = {g1 (ξ),g2 (ξ) , g3 (ξ)}
are determined from initial conditions for velocity v = j/ρ. The constant b0 is
included in the indefinite functions ϕ,g (ξ) The velocity v is expressed via dynamic
variables ρ, ϕ, ξ by means of the relation

v =
j

ρ
=

(∇ϕ + gα (ξ) ∇ξα)

m
(2.46)

3 Description in terms of wave function

Clebsch potentials ξ, ϕ and the density ρ can be used for formation of a complex wave
function ψ. By means of a change of variables the action (2.35) can be transformed
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to a description in terms of a wave function [1]. Let us introduce the k-component
complex function ψ = {ψα}, α = 1, 2, ...k, defining it by the relations

ψα =
√

ρeiϕuα(ξ), ψ∗α =
√

ρe−iϕu∗α(ξ), α = 1, 2, ...k (3.1)

ψ∗ψ ≡
k∑

α=1

ψ∗αψα (3.2)

where (*) means the complex conjugate, uα(ξ), α = 1, 2, ...k are functions of only
variables ξ. They satisfy the relations

− i

2

k∑
α=1

(u∗α
∂uα

∂ξβ

− ∂u∗α
∂ξβ

uα) = gβ(ξ), β = 1, 2, ...k
k∑

α=1

u∗αuα = 1 (3.3)

where k is such a natural number that equations (3.3) admit a solution. In general,
k depends on the form of the arbitrary functions g = {gβ(ξ)}, β = 1, 2, 3.

It is easy to verify, that

ρ = ψ∗ψ, jµ = − ib0

2m
(ψ∗∂µψ − ∂µψ

∗ · ψ), µ = 1, 2, 3 (3.4)

The variational problem with the action (2.35) appears to be equivalent to the
variational problem with the action functional [1]

A[ψ, ψ∗] =

∫ {
ib0

2
(ψ∗∂0ψ − ∂0ψ

∗ψ) +
b2
0(ψ

∗∇ψ −∇ψ∗ · ψ)2

8mψ∗ψ

− ~
2

8m

(∇ (ψ∗ψ))2

ψ∗ψ

}
d4x (3.5)

where ∇ = {∂α} , α = 1, 2, 3.
Let us consider the case, when the number k of the wave function components

is equal to 2. In this case the wave function ψ =
{

ψ1
ψ2

}
has four real components.

The number of hydrodynamic variables ρ, j is also four, and we may hope that
the first three equations (3.3) can be solved for any choice of functions g. For the
two-component wave function ψ we have the identity

(ψ∗∇ψ −∇ψ∗ · ψ)2 ≡ −4ρ∇ψ∗ ·∇ψ + (∇ρ)2 + 4ρ2

3∑
α=1

(∇sα)2 (3.6)

where

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (3.7)

σα are 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (3.8)
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Substituting (3.6) in (3.5), we obtain

A[ψ, ψ∗] =

∫ {
ib0

2
(ψ∗∂0ψ − ∂0ψ

∗ · ψ)− b2
0

2m
∇ψ∗ ·∇ψ +

b2
0

8m
ρ (∇sα)2

+
b2
0

8m

(∇ρ)2

ρ
− ~2

8m

(∇ρ)2

ρ

}
d4x (3.9)

If we choose the arbitrary constant b0 in the form b0 = ~, the action (3.9) takes
the form

A[ψ, ψ∗] =

∫ {
i~
2

(ψ∗∂0ψ − ∂0ψ
∗ · ψ)− ~2

2m
∇ψ∗ ·∇ψ

+
~2

8m
ρ∇sα∇sα

}
d4x (3.10)

In the case, when the wave function ψ is one-component, for instance ψ =
{

ψ1
0

}
,

or ψ1 = aψ2, a =const, the quantities s = {s1, s2, s3} are constant (s1 = 0, s2 =
0, s3 = 1), the action (3.10) turns into

A[ψ, ψ∗] =

∫ {
i~
2

(ψ∗∂0ψ − ∂0ψ
∗ · ψ)− ~2

2m
∇ψ∗ ·∇ψ

}
d4x (3.11)

The dynamic equation, generated by the action (3.11), is the Schrödinger equation

i~∂0ψ +
~2

2m
∇2ψ = 0 (3.12)

This dynamic equation describes the flow of the fluid.
In the general case the dynamic equation, generated by the action (3.10) has the

form

i~∂0ψ +
~2

2m
∇2ψ +

~2

8m
∇2sα · (sα − 2σα) ψ − ~2

4m

∇ρ

ρ
∇sασαψ = 0 (3.13)

Deriving dynamic equation (3.13), we have used the identities

s2 ≡ 1, sα∇sα ≡ 0, ∇sα (∇sα) + sα∇2sα ≡ 0

Using the change of variables (3.1), (3.3), we did not use the fact, that the
solution of equations (2.39) is a solution of the equations (2.41). In the case of
description in terms of the wave function ψ we have not the problem, which we have
at description in terms of the generalized stream function ξ, when there are such
solutions of (2.39), which are not solutions of (2.41).

Thus, we have seen that a consecutive application of the relativity theory (rel-
ativistic concept of the particle state) admits one to describe the mean motion of
a stochastic particle Sst in terms of the statistical ensemble E [Sst]. The statistical
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ensemble E [Sst] is a dynamic system of the type of continuous medium. Dynamics
of the statistical ensemble is described by dynamic equations of the hydrodynamic
type. These dynamic equations may be described in terms of the wave function. In
the special case of the internal energy of the fluid, describing E [Sst], has the form

Eint = ~2
8m2

(
∇ρ
ρ

)2

, the dynamic equation coincides with the Schrödinger equation,

if the fluid flow is irrotational. In the general case of vortical flow the dynamic
equation in terms of the wave function is not linear. The dynamic equations for the
statistical ensemble E [Sst] have been derived without a reference to the quantum
principles (in particular, to the linearity principle). In other types of the particle
stochasticity one can obtain dynamic equations for the statistical ensemble E [Sst]
of stochastic particles Sst.

4 Multivariance of the space-time geometry

The real space-time geometry is multivariant in the sense that at a point P there
are many vectors PQ, PQ′, PQ′′,... which are equivalent to the vector AB at the
point A, but vectors PQ, PQ′, PQ′′,... are not equivalent between themselves.
The property of multivariance is generated by intransitivity of the equivalence re-
lation (1.1), (1.5), (1.6) of two vectors. This definition of the vector equivalence
(equality) is given without a reference to the method of the geometry description
(coordinate system). It is more correct, than the conventional definition of the vec-
tor equivalence, when vectors are equivalent (equal), if their coordinates are equal.
In the proper Euclidean geometry both definitions coincide, because the proper Eu-
clidean geometry is single-variant. However, in the geometry of Minkowski (pseudo-
Euclidean geometry of index 1) both definitions coincide only for timelike vectors.
The geometry of Minkowski is multivariant with respect to spacelike vectors. The
spacelike world lines wobble with infinite amplitude. This circumstance is a reason,
why a single tachyon (i.e. the particle with spacelike world line) cannot be detected.
If one uses the conventional definition of vector equivalence (equality of vector co-
ordinates), the world line of a tachyon is considered as a smooth (not wobbling).
In this case experimental impossibility of the tachyon detection is interpreted as a
proof of the statement, that tachyons do not exist. In the Riemannian space-time
geometry mathematicians were forced to forbid fernparallelism and to introduce the
parallel transport of vectors, in order to suppress the natural multivariance of the
Riemannian space-time geometry with respect to outlying vectors.

In general, the coordinateless metric approach to the space-time geometry, when
the geometry is described completely by the world function is more reasonable, than
conventional method of the geometry description, when the space-time geometry
description begins from fixation of a dimension and of a coordinate system.

Any generalized geometry G is a generalization of the proper Euclidean geometry
GE. This generalization depends essentially on the presentation of GE. Conventional
presentation of GE (V-presentation) contains several basic concepts: (1) dimension,
(2) coordinate system, (3) infinitesimal distance, (4) equivalence of vectors. In GE all
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these concepts are coherent, and axioms, connecting these concepts are consistent.
At a generalization of GE the basic concepts are modified. Corresponding modifica-
tion of axioms must be such, that the modified axioms were consistent. It is a very
difficult problem, because there exists a lot of generalized geometries, and for all of
them the axioms are to be consistent.

To solve the problem of GE generalization one should use a monistic presentation
of GE, when there is only one basic concept, and all other geometric concepts and
quantities are derivative. They are obtained from the unique basic concept. Such
a monistic presentation of GE is the σ-presentation, when GE is described in terms
and only in terms of the world function σ. There are connections between the world
function σ and derivative geometrical concepts. These connections are conserved at
the GE generalization, provided these connections can be expressed in terms of the
world function and only in terms of the world function. However, the world function
σE of GE may have its specific properties, which are not conserved at a generalization
of GE.

At the generalization of the proper Euclidean geometry one obtains a physical
geometry G, replacing the world function σE by the world function σ of the geometry
G in all geometric relations of GE, which can be expressed in terms of only the
Euclidean world function σE. These relations will referred to as general geometric
relations. Expressions (1.1), (1.5), (1.6) are examples of general geometric relations.

Another example of such a relation is definition of linear dependence of n vectors
P0P1,P0P2,...P0Pn . Vectors P0P1,P0P2,...P0Pn are linear dependent, if and only
if the condition

Fn (Pn) = 0 (4.1)

is fulfilled. Here Pn = {P0, P1, ...Pn} and Fn (Pn) is the Gram determinant

Fn (Pn) ≡ det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n (4.2)

Scalar product in (4.2) is expressed via the world function by means of (1.5).

5 Specific properties of the proper Euclidean

geometry

There are specific properties of GE, which are not conserved at the replacement of
σE by σ. If σ = σE is the world function of n-dimensional Euclidean space En, it
satisfies the following relations.

I. Definition of the dimension and introduction of the rectilinear coordinate sys-
tem:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (5.1)

where Fn (Pn) is the Gram’s determinant (4.2), and Ω is the set of points, where the
geometry is given. Vectors P0Pi, i = 1, 2, ...n are basic vectors of the rectilinear
coordinate system Kn with the origin at the point P0. The covariant metric tensor
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gik (Pn), i, k = 1, 2, ...n and the contravariant one gik (Pn), i, k = 1, 2, ...n in a
rectilinear coordinate system Kn are defined by the relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (5.2)

Fn (Pn) = det ||gik (Pn)|| 6= 0, i, k = 1, 2, ...n (5.3)

II. Linear structure of the Euclidean space:

σE (P,Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(5.4)
where coordinates xi (P ) , i = 1, 2, ...n of the point P are covariant coordinates of
the vector P0P, defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (5.5)

III: The metric tensor matrix glk (Pn) has only positive eigenvalues

gk > 0, k = 1, 2, ..., n (5.6)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (5.7)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution.

Not all conditions I – IV are independent, they determine different properties of
GE. For instance, the condition I determines the dimension n of the Euclidean space
En. This dimension n is the maximal number of linear independent vectors in GE.
This number is determined by the general geometric expression (4.2) which depends
on the form of the world function. If the world function changes, and conditions
(5.1) are not fulfilled, one cannot introduce a coordinate system in the conventional
form, because the metric dimension nm of the generalized geometry G remains to
be not determined. For instance, in the discrete geometry Gd, defined by (1.3)
one can find five vectors PP0 = (1, 0, 0, 0) ,PP1 = (0, 1, 0, 0) ,PP2 = (0, 0, 1, 0),
PP3 = (0, 0, 0, 1), PP4 = (a, 0, 0, 0), a > 1, which are linear dependent. For the
case of the discrete geometry (1.3) calculation gives

F4 (P, P0, P1, P2, P3) = −1− 4λ2
0 +O (

λ4
0

)
, λ2

0 ¿ 1 (5.8)

F5 (P, P0, P1, P2, P3, P4) = −λ2
0 − aλ2

0 (a− 1) +O (
λ4

0

)
, λ2

0 ¿ 1 (5.9)

We see, that the fifth order Gram determinant in the ”4-dimensional” discrete geom-
etry does not vanish. However, it vanishes, if λ0 → 0 and the discrete geometry turns
to the geometry of Minkowski. It means that the metric dimension nm in Gd is more,
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than the coordinate dimension nc (the number of coordinates) nc < nm. The Gram
determinant for two ”linear dependent” vectors PP0 = (1, 0, 0, 0) , PP4 = (a, 0, 0, 0),
a > 1

F2 (P, P0, P4) = λ2
0

(
1− a + a2 +

3

4
λ2

0

)
(5.10)

Vectors PP0, PP4 are linear dependent from viewpoint of their coordinate repre-
sentation. However, from the viewpoint of the metric approach the vectors PP0,
PP4 are linear independent.

Thus, specific properties (5.1) of the Euclidean geometry GE are responsible for
dimension and coordinate system in GE. In the Riemannian geometry the properties
(5.1) are fulfilled locally

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ωε, Fn (Pn) 6= 0, Fk

(
Ωk+1

ε

)
= 0, k > n

(5.11)
where Ωε is infinitesimal region of the total point set Ω, which is placed around
the point P0. For finite vectors the Riemannian geometry is multivariant, generally
speaking.

In the geometry of Minkowski GM the specific conditions of the GE are not ful-
filled, because the relation (5.6) is violated. Geometry of Minkowski is multivariant
with respect to spacelike vectors, although it is single-variant with respect to timelike
vectors.

6 Recognition of geometric objects

The most important problem of a geometry is a recognition of the same geometric
object in different space-time geometries. Such a problem arises, when a physical
body (a particle) travels from the space-time region Ω1 with geometry G1 = {σ1, Ω1}
to another space-time region Ω2 with geometry G2 = {σ2, Ω2}. How is the geomet-
rical object to be described, in order it may be recognized in different space-time
regions Ω1 and Ω2? In the conventional approach to geometry such a problem is not
considered at all.

We consider this problem in the simplest example, when the geometrical object
in geometries G1 and G2 is a segment T[P0P1] of a straight line between the points P0

and P1. In the proper Euclidean geometry GE this segment may be described as a
set of points R, defined by the relation

T[P0P1] = {R|ρ (P0, R) + ρ (R,P1)− ρ (P0, P1) = 0} , ρ =
√

2σ (6.1)

where σ = σE is the world function of GE. The segment in GE is one-dimensional in
the sense, that a section S

(
P, T[P0P1]

)
of the segment T[P0P1] at any point P ∈ T[P0P1]

consists only of this point P .

S
(
P, T[P0P1]

) ≡
{

R|
∧

s=0,1

ρ (Ps, P ) = ρ (Ps, R)

}
= {P} , ρ =

√
2σ (6.2)
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In the geometry of Minkowski GM a timelike segment T[P0P1], (σM (P0, P1) > 0) is
described also by the relation (6.1), where σ = σM. It is also one-dimensional. The
spacelike segment T[P0P1], (σM (P0, P1) < 0) is a three-dimensional infinite surface.

Is a segment of a timelike straight line one-dimensional in other space-time
geometries G? One believes, that the segment T[P0P1] of a straight line is one-
dimensional in the real space-time geometry, because one believes that a straight
line is one-dimensional in any space-time geometry. Such a belief imposes restric-
tions on the distance function ρ of the geometry Gm (metric geometry), where any
straight line is one-dimensional.

On the other hand, let us suppose an ellipsoid in GE. It is determined in terms
of the distance ρ in the form

ELF1F2P = {R|ρ (F1, R) + ρ (R, F2) = ρ (F1, P ) + ρ (P, F2)} (6.3)

where F1, F2 are focuses of the ellipsoid and P is some point on the ellipsoid surface.
If the point P coincides with the focus F2, the ellipsoid degenerates into the segment
T[F1P ] of the straight line.

ELF1PP = T[F1P ] = {R|ρ (F1, R) + ρ (R, P ) = ρ (F1, P )} (6.4)

The degenerate ellipsoid [ELF1F2P ]F2=P degenerates into one-dimensional segment
in GE In arbitrary geometry G it may not remain to be a one-dimensional line. It
remains to be one-dimensional, if the triangle axiom takes place

ρ (F1, R) + ρ (R, F2) ≥ ρ (F1, F2) , ∀F1, F2, P ∈ Ω (6.5)

Which of two properties of a straight line segment should be taken for definition
of the segment in the space-time geometry? (one-dimensionality or degenerate el-
lipsoid?) It is clear that the straight line segment should be defined via ellipsoid,
because such a definition does not put restrictions on the world function (and on
the distance function). Besides, such a definition is produced in terms of the world
function.

However the segment of the straight line is a simplest geometrical object of the
proper Euclidean geometry. There are other geometrical objects, whose properties
are more complicated, than the properties of the segment.

Geometrical object is defined in the GE in terms of the world function σE. Re-
placing in this definition the world function σE by the the world function σ of the
generalized geometry G, one obtains the definition of this geometric object in G.

Definition 1: A geometrical object gPn,σ of the geometry G = {σ, Ω} is a subset
gPn,σ ⊂ Ω of the point set Ω. This geometrical object gPn,σ is a set of roots R ∈ Ω
of the function FPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , FPn,σ : Ω → R (6.6)

where FPn,σ depends on the point R via world functions of arguments {Pn, R} =
{P0, P1, ...Pn, R}

FPn,σ : FPn,σ (R) = GPn,σ (u1, u2, ...us) , s =
1

2
(n + 1) (n + 2) (6.7)
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ul = σ (wi, wk) , i, k = 0, 1, ...n + 1, l = 1, 2, ...
1

2
(n + 1) (n + 2) (6.8)

wk = Pk ∈ Ω, k = 0, 1, ...n, wn+1 = R ∈ Ω (6.9)

Here Pn = {P0, P1, ..., Pn} ⊂ Ω are n + 1 points which are parameters, determining
the geometrical object gPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , R ∈ Ω, Pn ∈ Ωn+1 (6.10)

FPn,σ (R) = GPn,σ (u1, u2, ...us) is a function of 1
2
(n + 1) (n + 2) arguments uk and

of n + 1 parameters Pn. The set Pn = {P0, P1, ...Pn} ∈ Ωn+1 of the geometric
object parameters will be referred to as the skeleton of the geometrical object. The
subset gPn,σ ⊂ Ω will be referred to as the envelope of the skeleton. The skeleton is
an analog of a frame of reference, attached rigidly to a physical body. Tracing the
skeleton motion, one can trace the motion of the physical body. When a particle is
considered as a geometrical object, its motion in the space-time is described by the
skeleton Pn motion. At such an approach (the rigid body approximation) the shape
of the envelope is of no importance.

Remark: An arbitrary subset Ω′ of the point set Ω is not a geometrical object,
generally speaking. It is supposed, that physical bodies may have only a shape of
a geometrical object, because only in this case one can identify identical physical
bodies (geometrical objects) in different space-time geometries.

Existence of the same geometrical objects in different space-time regions, having
different geometries, brings up the question on equivalence of geometrical objects in
different space-time geometries. Such a question did not brought up before, because
one does not consider such a situation, when a physical body moves from one space-
time region to another space-time region, having another space-time geometry. In
general, mathematical technique of the conventional space-time geometry (differen-
tial geometry) is not applicable for simultaneous consideration of several different
geometries of different space-time regions.

We can perceive the space-time geometry only via motion of physical bodies in
the space-time, or via construction of geometrical objects corresponding to these
physical bodies. As it follows from the definition 1 of the geometrical object, the
function GPn,σ as a function of its arguments uk, k = 1, 2, ...n (n + 1) /2 (of world
functions of different points) is the same in all physical geometries. It means, that
a geometrical object O1 in the geometry G1 = {σ1, Ω1} is obtained from the same
geometrical object O2 in the geometry G2 = {σ2, Ω2} by means of the replacement
of σ1 by σ2 in the definition of this geometrical object.

Definition 2: Geometrical object gP ′n,σ′ ( P ′n = {P ′
0, P

′
1, ..P

′
n}) in the geometry

G ′ = {σ′, Ω′} and the geometrical object gPn,σ ( Pn = {P0, P1, ..Pn}) in the geometry
G = {σ, Ω} are similar geometrical objects, if

σ′ (P ′
i , P

′
k) = σ (Pi, Pk) , i, k = 0, 1, ..n (6.11)

and the functions G′
P′n,σ′ for gP ′n,σ′ and GPn,σ for gPn,σ in the formula (6.7) are the

same functions of arguments u1, u2, ...us

G′
P′n,σ′ (u1, u2, ...us) = GPn,σ (u1, u2, ...us) (6.12)
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In this case

ul ≡ σ (Pi, Pk) = u′l ≡ σ′ (P ′
i , P

′
k) , i, k = 0, 1, ...n, l = 1, 2, ..n (n + 1) /2 (6.13)

The functions F ′
P ′n,σ′ for gP ′n,σ′ and FPn,σ for gPn,σ in the formula (6.7) have the same

roots, if the relation (6.12) is fulfilled. As a result one-to-one connection between
the geometrical objects gP ′n,σ′ and gPn,σ arises.

As far as the physical geometry is determined by its geometrical objects construc-
tion, a physical geometry G = {σ, Ω} can be obtained from some known standard
geometry Gst = {σst, Ω} by means of a deformation of the standard geometry Gst.
Deformation of the standard geometry Gst is realized by the replacement of σst by σ
in all definitions of the geometrical objects in the standard geometry Gst. The proper
Euclidean geometry GE is an axiomatizable geometry. It has been constructed by
means of the Euclidean method as a logical construction. Simultaneously the proper
Euclidean geometry is a physical geometry. It may be used as a standard geometry
Gst. Construction of a physical geometry as a deformation of the proper Euclidean
geometry will be referred to as the deformation principle [18, 19, 20]. The most phys-
ical geometries are nonaxiomatizable geometries. They can be constructed only by
means of the deformation principle.

7 Multivariance of the space-time geometry

Multivariance is an immanent property of a space-time geometry [21]. Even the
geometry of Minkowski is multivariant (with respect to spacelike vectors). The real
space-time geometry is multivariant also with respect to timelike vectors, and this
multivariance is a reason of quantum effects. Mathematical formalism of differential
geometry is used for description of the space-time geometry. This formalism cannot
be adequate at the description of the space-time geometry, because it is incompatible
with the concept of multivariance of a geometry.

Formally one can define the operation of summation of g-vectors in Gd, but it
will be ambiguous. Indeed, the sum AC of two g-vectors AB and BC, when the
end of one g-vector is the origin of other one, is defined as follows

AB + BC = AC (7.1)

The sum AD1 of two arbitrary g-vectors AB and CD at the point A is defined as
follows

AB + CD = AB + BD1 = AD1, (CDeqvBD1) (7.2)

The g-vector AD1 is defined by relation (7.2) ambiguously, because the g-vector
BD1 is determined ambiguously by the equivalence relation (CDeqvBD1).

The g-vector AC =aAB, which is a result of multiplication of g-vector AB by
a real number a is defined by the relations

aAB = AC, |AC| = a |AB| , (AB.AC) = a |AB|2 (7.3)
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Result of multiplication is ambiguous, because, generally speaking, the system of
two last equations (7.3) has no unique solution in Gd.

Thus, the mathematical formalism of differential geometry cannot be used in a
multivariant geometry. As a result the most scientists do not acknowledge the phys-
ical geometry and the metric approach to space-time geometry. Contemporary sci-
entists deal with timelike part of the geometry of Minkowski, which is single-variant
and with timelike part of the Riemannian geometry, which is single-variant for in-
finitesimal vectors. They ignore spacelike vectors of the geometry of Minkowski, and
ignore existence of tachyons. As a result they have problems with the dark matter.
They consider the Riemannian geometry of space-time as the only possible space-
time geometry and ignore other physical geometries of the space-time. However, a
use of the metric approach to space-time geometry in general relativity admits one to
obtain dynamic equations for the world function directly (not for metric tensor) and
to construct the extended general relativity (EGR), which is not restricted by the
condition of Riemanianess [22]. In EGR the world function is single-valued, whereas
in general relativity the world function is many-valued, generally speaking. Besides,
in EGR the black holes do not exist [23], because of the induced antigravitation [24].

8 Perception of multivariance

Intransitive equivalence relations meet objections (”the equivalence relation are to
be transitive by definition”). Such an objection arises, because all the time scien-
tists dealt only with the Euclidean method of the geometry construction, which is
a logical construction, and where the equivalence relation cannot be intransitive.
At the metric approach to geometry a physical geometry is constructed as a defor-
mation of the already constructed Euclidean geometry. The geometry deformation
(replacement of σE by σ) is not a logical procedure. The physical geometry is not
a logical construction and it is a nonaxiomatizable geometry, which cannot be con-
structed by the usual Euclidean method. Many scientists are apt to think, that there
are no nonaxiomatizable multivariant geometries. Besides, the metric approach to
geometry needs a construction of a new mathematical formalism.

This disregard of multivariance is a manifestation of conceptual problems, con-
nected with transition from description of deterministic motion to description of
stochastic motion. The concept of multivariance is connected with mathematical
formalism, describing the stochastic particle motion. At first the negative rela-
tion of scientific community to stochastic motion appeared in the relation to the
Boltzmann’s works, who suggested to explain deterministic motion of a continuous
medium by stochastic motion of this medium molecules. As far as the stochastic
motion and the multivariance of the space-time geometry are connected closely, the
disregard of the Boltzmann kinetic equations was a disregard of the multivariance
as a reason of the stochastic motion. As far as formalism of the stochastic motion
description was practically absent, the mathematical community was apt to ignore
stochastic motion and its foundation by the multivariant space-time geometry.
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The reason of such a disregard may be illustrated in the example of transition
from the Aristotelian mechanics to the Newtonian one. The Aristotelian mechanics
is essentially a statics, which investigates condition of a body equilibrium under
action of different forces. The Aristotelian mechanics did not contain such concepts
as acceleration and inertia. It did not consider a violation of the equilibrium. A
motion of a body was considered as a travel of the body with balanced forces acting
on the body. A transition to Newtonian mechanics means an introduction of new
concepts, such as acceleration and inertia. According to definition of Lee Smolin [25]
the Newtonian mechanics is a uniting of the rest and of the motion. Introduction of
such concepts as inertia and acceleration needed such a mathematical formalism as
infinitesimal calculus. Galilei introduced the concept of inertia, which admits one to
explain compatibility of the Earth rotation around its axis with experimental data.
However, the corresponding mathematical formalism was absent, and the works of
Galilei were not acknowledged. It is very difficult to acknowledge a new concept,
which changes essentially the existing theory, especially, if the corresponding math-
ematical formalism has not been formulated.

Concept of inertia has been acknowledged only after works of I. Newton, who
had introduced this concept in the first law of mechanics. Although the first law
of mechanics is a special case of the second law, the concept of inertia has been
introduced as the first law, in order to stress an importance of the concept of inertia,
which was not acknowledged by most of scientists in that time.

Now we have a transition from the deterministic particle motion to the stochastic
particle motion. This conceptual transition needs a new concept (multivariance) and
a new mathematical formalism. In the new formalism of the skeleton conception
the number of dynamic equations differs, generally speaking, from the number of
dynamic variables. The particle state, described by the skeleton Pn, contains 4n
dynamic variables, which satisfy n (n + 1) dynamic equations. If 4n > n (n + 1), for
instance, for n = 1, 2, a solution of dynamic equations is not unique. It is a reason
of the world chain wobbling. The concept of multivariance and a new formalism
corresponding to uniting of the deterministic particle dynamics with the stochastic
particle dynamics is not acknowledged by the scientific community. Apparently, it is
a natural thing, that the scientific community did not acknowledge a new concept,
which is introduced on the basis of logical consideration of basic physical principles,
but not on the basis of new hypotheses, extracted from experimental data.

9 Applications of skeleton conception

in microcosm

Thus, correcting mistakes in basic physical and geometric principles, one succeeded
to create the skeleton conception of elementary particles (SCEP), which admits one
to investigate arrangement of elementary particles, but not only systematize them.
It is a new conception, which can be classified as a uniting of a deterministic particle
motion and a stochastic one. Application of SCEP to Dirac equation shows, that
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the Dirac particle (fermion) has a helical world line with timelike axis. Rotation
of a particle in its motion along the helix explains freely its spin and magnetic
moment. Although this result is obtained at investigation of the Dirac equation,
it can be obtained only in the framework of SCEP, when the Dirac equation is
considered as a dynamic equation, describing evolution of the statistical ensemble
[26, 27, 28, 29, 30]. World line of a free particle can have a shape of a helix, provided
skeleton of the particle consists of three points [31, 32]. Reasonable restriction,
that the world function is single-valued, leads to the corollary that the electric
charge of any elementary particle is not more, than the elementary charge [33]. This
result is known from experiment, but it was not explained by the existing theory of
elementary particles.
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